]> git.proxmox.com Git - rustc.git/blame - src/libcollections/binary_heap.rs
New upstream version 1.17.0+dfsg1
[rustc.git] / src / libcollections / binary_heap.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! A priority queue implemented with a binary heap.
12//!
62682a34
SL
13//! Insertion and popping the largest element have `O(log n)` time complexity.
14//! Checking the largest element is `O(1)`. Converting a vector to a binary heap
15//! can be done in-place, and has `O(n)` complexity. A binary heap can also be
16//! converted to a sorted vector in-place, allowing it to be used for an `O(n
17//! log n)` in-place heapsort.
1a4d82fc
JJ
18//!
19//! # Examples
20//!
21//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
22//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
23//! It shows how to use `BinaryHeap` with custom types.
24//!
25//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
26//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
27//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
28//!
29//! ```
30//! use std::cmp::Ordering;
31//! use std::collections::BinaryHeap;
85aaf69f 32//! use std::usize;
1a4d82fc 33//!
c34b1796 34//! #[derive(Copy, Clone, Eq, PartialEq)]
1a4d82fc 35//! struct State {
85aaf69f
SL
36//! cost: usize,
37//! position: usize,
1a4d82fc
JJ
38//! }
39//!
40//! // The priority queue depends on `Ord`.
41//! // Explicitly implement the trait so the queue becomes a min-heap
42//! // instead of a max-heap.
43//! impl Ord for State {
44//! fn cmp(&self, other: &State) -> Ordering {
45//! // Notice that the we flip the ordering here
46//! other.cost.cmp(&self.cost)
47//! }
48//! }
49//!
50//! // `PartialOrd` needs to be implemented as well.
51//! impl PartialOrd for State {
52//! fn partial_cmp(&self, other: &State) -> Option<Ordering> {
53//! Some(self.cmp(other))
54//! }
55//! }
56//!
85aaf69f 57//! // Each node is represented as an `usize`, for a shorter implementation.
1a4d82fc 58//! struct Edge {
85aaf69f
SL
59//! node: usize,
60//! cost: usize,
1a4d82fc
JJ
61//! }
62//!
63//! // Dijkstra's shortest path algorithm.
64//!
65//! // Start at `start` and use `dist` to track the current shortest distance
66//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
85aaf69f 67//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
1a4d82fc 68//! // for a simpler implementation.
9cc50fc6 69//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
1a4d82fc 70//! // dist[node] = current shortest distance from `start` to `node`
85aaf69f 71//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
1a4d82fc
JJ
72//!
73//! let mut heap = BinaryHeap::new();
74//!
75//! // We're at `start`, with a zero cost
76//! dist[start] = 0;
77//! heap.push(State { cost: 0, position: start });
78//!
79//! // Examine the frontier with lower cost nodes first (min-heap)
80//! while let Some(State { cost, position }) = heap.pop() {
81//! // Alternatively we could have continued to find all shortest paths
9cc50fc6 82//! if position == goal { return Some(cost); }
1a4d82fc
JJ
83//!
84//! // Important as we may have already found a better way
85//! if cost > dist[position] { continue; }
86//!
87//! // For each node we can reach, see if we can find a way with
88//! // a lower cost going through this node
62682a34 89//! for edge in &adj_list[position] {
1a4d82fc
JJ
90//! let next = State { cost: cost + edge.cost, position: edge.node };
91//!
92//! // If so, add it to the frontier and continue
93//! if next.cost < dist[next.position] {
94//! heap.push(next);
95//! // Relaxation, we have now found a better way
96//! dist[next.position] = next.cost;
97//! }
98//! }
99//! }
100//!
101//! // Goal not reachable
9cc50fc6 102//! None
1a4d82fc
JJ
103//! }
104//!
105//! fn main() {
106//! // This is the directed graph we're going to use.
107//! // The node numbers correspond to the different states,
108//! // and the edge weights symbolize the cost of moving
109//! // from one node to another.
110//! // Note that the edges are one-way.
111//! //
112//! // 7
113//! // +-----------------+
114//! // | |
e9174d1e 115//! // v 1 2 | 2
1a4d82fc
JJ
116//! // 0 -----> 1 -----> 3 ---> 4
117//! // | ^ ^ ^
118//! // | | 1 | |
119//! // | | | 3 | 1
120//! // +------> 2 -------+ |
121//! // 10 | |
122//! // +---------------+
123//! //
124//! // The graph is represented as an adjacency list where each index,
125//! // corresponding to a node value, has a list of outgoing edges.
126//! // Chosen for its efficiency.
127//! let graph = vec![
128//! // Node 0
129//! vec![Edge { node: 2, cost: 10 },
130//! Edge { node: 1, cost: 1 }],
131//! // Node 1
132//! vec![Edge { node: 3, cost: 2 }],
133//! // Node 2
134//! vec![Edge { node: 1, cost: 1 },
135//! Edge { node: 3, cost: 3 },
136//! Edge { node: 4, cost: 1 }],
137//! // Node 3
138//! vec![Edge { node: 0, cost: 7 },
139//! Edge { node: 4, cost: 2 }],
140//! // Node 4
141//! vec![]];
142//!
9cc50fc6
SL
143//! assert_eq!(shortest_path(&graph, 0, 1), Some(1));
144//! assert_eq!(shortest_path(&graph, 0, 3), Some(3));
145//! assert_eq!(shortest_path(&graph, 3, 0), Some(7));
146//! assert_eq!(shortest_path(&graph, 0, 4), Some(5));
147//! assert_eq!(shortest_path(&graph, 4, 0), None);
1a4d82fc
JJ
148//! }
149//! ```
150
151#![allow(missing_docs)]
85aaf69f 152#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 153
32a655c1 154use core::ops::{Deref, DerefMut, Place, Placer, InPlace};
9e0c209e 155use core::iter::{FromIterator, FusedIterator};
32a655c1 156use core::mem::{swap, size_of};
1a4d82fc 157use core::ptr;
e9174d1e 158use core::fmt;
1a4d82fc
JJ
159
160use slice;
161use vec::{self, Vec};
162
a7813a04
XL
163use super::SpecExtend;
164
1a4d82fc
JJ
165/// A priority queue implemented with a binary heap.
166///
167/// This will be a max-heap.
c34b1796
AL
168///
169/// It is a logic error for an item to be modified in such a way that the
170/// item's ordering relative to any other item, as determined by the `Ord`
171/// trait, changes while it is in the heap. This is normally only possible
172/// through `Cell`, `RefCell`, global state, I/O, or unsafe code.
54a0048b
SL
173///
174/// # Examples
175///
176/// ```
177/// use std::collections::BinaryHeap;
178///
179/// // Type inference lets us omit an explicit type signature (which
180/// // would be `BinaryHeap<i32>` in this example).
181/// let mut heap = BinaryHeap::new();
182///
183/// // We can use peek to look at the next item in the heap. In this case,
184/// // there's no items in there yet so we get None.
185/// assert_eq!(heap.peek(), None);
186///
187/// // Let's add some scores...
188/// heap.push(1);
189/// heap.push(5);
190/// heap.push(2);
191///
192/// // Now peek shows the most important item in the heap.
193/// assert_eq!(heap.peek(), Some(&5));
194///
195/// // We can check the length of a heap.
196/// assert_eq!(heap.len(), 3);
197///
198/// // We can iterate over the items in the heap, although they are returned in
199/// // a random order.
200/// for x in &heap {
201/// println!("{}", x);
202/// }
203///
204/// // If we instead pop these scores, they should come back in order.
205/// assert_eq!(heap.pop(), Some(5));
206/// assert_eq!(heap.pop(), Some(2));
207/// assert_eq!(heap.pop(), Some(1));
208/// assert_eq!(heap.pop(), None);
209///
210/// // We can clear the heap of any remaining items.
211/// heap.clear();
212///
213/// // The heap should now be empty.
214/// assert!(heap.is_empty())
215/// ```
85aaf69f 216#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
217pub struct BinaryHeap<T> {
218 data: Vec<T>,
219}
220
3157f602
XL
221/// A container object that represents the result of the [`peek_mut()`] method
222/// on `BinaryHeap`. See its documentation for details.
223///
224/// [`peek_mut()`]: struct.BinaryHeap.html#method.peek_mut
5bcae85e 225#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
3157f602 226pub struct PeekMut<'a, T: 'a + Ord> {
32a655c1
SL
227 heap: &'a mut BinaryHeap<T>,
228 sift: bool,
3157f602
XL
229}
230
8bb4bdeb
XL
231#[stable(feature = "collection_debug", since = "1.17.0")]
232impl<'a, T: Ord + fmt::Debug> fmt::Debug for PeekMut<'a, T> {
233 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
234 f.debug_tuple("PeekMut")
235 .field(&self.heap.data[0])
236 .finish()
237 }
238}
239
5bcae85e 240#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
3157f602
XL
241impl<'a, T: Ord> Drop for PeekMut<'a, T> {
242 fn drop(&mut self) {
32a655c1
SL
243 if self.sift {
244 self.heap.sift_down(0);
245 }
3157f602
XL
246 }
247}
248
5bcae85e 249#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
3157f602
XL
250impl<'a, T: Ord> Deref for PeekMut<'a, T> {
251 type Target = T;
252 fn deref(&self) -> &T {
253 &self.heap.data[0]
254 }
255}
256
5bcae85e 257#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
3157f602
XL
258impl<'a, T: Ord> DerefMut for PeekMut<'a, T> {
259 fn deref_mut(&mut self) -> &mut T {
260 &mut self.heap.data[0]
261 }
262}
263
32a655c1
SL
264impl<'a, T: Ord> PeekMut<'a, T> {
265 /// Removes the peeked value from the heap and returns it.
266 #[unstable(feature = "binary_heap_peek_mut_pop", issue = "38863")]
267 pub fn pop(mut this: PeekMut<'a, T>) -> T {
268 let value = this.heap.pop().unwrap();
269 this.sift = false;
270 value
271 }
272}
273
b039eaaf
SL
274#[stable(feature = "rust1", since = "1.0.0")]
275impl<T: Clone> Clone for BinaryHeap<T> {
276 fn clone(&self) -> Self {
277 BinaryHeap { data: self.data.clone() }
278 }
279
280 fn clone_from(&mut self, source: &Self) {
281 self.data.clone_from(&source.data);
282 }
283}
284
85aaf69f 285#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 286impl<T: Ord> Default for BinaryHeap<T> {
9e0c209e 287 /// Creates an empty `BinaryHeap<T>`.
1a4d82fc 288 #[inline]
92a42be0
SL
289 fn default() -> BinaryHeap<T> {
290 BinaryHeap::new()
291 }
1a4d82fc
JJ
292}
293
e9174d1e
SL
294#[stable(feature = "binaryheap_debug", since = "1.4.0")]
295impl<T: fmt::Debug + Ord> fmt::Debug for BinaryHeap<T> {
296 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
297 f.debug_list().entries(self.iter()).finish()
298 }
299}
300
1a4d82fc
JJ
301impl<T: Ord> BinaryHeap<T> {
302 /// Creates an empty `BinaryHeap` as a max-heap.
303 ///
304 /// # Examples
305 ///
54a0048b
SL
306 /// Basic usage:
307 ///
1a4d82fc
JJ
308 /// ```
309 /// use std::collections::BinaryHeap;
310 /// let mut heap = BinaryHeap::new();
85aaf69f 311 /// heap.push(4);
1a4d82fc 312 /// ```
85aaf69f 313 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
314 pub fn new() -> BinaryHeap<T> {
315 BinaryHeap { data: vec![] }
316 }
1a4d82fc
JJ
317
318 /// Creates an empty `BinaryHeap` with a specific capacity.
319 /// This preallocates enough memory for `capacity` elements,
320 /// so that the `BinaryHeap` does not have to be reallocated
321 /// until it contains at least that many values.
322 ///
323 /// # Examples
324 ///
54a0048b
SL
325 /// Basic usage:
326 ///
1a4d82fc
JJ
327 /// ```
328 /// use std::collections::BinaryHeap;
329 /// let mut heap = BinaryHeap::with_capacity(10);
85aaf69f 330 /// heap.push(4);
1a4d82fc 331 /// ```
85aaf69f
SL
332 #[stable(feature = "rust1", since = "1.0.0")]
333 pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
1a4d82fc
JJ
334 BinaryHeap { data: Vec::with_capacity(capacity) }
335 }
336
1a4d82fc
JJ
337 /// Returns an iterator visiting all values in the underlying vector, in
338 /// arbitrary order.
339 ///
340 /// # Examples
341 ///
54a0048b
SL
342 /// Basic usage:
343 ///
1a4d82fc
JJ
344 /// ```
345 /// use std::collections::BinaryHeap;
b039eaaf 346 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
1a4d82fc
JJ
347 ///
348 /// // Print 1, 2, 3, 4 in arbitrary order
349 /// for x in heap.iter() {
350 /// println!("{}", x);
351 /// }
352 /// ```
85aaf69f 353 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
354 pub fn iter(&self) -> Iter<T> {
355 Iter { iter: self.data.iter() }
356 }
357
1a4d82fc
JJ
358 /// Returns the greatest item in the binary heap, or `None` if it is empty.
359 ///
360 /// # Examples
361 ///
54a0048b
SL
362 /// Basic usage:
363 ///
1a4d82fc
JJ
364 /// ```
365 /// use std::collections::BinaryHeap;
366 /// let mut heap = BinaryHeap::new();
367 /// assert_eq!(heap.peek(), None);
368 ///
85aaf69f 369 /// heap.push(1);
1a4d82fc
JJ
370 /// heap.push(5);
371 /// heap.push(2);
372 /// assert_eq!(heap.peek(), Some(&5));
373 ///
374 /// ```
85aaf69f 375 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
376 pub fn peek(&self) -> Option<&T> {
377 self.data.get(0)
378 }
379
3157f602
XL
380 /// Returns a mutable reference to the greatest item in the binary heap, or
381 /// `None` if it is empty.
382 ///
383 /// Note: If the `PeekMut` value is leaked, the heap may be in an
384 /// inconsistent state.
385 ///
386 /// # Examples
387 ///
388 /// Basic usage:
389 ///
390 /// ```
3157f602
XL
391 /// use std::collections::BinaryHeap;
392 /// let mut heap = BinaryHeap::new();
393 /// assert!(heap.peek_mut().is_none());
394 ///
395 /// heap.push(1);
396 /// heap.push(5);
397 /// heap.push(2);
398 /// {
399 /// let mut val = heap.peek_mut().unwrap();
400 /// *val = 0;
401 /// }
402 /// assert_eq!(heap.peek(), Some(&2));
403 /// ```
5bcae85e 404 #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
3157f602
XL
405 pub fn peek_mut(&mut self) -> Option<PeekMut<T>> {
406 if self.is_empty() {
407 None
408 } else {
409 Some(PeekMut {
32a655c1
SL
410 heap: self,
411 sift: true,
3157f602
XL
412 })
413 }
414 }
415
1a4d82fc
JJ
416 /// Returns the number of elements the binary heap can hold without reallocating.
417 ///
418 /// # Examples
419 ///
54a0048b
SL
420 /// Basic usage:
421 ///
1a4d82fc
JJ
422 /// ```
423 /// use std::collections::BinaryHeap;
424 /// let mut heap = BinaryHeap::with_capacity(100);
425 /// assert!(heap.capacity() >= 100);
85aaf69f 426 /// heap.push(4);
1a4d82fc 427 /// ```
85aaf69f 428 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
429 pub fn capacity(&self) -> usize {
430 self.data.capacity()
431 }
1a4d82fc
JJ
432
433 /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
434 /// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
435 ///
436 /// Note that the allocator may give the collection more space than it requests. Therefore
437 /// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
438 /// insertions are expected.
439 ///
440 /// # Panics
441 ///
85aaf69f 442 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
443 ///
444 /// # Examples
445 ///
54a0048b
SL
446 /// Basic usage:
447 ///
1a4d82fc
JJ
448 /// ```
449 /// use std::collections::BinaryHeap;
450 /// let mut heap = BinaryHeap::new();
451 /// heap.reserve_exact(100);
452 /// assert!(heap.capacity() >= 100);
85aaf69f 453 /// heap.push(4);
1a4d82fc 454 /// ```
85aaf69f
SL
455 #[stable(feature = "rust1", since = "1.0.0")]
456 pub fn reserve_exact(&mut self, additional: usize) {
1a4d82fc
JJ
457 self.data.reserve_exact(additional);
458 }
459
460 /// Reserves capacity for at least `additional` more elements to be inserted in the
461 /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
462 ///
463 /// # Panics
464 ///
85aaf69f 465 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
466 ///
467 /// # Examples
468 ///
54a0048b
SL
469 /// Basic usage:
470 ///
1a4d82fc
JJ
471 /// ```
472 /// use std::collections::BinaryHeap;
473 /// let mut heap = BinaryHeap::new();
474 /// heap.reserve(100);
475 /// assert!(heap.capacity() >= 100);
85aaf69f 476 /// heap.push(4);
1a4d82fc 477 /// ```
85aaf69f
SL
478 #[stable(feature = "rust1", since = "1.0.0")]
479 pub fn reserve(&mut self, additional: usize) {
1a4d82fc
JJ
480 self.data.reserve(additional);
481 }
482
483 /// Discards as much additional capacity as possible.
54a0048b
SL
484 ///
485 /// # Examples
486 ///
487 /// Basic usage:
488 ///
489 /// ```
490 /// use std::collections::BinaryHeap;
491 /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
492 ///
493 /// assert!(heap.capacity() >= 100);
494 /// heap.shrink_to_fit();
495 /// assert!(heap.capacity() == 0);
496 /// ```
85aaf69f 497 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
498 pub fn shrink_to_fit(&mut self) {
499 self.data.shrink_to_fit();
500 }
501
502 /// Removes the greatest item from the binary heap and returns it, or `None` if it
503 /// is empty.
504 ///
505 /// # Examples
506 ///
54a0048b
SL
507 /// Basic usage:
508 ///
1a4d82fc
JJ
509 /// ```
510 /// use std::collections::BinaryHeap;
b039eaaf 511 /// let mut heap = BinaryHeap::from(vec![1, 3]);
1a4d82fc
JJ
512 ///
513 /// assert_eq!(heap.pop(), Some(3));
514 /// assert_eq!(heap.pop(), Some(1));
515 /// assert_eq!(heap.pop(), None);
516 /// ```
85aaf69f 517 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
518 pub fn pop(&mut self) -> Option<T> {
519 self.data.pop().map(|mut item| {
520 if !self.is_empty() {
521 swap(&mut item, &mut self.data[0]);
9cc50fc6 522 self.sift_down_to_bottom(0);
1a4d82fc
JJ
523 }
524 item
525 })
526 }
527
528 /// Pushes an item onto the binary heap.
529 ///
530 /// # Examples
531 ///
54a0048b
SL
532 /// Basic usage:
533 ///
1a4d82fc
JJ
534 /// ```
535 /// use std::collections::BinaryHeap;
536 /// let mut heap = BinaryHeap::new();
85aaf69f 537 /// heap.push(3);
1a4d82fc
JJ
538 /// heap.push(5);
539 /// heap.push(1);
540 ///
541 /// assert_eq!(heap.len(), 3);
542 /// assert_eq!(heap.peek(), Some(&5));
543 /// ```
85aaf69f 544 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
545 pub fn push(&mut self, item: T) {
546 let old_len = self.len();
547 self.data.push(item);
548 self.sift_up(0, old_len);
549 }
550
551 /// Pushes an item onto the binary heap, then pops the greatest item off the queue in
552 /// an optimized fashion.
553 ///
554 /// # Examples
555 ///
54a0048b
SL
556 /// Basic usage:
557 ///
1a4d82fc 558 /// ```
e9174d1e 559 /// #![feature(binary_heap_extras)]
9e0c209e 560 /// #![allow(deprecated)]
c1a9b12d 561 ///
1a4d82fc
JJ
562 /// use std::collections::BinaryHeap;
563 /// let mut heap = BinaryHeap::new();
85aaf69f 564 /// heap.push(1);
1a4d82fc
JJ
565 /// heap.push(5);
566 ///
567 /// assert_eq!(heap.push_pop(3), 5);
568 /// assert_eq!(heap.push_pop(9), 9);
569 /// assert_eq!(heap.len(), 2);
570 /// assert_eq!(heap.peek(), Some(&3));
571 /// ```
e9174d1e
SL
572 #[unstable(feature = "binary_heap_extras",
573 reason = "needs to be audited",
574 issue = "28147")]
9e0c209e 575 #[rustc_deprecated(since = "1.13.0", reason = "use `peek_mut` instead")]
1a4d82fc
JJ
576 pub fn push_pop(&mut self, mut item: T) -> T {
577 match self.data.get_mut(0) {
578 None => return item,
92a42be0
SL
579 Some(top) => {
580 if *top > item {
581 swap(&mut item, top);
582 } else {
583 return item;
584 }
585 }
1a4d82fc
JJ
586 }
587
588 self.sift_down(0);
589 item
590 }
591
592 /// Pops the greatest item off the binary heap, then pushes an item onto the queue in
593 /// an optimized fashion. The push is done regardless of whether the binary heap
594 /// was empty.
595 ///
596 /// # Examples
597 ///
54a0048b
SL
598 /// Basic usage:
599 ///
1a4d82fc 600 /// ```
e9174d1e 601 /// #![feature(binary_heap_extras)]
9e0c209e 602 /// #![allow(deprecated)]
c1a9b12d 603 ///
1a4d82fc
JJ
604 /// use std::collections::BinaryHeap;
605 /// let mut heap = BinaryHeap::new();
606 ///
85aaf69f 607 /// assert_eq!(heap.replace(1), None);
1a4d82fc
JJ
608 /// assert_eq!(heap.replace(3), Some(1));
609 /// assert_eq!(heap.len(), 1);
610 /// assert_eq!(heap.peek(), Some(&3));
611 /// ```
e9174d1e
SL
612 #[unstable(feature = "binary_heap_extras",
613 reason = "needs to be audited",
614 issue = "28147")]
9e0c209e 615 #[rustc_deprecated(since = "1.13.0", reason = "use `peek_mut` instead")]
1a4d82fc
JJ
616 pub fn replace(&mut self, mut item: T) -> Option<T> {
617 if !self.is_empty() {
618 swap(&mut item, &mut self.data[0]);
619 self.sift_down(0);
620 Some(item)
621 } else {
622 self.push(item);
623 None
624 }
625 }
626
627 /// Consumes the `BinaryHeap` and returns the underlying vector
628 /// in arbitrary order.
629 ///
630 /// # Examples
631 ///
54a0048b
SL
632 /// Basic usage:
633 ///
1a4d82fc
JJ
634 /// ```
635 /// use std::collections::BinaryHeap;
b039eaaf 636 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]);
1a4d82fc
JJ
637 /// let vec = heap.into_vec();
638 ///
639 /// // Will print in some order
62682a34 640 /// for x in vec {
1a4d82fc
JJ
641 /// println!("{}", x);
642 /// }
643 /// ```
b039eaaf
SL
644 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
645 pub fn into_vec(self) -> Vec<T> {
646 self.into()
647 }
1a4d82fc
JJ
648
649 /// Consumes the `BinaryHeap` and returns a vector in sorted
650 /// (ascending) order.
651 ///
652 /// # Examples
653 ///
54a0048b
SL
654 /// Basic usage:
655 ///
1a4d82fc
JJ
656 /// ```
657 /// use std::collections::BinaryHeap;
658 ///
b039eaaf 659 /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]);
1a4d82fc
JJ
660 /// heap.push(6);
661 /// heap.push(3);
662 ///
663 /// let vec = heap.into_sorted_vec();
c34b1796 664 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
1a4d82fc 665 /// ```
b039eaaf 666 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1a4d82fc
JJ
667 pub fn into_sorted_vec(mut self) -> Vec<T> {
668 let mut end = self.len();
669 while end > 1 {
670 end -= 1;
671 self.data.swap(0, end);
672 self.sift_down_range(0, end);
673 }
674 self.into_vec()
675 }
676
677 // The implementations of sift_up and sift_down use unsafe blocks in
678 // order to move an element out of the vector (leaving behind a
d9579d0f
AL
679 // hole), shift along the others and move the removed element back into the
680 // vector at the final location of the hole.
681 // The `Hole` type is used to represent this, and make sure
682 // the hole is filled back at the end of its scope, even on panic.
683 // Using a hole reduces the constant factor compared to using swaps,
684 // which involves twice as many moves.
32a655c1 685 fn sift_up(&mut self, start: usize, pos: usize) -> usize {
1a4d82fc 686 unsafe {
d9579d0f
AL
687 // Take out the value at `pos` and create a hole.
688 let mut hole = Hole::new(&mut self.data, pos);
1a4d82fc 689
d9579d0f
AL
690 while hole.pos() > start {
691 let parent = (hole.pos() - 1) / 2;
92a42be0
SL
692 if hole.element() <= hole.get(parent) {
693 break;
694 }
d9579d0f 695 hole.move_to(parent);
1a4d82fc 696 }
32a655c1 697 hole.pos()
1a4d82fc
JJ
698 }
699 }
700
92a42be0
SL
701 /// Take an element at `pos` and move it down the heap,
702 /// while its children are larger.
703 fn sift_down_range(&mut self, pos: usize, end: usize) {
1a4d82fc 704 unsafe {
d9579d0f 705 let mut hole = Hole::new(&mut self.data, pos);
1a4d82fc
JJ
706 let mut child = 2 * pos + 1;
707 while child < end {
708 let right = child + 1;
92a42be0 709 // compare with the greater of the two children
d9579d0f 710 if right < end && !(hole.get(child) > hole.get(right)) {
1a4d82fc
JJ
711 child = right;
712 }
92a42be0
SL
713 // if we are already in order, stop.
714 if hole.element() >= hole.get(child) {
715 break;
716 }
d9579d0f
AL
717 hole.move_to(child);
718 child = 2 * hole.pos() + 1;
1a4d82fc 719 }
1a4d82fc
JJ
720 }
721 }
722
85aaf69f 723 fn sift_down(&mut self, pos: usize) {
1a4d82fc
JJ
724 let len = self.len();
725 self.sift_down_range(pos, len);
726 }
727
9cc50fc6
SL
728 /// Take an element at `pos` and move it all the way down the heap,
729 /// then sift it up to its position.
730 ///
731 /// Note: This is faster when the element is known to be large / should
732 /// be closer to the bottom.
733 fn sift_down_to_bottom(&mut self, mut pos: usize) {
734 let end = self.len();
735 let start = pos;
736 unsafe {
737 let mut hole = Hole::new(&mut self.data, pos);
738 let mut child = 2 * pos + 1;
739 while child < end {
740 let right = child + 1;
741 // compare with the greater of the two children
742 if right < end && !(hole.get(child) > hole.get(right)) {
743 child = right;
744 }
745 hole.move_to(child);
746 child = 2 * hole.pos() + 1;
747 }
748 pos = hole.pos;
749 }
750 self.sift_up(start, pos);
751 }
752
1a4d82fc 753 /// Returns the length of the binary heap.
54a0048b
SL
754 ///
755 /// # Examples
756 ///
757 /// Basic usage:
758 ///
759 /// ```
760 /// use std::collections::BinaryHeap;
761 /// let heap = BinaryHeap::from(vec![1, 3]);
762 ///
763 /// assert_eq!(heap.len(), 2);
764 /// ```
85aaf69f 765 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
766 pub fn len(&self) -> usize {
767 self.data.len()
768 }
1a4d82fc
JJ
769
770 /// Checks if the binary heap is empty.
54a0048b
SL
771 ///
772 /// # Examples
773 ///
774 /// Basic usage:
775 ///
776 /// ```
777 /// use std::collections::BinaryHeap;
778 /// let mut heap = BinaryHeap::new();
779 ///
780 /// assert!(heap.is_empty());
781 ///
782 /// heap.push(3);
783 /// heap.push(5);
784 /// heap.push(1);
785 ///
786 /// assert!(!heap.is_empty());
787 /// ```
85aaf69f 788 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
789 pub fn is_empty(&self) -> bool {
790 self.len() == 0
791 }
1a4d82fc
JJ
792
793 /// Clears the binary heap, returning an iterator over the removed elements.
c34b1796
AL
794 ///
795 /// The elements are removed in arbitrary order.
54a0048b
SL
796 ///
797 /// # Examples
798 ///
799 /// Basic usage:
800 ///
801 /// ```
802 /// use std::collections::BinaryHeap;
803 /// let mut heap = BinaryHeap::from(vec![1, 3]);
804 ///
805 /// assert!(!heap.is_empty());
806 ///
807 /// for x in heap.drain() {
808 /// println!("{}", x);
809 /// }
810 ///
811 /// assert!(heap.is_empty());
812 /// ```
1a4d82fc 813 #[inline]
92a42be0 814 #[stable(feature = "drain", since = "1.6.0")]
1a4d82fc 815 pub fn drain(&mut self) -> Drain<T> {
d9579d0f 816 Drain { iter: self.data.drain(..) }
1a4d82fc
JJ
817 }
818
819 /// Drops all items from the binary heap.
54a0048b
SL
820 ///
821 /// # Examples
822 ///
823 /// Basic usage:
824 ///
825 /// ```
826 /// use std::collections::BinaryHeap;
827 /// let mut heap = BinaryHeap::from(vec![1, 3]);
828 ///
829 /// assert!(!heap.is_empty());
830 ///
831 /// heap.clear();
832 ///
833 /// assert!(heap.is_empty());
834 /// ```
85aaf69f 835 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
836 pub fn clear(&mut self) {
837 self.drain();
838 }
a7813a04
XL
839
840 fn rebuild(&mut self) {
841 let mut n = self.len() / 2;
842 while n > 0 {
843 n -= 1;
844 self.sift_down(n);
845 }
846 }
847
848 /// Moves all the elements of `other` into `self`, leaving `other` empty.
849 ///
850 /// # Examples
851 ///
852 /// Basic usage:
853 ///
854 /// ```
a7813a04
XL
855 /// use std::collections::BinaryHeap;
856 ///
857 /// let v = vec![-10, 1, 2, 3, 3];
858 /// let mut a = BinaryHeap::from(v);
859 ///
860 /// let v = vec![-20, 5, 43];
861 /// let mut b = BinaryHeap::from(v);
862 ///
863 /// a.append(&mut b);
864 ///
865 /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
866 /// assert!(b.is_empty());
867 /// ```
3157f602 868 #[stable(feature = "binary_heap_append", since = "1.11.0")]
a7813a04
XL
869 pub fn append(&mut self, other: &mut Self) {
870 if self.len() < other.len() {
871 swap(self, other);
872 }
873
874 if other.is_empty() {
875 return;
876 }
877
878 #[inline(always)]
879 fn log2_fast(x: usize) -> usize {
880 8 * size_of::<usize>() - (x.leading_zeros() as usize) - 1
881 }
882
883 // `rebuild` takes O(len1 + len2) operations
884 // and about 2 * (len1 + len2) comparisons in the worst case
885 // while `extend` takes O(len2 * log_2(len1)) operations
886 // and about 1 * len2 * log_2(len1) comparisons in the worst case,
887 // assuming len1 >= len2.
888 #[inline]
889 fn better_to_rebuild(len1: usize, len2: usize) -> bool {
890 2 * (len1 + len2) < len2 * log2_fast(len1)
891 }
892
893 if better_to_rebuild(self.len(), other.len()) {
894 self.data.append(&mut other.data);
895 self.rebuild();
896 } else {
897 self.extend(other.drain());
898 }
899 }
1a4d82fc
JJ
900}
901
d9579d0f
AL
902/// Hole represents a hole in a slice i.e. an index without valid value
903/// (because it was moved from or duplicated).
904/// In drop, `Hole` will restore the slice by filling the hole
905/// position with the value that was originally removed.
906struct Hole<'a, T: 'a> {
907 data: &'a mut [T],
908 /// `elt` is always `Some` from new until drop.
909 elt: Option<T>,
910 pos: usize,
911}
912
913impl<'a, T> Hole<'a, T> {
914 /// Create a new Hole at index `pos`.
9e0c209e
SL
915 ///
916 /// Unsafe because pos must be within the data slice.
917 #[inline]
918 unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
919 debug_assert!(pos < data.len());
920 let elt = ptr::read(&data[pos]);
921 Hole {
922 data: data,
923 elt: Some(elt),
924 pos: pos,
d9579d0f
AL
925 }
926 }
927
9e0c209e 928 #[inline]
92a42be0
SL
929 fn pos(&self) -> usize {
930 self.pos
931 }
d9579d0f
AL
932
933 /// Return a reference to the element removed
9e0c209e 934 #[inline]
92a42be0 935 fn element(&self) -> &T {
d9579d0f
AL
936 self.elt.as_ref().unwrap()
937 }
938
939 /// Return a reference to the element at `index`.
940 ///
9e0c209e
SL
941 /// Unsafe because index must be within the data slice and not equal to pos.
942 #[inline]
d9579d0f
AL
943 unsafe fn get(&self, index: usize) -> &T {
944 debug_assert!(index != self.pos);
9e0c209e
SL
945 debug_assert!(index < self.data.len());
946 self.data.get_unchecked(index)
d9579d0f
AL
947 }
948
949 /// Move hole to new location
950 ///
9e0c209e
SL
951 /// Unsafe because index must be within the data slice and not equal to pos.
952 #[inline]
d9579d0f
AL
953 unsafe fn move_to(&mut self, index: usize) {
954 debug_assert!(index != self.pos);
9e0c209e
SL
955 debug_assert!(index < self.data.len());
956 let index_ptr: *const _ = self.data.get_unchecked(index);
957 let hole_ptr = self.data.get_unchecked_mut(self.pos);
d9579d0f
AL
958 ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
959 self.pos = index;
960 }
961}
962
963impl<'a, T> Drop for Hole<'a, T> {
9e0c209e 964 #[inline]
d9579d0f
AL
965 fn drop(&mut self) {
966 // fill the hole again
967 unsafe {
968 let pos = self.pos;
9e0c209e 969 ptr::write(self.data.get_unchecked_mut(pos), self.elt.take().unwrap());
d9579d0f
AL
970 }
971 }
972}
973
1a4d82fc 974/// `BinaryHeap` iterator.
85aaf69f 975#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 976pub struct Iter<'a, T: 'a> {
1a4d82fc
JJ
977 iter: slice::Iter<'a, T>,
978}
979
8bb4bdeb
XL
980#[stable(feature = "collection_debug", since = "1.17.0")]
981impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> {
982 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
983 f.debug_tuple("Iter")
984 .field(&self.iter.as_slice())
985 .finish()
986 }
987}
988
1a4d82fc 989// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
85aaf69f 990#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
991impl<'a, T> Clone for Iter<'a, T> {
992 fn clone(&self) -> Iter<'a, T> {
993 Iter { iter: self.iter.clone() }
994 }
995}
996
85aaf69f 997#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
998impl<'a, T> Iterator for Iter<'a, T> {
999 type Item = &'a T;
1000
1001 #[inline]
92a42be0
SL
1002 fn next(&mut self) -> Option<&'a T> {
1003 self.iter.next()
1004 }
1a4d82fc
JJ
1005
1006 #[inline]
92a42be0
SL
1007 fn size_hint(&self) -> (usize, Option<usize>) {
1008 self.iter.size_hint()
1009 }
1a4d82fc
JJ
1010}
1011
85aaf69f 1012#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1013impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1014 #[inline]
92a42be0
SL
1015 fn next_back(&mut self) -> Option<&'a T> {
1016 self.iter.next_back()
1017 }
1a4d82fc
JJ
1018}
1019
85aaf69f 1020#[stable(feature = "rust1", since = "1.0.0")]
476ff2be
SL
1021impl<'a, T> ExactSizeIterator for Iter<'a, T> {
1022 fn is_empty(&self) -> bool {
1023 self.iter.is_empty()
1024 }
1025}
1a4d82fc 1026
9e0c209e
SL
1027#[unstable(feature = "fused", issue = "35602")]
1028impl<'a, T> FusedIterator for Iter<'a, T> {}
1029
1a4d82fc 1030/// An iterator that moves out of a `BinaryHeap`.
85aaf69f 1031#[stable(feature = "rust1", since = "1.0.0")]
a7813a04 1032#[derive(Clone)]
1a4d82fc
JJ
1033pub struct IntoIter<T> {
1034 iter: vec::IntoIter<T>,
1035}
1036
8bb4bdeb
XL
1037#[stable(feature = "collection_debug", since = "1.17.0")]
1038impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
1039 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1040 f.debug_tuple("IntoIter")
1041 .field(&self.iter.as_slice())
1042 .finish()
1043 }
1044}
1045
85aaf69f 1046#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1047impl<T> Iterator for IntoIter<T> {
1048 type Item = T;
1049
1050 #[inline]
92a42be0
SL
1051 fn next(&mut self) -> Option<T> {
1052 self.iter.next()
1053 }
1a4d82fc
JJ
1054
1055 #[inline]
92a42be0
SL
1056 fn size_hint(&self) -> (usize, Option<usize>) {
1057 self.iter.size_hint()
1058 }
1a4d82fc
JJ
1059}
1060
85aaf69f 1061#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1062impl<T> DoubleEndedIterator for IntoIter<T> {
1063 #[inline]
92a42be0
SL
1064 fn next_back(&mut self) -> Option<T> {
1065 self.iter.next_back()
1066 }
1a4d82fc
JJ
1067}
1068
85aaf69f 1069#[stable(feature = "rust1", since = "1.0.0")]
476ff2be
SL
1070impl<T> ExactSizeIterator for IntoIter<T> {
1071 fn is_empty(&self) -> bool {
1072 self.iter.is_empty()
1073 }
1074}
1a4d82fc 1075
9e0c209e
SL
1076#[unstable(feature = "fused", issue = "35602")]
1077impl<T> FusedIterator for IntoIter<T> {}
1078
1a4d82fc 1079/// An iterator that drains a `BinaryHeap`.
92a42be0 1080#[stable(feature = "drain", since = "1.6.0")]
8bb4bdeb 1081#[derive(Debug)]
1a4d82fc
JJ
1082pub struct Drain<'a, T: 'a> {
1083 iter: vec::Drain<'a, T>,
1084}
1085
c30ab7b3 1086#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
1087impl<'a, T: 'a> Iterator for Drain<'a, T> {
1088 type Item = T;
1089
1090 #[inline]
92a42be0
SL
1091 fn next(&mut self) -> Option<T> {
1092 self.iter.next()
1093 }
1a4d82fc
JJ
1094
1095 #[inline]
92a42be0
SL
1096 fn size_hint(&self) -> (usize, Option<usize>) {
1097 self.iter.size_hint()
1098 }
1a4d82fc
JJ
1099}
1100
c30ab7b3 1101#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
1102impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> {
1103 #[inline]
92a42be0
SL
1104 fn next_back(&mut self) -> Option<T> {
1105 self.iter.next_back()
1106 }
1a4d82fc
JJ
1107}
1108
c30ab7b3 1109#[stable(feature = "drain", since = "1.6.0")]
476ff2be
SL
1110impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {
1111 fn is_empty(&self) -> bool {
1112 self.iter.is_empty()
1113 }
1114}
1a4d82fc 1115
9e0c209e
SL
1116#[unstable(feature = "fused", issue = "35602")]
1117impl<'a, T: 'a> FusedIterator for Drain<'a, T> {}
1118
8bb4bdeb 1119#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
b039eaaf
SL
1120impl<T: Ord> From<Vec<T>> for BinaryHeap<T> {
1121 fn from(vec: Vec<T>) -> BinaryHeap<T> {
1122 let mut heap = BinaryHeap { data: vec };
a7813a04 1123 heap.rebuild();
b039eaaf
SL
1124 heap
1125 }
1126}
1127
8bb4bdeb 1128#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
b039eaaf
SL
1129impl<T> From<BinaryHeap<T>> for Vec<T> {
1130 fn from(heap: BinaryHeap<T>) -> Vec<T> {
1131 heap.data
1132 }
1133}
1134
85aaf69f 1135#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1136impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
92a42be0 1137 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
b039eaaf 1138 BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
85aaf69f
SL
1139 }
1140}
1141
1142#[stable(feature = "rust1", since = "1.0.0")]
1143impl<T: Ord> IntoIterator for BinaryHeap<T> {
1144 type Item = T;
1145 type IntoIter = IntoIter<T>;
1146
9346a6ac
AL
1147 /// Creates a consuming iterator, that is, one that moves each value out of
1148 /// the binary heap in arbitrary order. The binary heap cannot be used
1149 /// after calling this.
1150 ///
1151 /// # Examples
1152 ///
54a0048b
SL
1153 /// Basic usage:
1154 ///
9346a6ac 1155 /// ```
9346a6ac 1156 /// use std::collections::BinaryHeap;
b039eaaf 1157 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
9346a6ac
AL
1158 ///
1159 /// // Print 1, 2, 3, 4 in arbitrary order
1160 /// for x in heap.into_iter() {
1161 /// // x has type i32, not &i32
1162 /// println!("{}", x);
1163 /// }
1164 /// ```
85aaf69f 1165 fn into_iter(self) -> IntoIter<T> {
9346a6ac 1166 IntoIter { iter: self.data.into_iter() }
85aaf69f
SL
1167 }
1168}
1169
1170#[stable(feature = "rust1", since = "1.0.0")]
32a655c1
SL
1171impl<'a, T> IntoIterator for &'a BinaryHeap<T>
1172 where T: Ord
1173{
85aaf69f
SL
1174 type Item = &'a T;
1175 type IntoIter = Iter<'a, T>;
1176
1177 fn into_iter(self) -> Iter<'a, T> {
1178 self.iter()
1a4d82fc
JJ
1179 }
1180}
1181
85aaf69f 1182#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1183impl<T: Ord> Extend<T> for BinaryHeap<T> {
a7813a04 1184 #[inline]
54a0048b 1185 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
a7813a04
XL
1186 <Self as SpecExtend<I>>::spec_extend(self, iter);
1187 }
1188}
1189
1190impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> {
1191 default fn spec_extend(&mut self, iter: I) {
1192 self.extend_desugared(iter.into_iter());
1193 }
1194}
1195
1196impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> {
1197 fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) {
1198 self.append(other);
1199 }
1200}
1201
1202impl<T: Ord> BinaryHeap<T> {
1203 fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) {
54a0048b
SL
1204 let iterator = iter.into_iter();
1205 let (lower, _) = iterator.size_hint();
1a4d82fc
JJ
1206
1207 self.reserve(lower);
1208
54a0048b 1209 for elem in iterator {
1a4d82fc
JJ
1210 self.push(elem);
1211 }
1212 }
1213}
62682a34
SL
1214
1215#[stable(feature = "extend_ref", since = "1.2.0")]
1216impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> {
92a42be0 1217 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
62682a34
SL
1218 self.extend(iter.into_iter().cloned());
1219 }
1220}
32a655c1
SL
1221
1222#[unstable(feature = "collection_placement",
1223 reason = "placement protocol is subject to change",
1224 issue = "30172")]
1225pub struct BinaryHeapPlace<'a, T: 'a>
1226where T: Clone + Ord {
1227 heap: *mut BinaryHeap<T>,
1228 place: vec::PlaceBack<'a, T>,
1229}
1230
8bb4bdeb
XL
1231#[unstable(feature = "collection_placement",
1232 reason = "placement protocol is subject to change",
1233 issue = "30172")]
1234impl<'a, T: Clone + Ord + fmt::Debug> fmt::Debug for BinaryHeapPlace<'a, T> {
1235 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1236 f.debug_tuple("BinaryHeapPlace")
1237 .field(&self.place)
1238 .finish()
1239 }
1240}
1241
32a655c1
SL
1242#[unstable(feature = "collection_placement",
1243 reason = "placement protocol is subject to change",
1244 issue = "30172")]
1245impl<'a, T: 'a> Placer<T> for &'a mut BinaryHeap<T>
1246where T: Clone + Ord {
1247 type Place = BinaryHeapPlace<'a, T>;
1248
1249 fn make_place(self) -> Self::Place {
1250 let ptr = self as *mut BinaryHeap<T>;
1251 let place = Placer::make_place(self.data.place_back());
1252 BinaryHeapPlace {
1253 heap: ptr,
1254 place: place,
1255 }
1256 }
1257}
1258
1259#[unstable(feature = "collection_placement",
1260 reason = "placement protocol is subject to change",
1261 issue = "30172")]
1262impl<'a, T> Place<T> for BinaryHeapPlace<'a, T>
1263where T: Clone + Ord {
1264 fn pointer(&mut self) -> *mut T {
1265 self.place.pointer()
1266 }
1267}
1268
1269#[unstable(feature = "collection_placement",
1270 reason = "placement protocol is subject to change",
1271 issue = "30172")]
1272impl<'a, T> InPlace<T> for BinaryHeapPlace<'a, T>
1273where T: Clone + Ord {
1274 type Owner = &'a T;
1275
1276 unsafe fn finalize(self) -> &'a T {
1277 self.place.finalize();
1278
1279 let heap: &mut BinaryHeap<T> = &mut *self.heap;
1280 let len = heap.len();
1281 let i = heap.sift_up(0, len - 1);
1282 heap.data.get_unchecked(i)
1283 }
1284}