]> git.proxmox.com Git - rustc.git/blame - src/libcollections/binary_heap.rs
Imported Upstream version 1.2.0+dfsg1
[rustc.git] / src / libcollections / binary_heap.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! A priority queue implemented with a binary heap.
12//!
62682a34
SL
13//! Insertion and popping the largest element have `O(log n)` time complexity.
14//! Checking the largest element is `O(1)`. Converting a vector to a binary heap
15//! can be done in-place, and has `O(n)` complexity. A binary heap can also be
16//! converted to a sorted vector in-place, allowing it to be used for an `O(n
17//! log n)` in-place heapsort.
1a4d82fc
JJ
18//!
19//! # Examples
20//!
21//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
22//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
23//! It shows how to use `BinaryHeap` with custom types.
24//!
25//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
26//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
27//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
28//!
29//! ```
30//! use std::cmp::Ordering;
31//! use std::collections::BinaryHeap;
85aaf69f 32//! use std::usize;
1a4d82fc 33//!
c34b1796 34//! #[derive(Copy, Clone, Eq, PartialEq)]
1a4d82fc 35//! struct State {
85aaf69f
SL
36//! cost: usize,
37//! position: usize,
1a4d82fc
JJ
38//! }
39//!
40//! // The priority queue depends on `Ord`.
41//! // Explicitly implement the trait so the queue becomes a min-heap
42//! // instead of a max-heap.
43//! impl Ord for State {
44//! fn cmp(&self, other: &State) -> Ordering {
45//! // Notice that the we flip the ordering here
46//! other.cost.cmp(&self.cost)
47//! }
48//! }
49//!
50//! // `PartialOrd` needs to be implemented as well.
51//! impl PartialOrd for State {
52//! fn partial_cmp(&self, other: &State) -> Option<Ordering> {
53//! Some(self.cmp(other))
54//! }
55//! }
56//!
85aaf69f 57//! // Each node is represented as an `usize`, for a shorter implementation.
1a4d82fc 58//! struct Edge {
85aaf69f
SL
59//! node: usize,
60//! cost: usize,
1a4d82fc
JJ
61//! }
62//!
63//! // Dijkstra's shortest path algorithm.
64//!
65//! // Start at `start` and use `dist` to track the current shortest distance
66//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
85aaf69f 67//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
1a4d82fc 68//! // for a simpler implementation.
85aaf69f 69//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> usize {
1a4d82fc 70//! // dist[node] = current shortest distance from `start` to `node`
85aaf69f 71//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
1a4d82fc
JJ
72//!
73//! let mut heap = BinaryHeap::new();
74//!
75//! // We're at `start`, with a zero cost
76//! dist[start] = 0;
77//! heap.push(State { cost: 0, position: start });
78//!
79//! // Examine the frontier with lower cost nodes first (min-heap)
80//! while let Some(State { cost, position }) = heap.pop() {
81//! // Alternatively we could have continued to find all shortest paths
82//! if position == goal { return cost; }
83//!
84//! // Important as we may have already found a better way
85//! if cost > dist[position] { continue; }
86//!
87//! // For each node we can reach, see if we can find a way with
88//! // a lower cost going through this node
62682a34 89//! for edge in &adj_list[position] {
1a4d82fc
JJ
90//! let next = State { cost: cost + edge.cost, position: edge.node };
91//!
92//! // If so, add it to the frontier and continue
93//! if next.cost < dist[next.position] {
94//! heap.push(next);
95//! // Relaxation, we have now found a better way
96//! dist[next.position] = next.cost;
97//! }
98//! }
99//! }
100//!
101//! // Goal not reachable
85aaf69f 102//! usize::MAX
1a4d82fc
JJ
103//! }
104//!
105//! fn main() {
106//! // This is the directed graph we're going to use.
107//! // The node numbers correspond to the different states,
108//! // and the edge weights symbolize the cost of moving
109//! // from one node to another.
110//! // Note that the edges are one-way.
111//! //
112//! // 7
113//! // +-----------------+
114//! // | |
115//! // v 1 2 |
116//! // 0 -----> 1 -----> 3 ---> 4
117//! // | ^ ^ ^
118//! // | | 1 | |
119//! // | | | 3 | 1
120//! // +------> 2 -------+ |
121//! // 10 | |
122//! // +---------------+
123//! //
124//! // The graph is represented as an adjacency list where each index,
125//! // corresponding to a node value, has a list of outgoing edges.
126//! // Chosen for its efficiency.
127//! let graph = vec![
128//! // Node 0
129//! vec![Edge { node: 2, cost: 10 },
130//! Edge { node: 1, cost: 1 }],
131//! // Node 1
132//! vec![Edge { node: 3, cost: 2 }],
133//! // Node 2
134//! vec![Edge { node: 1, cost: 1 },
135//! Edge { node: 3, cost: 3 },
136//! Edge { node: 4, cost: 1 }],
137//! // Node 3
138//! vec![Edge { node: 0, cost: 7 },
139//! Edge { node: 4, cost: 2 }],
140//! // Node 4
141//! vec![]];
142//!
143//! assert_eq!(shortest_path(&graph, 0, 1), 1);
144//! assert_eq!(shortest_path(&graph, 0, 3), 3);
145//! assert_eq!(shortest_path(&graph, 3, 0), 7);
146//! assert_eq!(shortest_path(&graph, 0, 4), 5);
85aaf69f 147//! assert_eq!(shortest_path(&graph, 4, 0), usize::MAX);
1a4d82fc
JJ
148//! }
149//! ```
150
151#![allow(missing_docs)]
85aaf69f 152#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
153
154use core::prelude::*;
155
9346a6ac 156use core::iter::{FromIterator};
d9579d0f 157use core::mem::swap;
1a4d82fc
JJ
158use core::ptr;
159
160use slice;
161use vec::{self, Vec};
162
163/// A priority queue implemented with a binary heap.
164///
165/// This will be a max-heap.
c34b1796
AL
166///
167/// It is a logic error for an item to be modified in such a way that the
168/// item's ordering relative to any other item, as determined by the `Ord`
169/// trait, changes while it is in the heap. This is normally only possible
170/// through `Cell`, `RefCell`, global state, I/O, or unsafe code.
1a4d82fc 171#[derive(Clone)]
85aaf69f 172#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
173pub struct BinaryHeap<T> {
174 data: Vec<T>,
175}
176
85aaf69f 177#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
178impl<T: Ord> Default for BinaryHeap<T> {
179 #[inline]
180 fn default() -> BinaryHeap<T> { BinaryHeap::new() }
181}
182
183impl<T: Ord> BinaryHeap<T> {
184 /// Creates an empty `BinaryHeap` as a max-heap.
185 ///
186 /// # Examples
187 ///
188 /// ```
189 /// use std::collections::BinaryHeap;
190 /// let mut heap = BinaryHeap::new();
85aaf69f 191 /// heap.push(4);
1a4d82fc 192 /// ```
85aaf69f 193 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
194 pub fn new() -> BinaryHeap<T> { BinaryHeap { data: vec![] } }
195
196 /// Creates an empty `BinaryHeap` with a specific capacity.
197 /// This preallocates enough memory for `capacity` elements,
198 /// so that the `BinaryHeap` does not have to be reallocated
199 /// until it contains at least that many values.
200 ///
201 /// # Examples
202 ///
203 /// ```
204 /// use std::collections::BinaryHeap;
205 /// let mut heap = BinaryHeap::with_capacity(10);
85aaf69f 206 /// heap.push(4);
1a4d82fc 207 /// ```
85aaf69f
SL
208 #[stable(feature = "rust1", since = "1.0.0")]
209 pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
1a4d82fc
JJ
210 BinaryHeap { data: Vec::with_capacity(capacity) }
211 }
212
213 /// Creates a `BinaryHeap` from a vector. This is sometimes called
214 /// `heapifying` the vector.
215 ///
216 /// # Examples
217 ///
218 /// ```
c34b1796 219 /// # #![feature(collections)]
1a4d82fc 220 /// use std::collections::BinaryHeap;
85aaf69f 221 /// let heap = BinaryHeap::from_vec(vec![9, 1, 2, 7, 3, 2]);
1a4d82fc
JJ
222 /// ```
223 pub fn from_vec(vec: Vec<T>) -> BinaryHeap<T> {
224 let mut heap = BinaryHeap { data: vec };
225 let mut n = heap.len() / 2;
226 while n > 0 {
227 n -= 1;
228 heap.sift_down(n);
229 }
230 heap
231 }
232
233 /// Returns an iterator visiting all values in the underlying vector, in
234 /// arbitrary order.
235 ///
236 /// # Examples
237 ///
238 /// ```
c34b1796 239 /// # #![feature(collections)]
1a4d82fc 240 /// use std::collections::BinaryHeap;
85aaf69f 241 /// let heap = BinaryHeap::from_vec(vec![1, 2, 3, 4]);
1a4d82fc
JJ
242 ///
243 /// // Print 1, 2, 3, 4 in arbitrary order
244 /// for x in heap.iter() {
245 /// println!("{}", x);
246 /// }
247 /// ```
85aaf69f 248 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
249 pub fn iter(&self) -> Iter<T> {
250 Iter { iter: self.data.iter() }
251 }
252
1a4d82fc
JJ
253 /// Returns the greatest item in the binary heap, or `None` if it is empty.
254 ///
255 /// # Examples
256 ///
257 /// ```
258 /// use std::collections::BinaryHeap;
259 /// let mut heap = BinaryHeap::new();
260 /// assert_eq!(heap.peek(), None);
261 ///
85aaf69f 262 /// heap.push(1);
1a4d82fc
JJ
263 /// heap.push(5);
264 /// heap.push(2);
265 /// assert_eq!(heap.peek(), Some(&5));
266 ///
267 /// ```
85aaf69f 268 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
269 pub fn peek(&self) -> Option<&T> {
270 self.data.get(0)
271 }
272
273 /// Returns the number of elements the binary heap can hold without reallocating.
274 ///
275 /// # Examples
276 ///
277 /// ```
278 /// use std::collections::BinaryHeap;
279 /// let mut heap = BinaryHeap::with_capacity(100);
280 /// assert!(heap.capacity() >= 100);
85aaf69f 281 /// heap.push(4);
1a4d82fc 282 /// ```
85aaf69f
SL
283 #[stable(feature = "rust1", since = "1.0.0")]
284 pub fn capacity(&self) -> usize { self.data.capacity() }
1a4d82fc
JJ
285
286 /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
287 /// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
288 ///
289 /// Note that the allocator may give the collection more space than it requests. Therefore
290 /// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
291 /// insertions are expected.
292 ///
293 /// # Panics
294 ///
85aaf69f 295 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
296 ///
297 /// # Examples
298 ///
299 /// ```
300 /// use std::collections::BinaryHeap;
301 /// let mut heap = BinaryHeap::new();
302 /// heap.reserve_exact(100);
303 /// assert!(heap.capacity() >= 100);
85aaf69f 304 /// heap.push(4);
1a4d82fc 305 /// ```
85aaf69f
SL
306 #[stable(feature = "rust1", since = "1.0.0")]
307 pub fn reserve_exact(&mut self, additional: usize) {
1a4d82fc
JJ
308 self.data.reserve_exact(additional);
309 }
310
311 /// Reserves capacity for at least `additional` more elements to be inserted in the
312 /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
313 ///
314 /// # Panics
315 ///
85aaf69f 316 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
317 ///
318 /// # Examples
319 ///
320 /// ```
321 /// use std::collections::BinaryHeap;
322 /// let mut heap = BinaryHeap::new();
323 /// heap.reserve(100);
324 /// assert!(heap.capacity() >= 100);
85aaf69f 325 /// heap.push(4);
1a4d82fc 326 /// ```
85aaf69f
SL
327 #[stable(feature = "rust1", since = "1.0.0")]
328 pub fn reserve(&mut self, additional: usize) {
1a4d82fc
JJ
329 self.data.reserve(additional);
330 }
331
332 /// Discards as much additional capacity as possible.
85aaf69f 333 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
334 pub fn shrink_to_fit(&mut self) {
335 self.data.shrink_to_fit();
336 }
337
338 /// Removes the greatest item from the binary heap and returns it, or `None` if it
339 /// is empty.
340 ///
341 /// # Examples
342 ///
343 /// ```
c34b1796 344 /// # #![feature(collections)]
1a4d82fc 345 /// use std::collections::BinaryHeap;
85aaf69f 346 /// let mut heap = BinaryHeap::from_vec(vec![1, 3]);
1a4d82fc
JJ
347 ///
348 /// assert_eq!(heap.pop(), Some(3));
349 /// assert_eq!(heap.pop(), Some(1));
350 /// assert_eq!(heap.pop(), None);
351 /// ```
85aaf69f 352 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
353 pub fn pop(&mut self) -> Option<T> {
354 self.data.pop().map(|mut item| {
355 if !self.is_empty() {
356 swap(&mut item, &mut self.data[0]);
357 self.sift_down(0);
358 }
359 item
360 })
361 }
362
363 /// Pushes an item onto the binary heap.
364 ///
365 /// # Examples
366 ///
367 /// ```
368 /// use std::collections::BinaryHeap;
369 /// let mut heap = BinaryHeap::new();
85aaf69f 370 /// heap.push(3);
1a4d82fc
JJ
371 /// heap.push(5);
372 /// heap.push(1);
373 ///
374 /// assert_eq!(heap.len(), 3);
375 /// assert_eq!(heap.peek(), Some(&5));
376 /// ```
85aaf69f 377 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
378 pub fn push(&mut self, item: T) {
379 let old_len = self.len();
380 self.data.push(item);
381 self.sift_up(0, old_len);
382 }
383
384 /// Pushes an item onto the binary heap, then pops the greatest item off the queue in
385 /// an optimized fashion.
386 ///
387 /// # Examples
388 ///
389 /// ```
c34b1796 390 /// # #![feature(collections)]
1a4d82fc
JJ
391 /// use std::collections::BinaryHeap;
392 /// let mut heap = BinaryHeap::new();
85aaf69f 393 /// heap.push(1);
1a4d82fc
JJ
394 /// heap.push(5);
395 ///
396 /// assert_eq!(heap.push_pop(3), 5);
397 /// assert_eq!(heap.push_pop(9), 9);
398 /// assert_eq!(heap.len(), 2);
399 /// assert_eq!(heap.peek(), Some(&3));
400 /// ```
401 pub fn push_pop(&mut self, mut item: T) -> T {
402 match self.data.get_mut(0) {
403 None => return item,
404 Some(top) => if *top > item {
405 swap(&mut item, top);
406 } else {
407 return item;
408 },
409 }
410
411 self.sift_down(0);
412 item
413 }
414
415 /// Pops the greatest item off the binary heap, then pushes an item onto the queue in
416 /// an optimized fashion. The push is done regardless of whether the binary heap
417 /// was empty.
418 ///
419 /// # Examples
420 ///
421 /// ```
c34b1796 422 /// # #![feature(collections)]
1a4d82fc
JJ
423 /// use std::collections::BinaryHeap;
424 /// let mut heap = BinaryHeap::new();
425 ///
85aaf69f 426 /// assert_eq!(heap.replace(1), None);
1a4d82fc
JJ
427 /// assert_eq!(heap.replace(3), Some(1));
428 /// assert_eq!(heap.len(), 1);
429 /// assert_eq!(heap.peek(), Some(&3));
430 /// ```
431 pub fn replace(&mut self, mut item: T) -> Option<T> {
432 if !self.is_empty() {
433 swap(&mut item, &mut self.data[0]);
434 self.sift_down(0);
435 Some(item)
436 } else {
437 self.push(item);
438 None
439 }
440 }
441
442 /// Consumes the `BinaryHeap` and returns the underlying vector
443 /// in arbitrary order.
444 ///
445 /// # Examples
446 ///
447 /// ```
c34b1796 448 /// # #![feature(collections)]
1a4d82fc 449 /// use std::collections::BinaryHeap;
85aaf69f 450 /// let heap = BinaryHeap::from_vec(vec![1, 2, 3, 4, 5, 6, 7]);
1a4d82fc
JJ
451 /// let vec = heap.into_vec();
452 ///
453 /// // Will print in some order
62682a34 454 /// for x in vec {
1a4d82fc
JJ
455 /// println!("{}", x);
456 /// }
457 /// ```
458 pub fn into_vec(self) -> Vec<T> { self.data }
459
460 /// Consumes the `BinaryHeap` and returns a vector in sorted
461 /// (ascending) order.
462 ///
463 /// # Examples
464 ///
465 /// ```
c34b1796 466 /// # #![feature(collections)]
1a4d82fc
JJ
467 /// use std::collections::BinaryHeap;
468 ///
85aaf69f 469 /// let mut heap = BinaryHeap::from_vec(vec![1, 2, 4, 5, 7]);
1a4d82fc
JJ
470 /// heap.push(6);
471 /// heap.push(3);
472 ///
473 /// let vec = heap.into_sorted_vec();
c34b1796 474 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
1a4d82fc
JJ
475 /// ```
476 pub fn into_sorted_vec(mut self) -> Vec<T> {
477 let mut end = self.len();
478 while end > 1 {
479 end -= 1;
480 self.data.swap(0, end);
481 self.sift_down_range(0, end);
482 }
483 self.into_vec()
484 }
485
486 // The implementations of sift_up and sift_down use unsafe blocks in
487 // order to move an element out of the vector (leaving behind a
d9579d0f
AL
488 // hole), shift along the others and move the removed element back into the
489 // vector at the final location of the hole.
490 // The `Hole` type is used to represent this, and make sure
491 // the hole is filled back at the end of its scope, even on panic.
492 // Using a hole reduces the constant factor compared to using swaps,
493 // which involves twice as many moves.
494 fn sift_up(&mut self, start: usize, pos: usize) {
1a4d82fc 495 unsafe {
d9579d0f
AL
496 // Take out the value at `pos` and create a hole.
497 let mut hole = Hole::new(&mut self.data, pos);
1a4d82fc 498
d9579d0f
AL
499 while hole.pos() > start {
500 let parent = (hole.pos() - 1) / 2;
501 if hole.removed() <= hole.get(parent) { break }
502 hole.move_to(parent);
1a4d82fc 503 }
1a4d82fc
JJ
504 }
505 }
506
85aaf69f 507 fn sift_down_range(&mut self, mut pos: usize, end: usize) {
d9579d0f 508 let start = pos;
1a4d82fc 509 unsafe {
d9579d0f 510 let mut hole = Hole::new(&mut self.data, pos);
1a4d82fc
JJ
511 let mut child = 2 * pos + 1;
512 while child < end {
513 let right = child + 1;
d9579d0f 514 if right < end && !(hole.get(child) > hole.get(right)) {
1a4d82fc
JJ
515 child = right;
516 }
d9579d0f
AL
517 hole.move_to(child);
518 child = 2 * hole.pos() + 1;
1a4d82fc
JJ
519 }
520
d9579d0f 521 pos = hole.pos;
1a4d82fc 522 }
d9579d0f 523 self.sift_up(start, pos);
1a4d82fc
JJ
524 }
525
85aaf69f 526 fn sift_down(&mut self, pos: usize) {
1a4d82fc
JJ
527 let len = self.len();
528 self.sift_down_range(pos, len);
529 }
530
531 /// Returns the length of the binary heap.
85aaf69f
SL
532 #[stable(feature = "rust1", since = "1.0.0")]
533 pub fn len(&self) -> usize { self.data.len() }
1a4d82fc
JJ
534
535 /// Checks if the binary heap is empty.
85aaf69f 536 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
537 pub fn is_empty(&self) -> bool { self.len() == 0 }
538
539 /// Clears the binary heap, returning an iterator over the removed elements.
c34b1796
AL
540 ///
541 /// The elements are removed in arbitrary order.
1a4d82fc 542 #[inline]
62682a34
SL
543 #[unstable(feature = "drain",
544 reason = "matches collection reform specification, \
545 waiting for dust to settle")]
1a4d82fc 546 pub fn drain(&mut self) -> Drain<T> {
d9579d0f 547 Drain { iter: self.data.drain(..) }
1a4d82fc
JJ
548 }
549
550 /// Drops all items from the binary heap.
85aaf69f 551 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
552 pub fn clear(&mut self) { self.drain(); }
553}
554
d9579d0f
AL
555/// Hole represents a hole in a slice i.e. an index without valid value
556/// (because it was moved from or duplicated).
557/// In drop, `Hole` will restore the slice by filling the hole
558/// position with the value that was originally removed.
559struct Hole<'a, T: 'a> {
560 data: &'a mut [T],
561 /// `elt` is always `Some` from new until drop.
562 elt: Option<T>,
563 pos: usize,
564}
565
566impl<'a, T> Hole<'a, T> {
567 /// Create a new Hole at index `pos`.
568 fn new(data: &'a mut [T], pos: usize) -> Self {
569 unsafe {
570 let elt = ptr::read(&data[pos]);
571 Hole {
572 data: data,
573 elt: Some(elt),
574 pos: pos,
575 }
576 }
577 }
578
579 #[inline(always)]
580 fn pos(&self) -> usize { self.pos }
581
582 /// Return a reference to the element removed
583 #[inline(always)]
584 fn removed(&self) -> &T {
585 self.elt.as_ref().unwrap()
586 }
587
588 /// Return a reference to the element at `index`.
589 ///
590 /// Panics if the index is out of bounds.
591 ///
592 /// Unsafe because index must not equal pos.
593 #[inline(always)]
594 unsafe fn get(&self, index: usize) -> &T {
595 debug_assert!(index != self.pos);
596 &self.data[index]
597 }
598
599 /// Move hole to new location
600 ///
601 /// Unsafe because index must not equal pos.
602 #[inline(always)]
603 unsafe fn move_to(&mut self, index: usize) {
604 debug_assert!(index != self.pos);
605 let index_ptr: *const _ = &self.data[index];
606 let hole_ptr = &mut self.data[self.pos];
607 ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
608 self.pos = index;
609 }
610}
611
612impl<'a, T> Drop for Hole<'a, T> {
613 fn drop(&mut self) {
614 // fill the hole again
615 unsafe {
616 let pos = self.pos;
617 ptr::write(&mut self.data[pos], self.elt.take().unwrap());
618 }
619 }
620}
621
1a4d82fc 622/// `BinaryHeap` iterator.
85aaf69f 623#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
624pub struct Iter <'a, T: 'a> {
625 iter: slice::Iter<'a, T>,
626}
627
628// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
85aaf69f 629#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
630impl<'a, T> Clone for Iter<'a, T> {
631 fn clone(&self) -> Iter<'a, T> {
632 Iter { iter: self.iter.clone() }
633 }
634}
635
85aaf69f 636#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
637impl<'a, T> Iterator for Iter<'a, T> {
638 type Item = &'a T;
639
640 #[inline]
641 fn next(&mut self) -> Option<&'a T> { self.iter.next() }
642
643 #[inline]
85aaf69f 644 fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
1a4d82fc
JJ
645}
646
85aaf69f 647#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
648impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
649 #[inline]
650 fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() }
651}
652
85aaf69f 653#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
654impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
655
656/// An iterator that moves out of a `BinaryHeap`.
85aaf69f 657#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
658pub struct IntoIter<T> {
659 iter: vec::IntoIter<T>,
660}
661
85aaf69f 662#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
663impl<T> Iterator for IntoIter<T> {
664 type Item = T;
665
666 #[inline]
667 fn next(&mut self) -> Option<T> { self.iter.next() }
668
669 #[inline]
85aaf69f 670 fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
1a4d82fc
JJ
671}
672
85aaf69f 673#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
674impl<T> DoubleEndedIterator for IntoIter<T> {
675 #[inline]
676 fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
677}
678
85aaf69f 679#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
680impl<T> ExactSizeIterator for IntoIter<T> {}
681
682/// An iterator that drains a `BinaryHeap`.
62682a34 683#[unstable(feature = "drain", reason = "recent addition")]
1a4d82fc
JJ
684pub struct Drain<'a, T: 'a> {
685 iter: vec::Drain<'a, T>,
686}
687
85aaf69f 688#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
689impl<'a, T: 'a> Iterator for Drain<'a, T> {
690 type Item = T;
691
692 #[inline]
693 fn next(&mut self) -> Option<T> { self.iter.next() }
694
695 #[inline]
85aaf69f 696 fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
1a4d82fc
JJ
697}
698
85aaf69f 699#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
700impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> {
701 #[inline]
702 fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
703}
704
85aaf69f 705#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
706impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {}
707
85aaf69f 708#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 709impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
85aaf69f
SL
710 fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> BinaryHeap<T> {
711 BinaryHeap::from_vec(iter.into_iter().collect())
712 }
713}
714
715#[stable(feature = "rust1", since = "1.0.0")]
716impl<T: Ord> IntoIterator for BinaryHeap<T> {
717 type Item = T;
718 type IntoIter = IntoIter<T>;
719
9346a6ac
AL
720 /// Creates a consuming iterator, that is, one that moves each value out of
721 /// the binary heap in arbitrary order. The binary heap cannot be used
722 /// after calling this.
723 ///
724 /// # Examples
725 ///
726 /// ```
727 /// # #![feature(collections)]
728 /// use std::collections::BinaryHeap;
729 /// let heap = BinaryHeap::from_vec(vec![1, 2, 3, 4]);
730 ///
731 /// // Print 1, 2, 3, 4 in arbitrary order
732 /// for x in heap.into_iter() {
733 /// // x has type i32, not &i32
734 /// println!("{}", x);
735 /// }
736 /// ```
85aaf69f 737 fn into_iter(self) -> IntoIter<T> {
9346a6ac 738 IntoIter { iter: self.data.into_iter() }
85aaf69f
SL
739 }
740}
741
742#[stable(feature = "rust1", since = "1.0.0")]
743impl<'a, T> IntoIterator for &'a BinaryHeap<T> where T: Ord {
744 type Item = &'a T;
745 type IntoIter = Iter<'a, T>;
746
747 fn into_iter(self) -> Iter<'a, T> {
748 self.iter()
1a4d82fc
JJ
749 }
750}
751
85aaf69f 752#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 753impl<T: Ord> Extend<T> for BinaryHeap<T> {
85aaf69f
SL
754 fn extend<I: IntoIterator<Item=T>>(&mut self, iterable: I) {
755 let iter = iterable.into_iter();
1a4d82fc
JJ
756 let (lower, _) = iter.size_hint();
757
758 self.reserve(lower);
759
760 for elem in iter {
761 self.push(elem);
762 }
763 }
764}
62682a34
SL
765
766#[stable(feature = "extend_ref", since = "1.2.0")]
767impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> {
768 fn extend<I: IntoIterator<Item=&'a T>>(&mut self, iter: I) {
769 self.extend(iter.into_iter().cloned());
770 }
771}