]> git.proxmox.com Git - rustc.git/blame - src/libcollections/binary_heap.rs
Imported Upstream version 1.0.0~beta
[rustc.git] / src / libcollections / binary_heap.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! A priority queue implemented with a binary heap.
12//!
13//! Insertion and popping the largest element have `O(log n)` time complexity. Checking the largest
14//! element is `O(1)`. Converting a vector to a binary heap can be done in-place, and has `O(n)`
15//! complexity. A binary heap can also be converted to a sorted vector in-place, allowing it to
16//! be used for an `O(n log n)` in-place heapsort.
17//!
18//! # Examples
19//!
20//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
21//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
22//! It shows how to use `BinaryHeap` with custom types.
23//!
24//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
25//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
26//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
27//!
28//! ```
29//! use std::cmp::Ordering;
30//! use std::collections::BinaryHeap;
85aaf69f 31//! use std::usize;
1a4d82fc 32//!
c34b1796 33//! #[derive(Copy, Clone, Eq, PartialEq)]
1a4d82fc 34//! struct State {
85aaf69f
SL
35//! cost: usize,
36//! position: usize,
1a4d82fc
JJ
37//! }
38//!
39//! // The priority queue depends on `Ord`.
40//! // Explicitly implement the trait so the queue becomes a min-heap
41//! // instead of a max-heap.
42//! impl Ord for State {
43//! fn cmp(&self, other: &State) -> Ordering {
44//! // Notice that the we flip the ordering here
45//! other.cost.cmp(&self.cost)
46//! }
47//! }
48//!
49//! // `PartialOrd` needs to be implemented as well.
50//! impl PartialOrd for State {
51//! fn partial_cmp(&self, other: &State) -> Option<Ordering> {
52//! Some(self.cmp(other))
53//! }
54//! }
55//!
85aaf69f 56//! // Each node is represented as an `usize`, for a shorter implementation.
1a4d82fc 57//! struct Edge {
85aaf69f
SL
58//! node: usize,
59//! cost: usize,
1a4d82fc
JJ
60//! }
61//!
62//! // Dijkstra's shortest path algorithm.
63//!
64//! // Start at `start` and use `dist` to track the current shortest distance
65//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
85aaf69f 66//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
1a4d82fc 67//! // for a simpler implementation.
85aaf69f 68//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> usize {
1a4d82fc 69//! // dist[node] = current shortest distance from `start` to `node`
85aaf69f 70//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
1a4d82fc
JJ
71//!
72//! let mut heap = BinaryHeap::new();
73//!
74//! // We're at `start`, with a zero cost
75//! dist[start] = 0;
76//! heap.push(State { cost: 0, position: start });
77//!
78//! // Examine the frontier with lower cost nodes first (min-heap)
79//! while let Some(State { cost, position }) = heap.pop() {
80//! // Alternatively we could have continued to find all shortest paths
81//! if position == goal { return cost; }
82//!
83//! // Important as we may have already found a better way
84//! if cost > dist[position] { continue; }
85//!
86//! // For each node we can reach, see if we can find a way with
87//! // a lower cost going through this node
88//! for edge in adj_list[position].iter() {
89//! let next = State { cost: cost + edge.cost, position: edge.node };
90//!
91//! // If so, add it to the frontier and continue
92//! if next.cost < dist[next.position] {
93//! heap.push(next);
94//! // Relaxation, we have now found a better way
95//! dist[next.position] = next.cost;
96//! }
97//! }
98//! }
99//!
100//! // Goal not reachable
85aaf69f 101//! usize::MAX
1a4d82fc
JJ
102//! }
103//!
104//! fn main() {
105//! // This is the directed graph we're going to use.
106//! // The node numbers correspond to the different states,
107//! // and the edge weights symbolize the cost of moving
108//! // from one node to another.
109//! // Note that the edges are one-way.
110//! //
111//! // 7
112//! // +-----------------+
113//! // | |
114//! // v 1 2 |
115//! // 0 -----> 1 -----> 3 ---> 4
116//! // | ^ ^ ^
117//! // | | 1 | |
118//! // | | | 3 | 1
119//! // +------> 2 -------+ |
120//! // 10 | |
121//! // +---------------+
122//! //
123//! // The graph is represented as an adjacency list where each index,
124//! // corresponding to a node value, has a list of outgoing edges.
125//! // Chosen for its efficiency.
126//! let graph = vec![
127//! // Node 0
128//! vec![Edge { node: 2, cost: 10 },
129//! Edge { node: 1, cost: 1 }],
130//! // Node 1
131//! vec![Edge { node: 3, cost: 2 }],
132//! // Node 2
133//! vec![Edge { node: 1, cost: 1 },
134//! Edge { node: 3, cost: 3 },
135//! Edge { node: 4, cost: 1 }],
136//! // Node 3
137//! vec![Edge { node: 0, cost: 7 },
138//! Edge { node: 4, cost: 2 }],
139//! // Node 4
140//! vec![]];
141//!
142//! assert_eq!(shortest_path(&graph, 0, 1), 1);
143//! assert_eq!(shortest_path(&graph, 0, 3), 3);
144//! assert_eq!(shortest_path(&graph, 3, 0), 7);
145//! assert_eq!(shortest_path(&graph, 0, 4), 5);
85aaf69f 146//! assert_eq!(shortest_path(&graph, 4, 0), usize::MAX);
1a4d82fc
JJ
147//! }
148//! ```
149
150#![allow(missing_docs)]
85aaf69f 151#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
152
153use core::prelude::*;
154
155use core::default::Default;
85aaf69f 156use core::iter::{FromIterator, IntoIterator};
1a4d82fc
JJ
157use core::mem::{zeroed, replace, swap};
158use core::ptr;
159
160use slice;
161use vec::{self, Vec};
162
163/// A priority queue implemented with a binary heap.
164///
165/// This will be a max-heap.
c34b1796
AL
166///
167/// It is a logic error for an item to be modified in such a way that the
168/// item's ordering relative to any other item, as determined by the `Ord`
169/// trait, changes while it is in the heap. This is normally only possible
170/// through `Cell`, `RefCell`, global state, I/O, or unsafe code.
1a4d82fc 171#[derive(Clone)]
85aaf69f 172#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
173pub struct BinaryHeap<T> {
174 data: Vec<T>,
175}
176
85aaf69f 177#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
178impl<T: Ord> Default for BinaryHeap<T> {
179 #[inline]
180 fn default() -> BinaryHeap<T> { BinaryHeap::new() }
181}
182
183impl<T: Ord> BinaryHeap<T> {
184 /// Creates an empty `BinaryHeap` as a max-heap.
185 ///
186 /// # Examples
187 ///
188 /// ```
189 /// use std::collections::BinaryHeap;
190 /// let mut heap = BinaryHeap::new();
85aaf69f 191 /// heap.push(4);
1a4d82fc 192 /// ```
85aaf69f 193 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
194 pub fn new() -> BinaryHeap<T> { BinaryHeap { data: vec![] } }
195
196 /// Creates an empty `BinaryHeap` with a specific capacity.
197 /// This preallocates enough memory for `capacity` elements,
198 /// so that the `BinaryHeap` does not have to be reallocated
199 /// until it contains at least that many values.
200 ///
201 /// # Examples
202 ///
203 /// ```
204 /// use std::collections::BinaryHeap;
205 /// let mut heap = BinaryHeap::with_capacity(10);
85aaf69f 206 /// heap.push(4);
1a4d82fc 207 /// ```
85aaf69f
SL
208 #[stable(feature = "rust1", since = "1.0.0")]
209 pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
1a4d82fc
JJ
210 BinaryHeap { data: Vec::with_capacity(capacity) }
211 }
212
213 /// Creates a `BinaryHeap` from a vector. This is sometimes called
214 /// `heapifying` the vector.
215 ///
216 /// # Examples
217 ///
218 /// ```
c34b1796 219 /// # #![feature(collections)]
1a4d82fc 220 /// use std::collections::BinaryHeap;
85aaf69f 221 /// let heap = BinaryHeap::from_vec(vec![9, 1, 2, 7, 3, 2]);
1a4d82fc
JJ
222 /// ```
223 pub fn from_vec(vec: Vec<T>) -> BinaryHeap<T> {
224 let mut heap = BinaryHeap { data: vec };
225 let mut n = heap.len() / 2;
226 while n > 0 {
227 n -= 1;
228 heap.sift_down(n);
229 }
230 heap
231 }
232
233 /// Returns an iterator visiting all values in the underlying vector, in
234 /// arbitrary order.
235 ///
236 /// # Examples
237 ///
238 /// ```
c34b1796 239 /// # #![feature(collections)]
1a4d82fc 240 /// use std::collections::BinaryHeap;
85aaf69f 241 /// let heap = BinaryHeap::from_vec(vec![1, 2, 3, 4]);
1a4d82fc
JJ
242 ///
243 /// // Print 1, 2, 3, 4 in arbitrary order
244 /// for x in heap.iter() {
245 /// println!("{}", x);
246 /// }
247 /// ```
85aaf69f 248 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
249 pub fn iter(&self) -> Iter<T> {
250 Iter { iter: self.data.iter() }
251 }
252
253 /// Creates a consuming iterator, that is, one that moves each value out of
254 /// the binary heap in arbitrary order. The binary heap cannot be used
255 /// after calling this.
256 ///
257 /// # Examples
258 ///
259 /// ```
c34b1796 260 /// # #![feature(collections)]
1a4d82fc 261 /// use std::collections::BinaryHeap;
85aaf69f 262 /// let heap = BinaryHeap::from_vec(vec![1, 2, 3, 4]);
1a4d82fc
JJ
263 ///
264 /// // Print 1, 2, 3, 4 in arbitrary order
265 /// for x in heap.into_iter() {
85aaf69f 266 /// // x has type i32, not &i32
1a4d82fc
JJ
267 /// println!("{}", x);
268 /// }
269 /// ```
85aaf69f 270 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
271 pub fn into_iter(self) -> IntoIter<T> {
272 IntoIter { iter: self.data.into_iter() }
273 }
274
275 /// Returns the greatest item in the binary heap, or `None` if it is empty.
276 ///
277 /// # Examples
278 ///
279 /// ```
280 /// use std::collections::BinaryHeap;
281 /// let mut heap = BinaryHeap::new();
282 /// assert_eq!(heap.peek(), None);
283 ///
85aaf69f 284 /// heap.push(1);
1a4d82fc
JJ
285 /// heap.push(5);
286 /// heap.push(2);
287 /// assert_eq!(heap.peek(), Some(&5));
288 ///
289 /// ```
85aaf69f 290 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
291 pub fn peek(&self) -> Option<&T> {
292 self.data.get(0)
293 }
294
295 /// Returns the number of elements the binary heap can hold without reallocating.
296 ///
297 /// # Examples
298 ///
299 /// ```
300 /// use std::collections::BinaryHeap;
301 /// let mut heap = BinaryHeap::with_capacity(100);
302 /// assert!(heap.capacity() >= 100);
85aaf69f 303 /// heap.push(4);
1a4d82fc 304 /// ```
85aaf69f
SL
305 #[stable(feature = "rust1", since = "1.0.0")]
306 pub fn capacity(&self) -> usize { self.data.capacity() }
1a4d82fc
JJ
307
308 /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
309 /// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
310 ///
311 /// Note that the allocator may give the collection more space than it requests. Therefore
312 /// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
313 /// insertions are expected.
314 ///
315 /// # Panics
316 ///
85aaf69f 317 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
318 ///
319 /// # Examples
320 ///
321 /// ```
322 /// use std::collections::BinaryHeap;
323 /// let mut heap = BinaryHeap::new();
324 /// heap.reserve_exact(100);
325 /// assert!(heap.capacity() >= 100);
85aaf69f 326 /// heap.push(4);
1a4d82fc 327 /// ```
85aaf69f
SL
328 #[stable(feature = "rust1", since = "1.0.0")]
329 pub fn reserve_exact(&mut self, additional: usize) {
1a4d82fc
JJ
330 self.data.reserve_exact(additional);
331 }
332
333 /// Reserves capacity for at least `additional` more elements to be inserted in the
334 /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
335 ///
336 /// # Panics
337 ///
85aaf69f 338 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
339 ///
340 /// # Examples
341 ///
342 /// ```
343 /// use std::collections::BinaryHeap;
344 /// let mut heap = BinaryHeap::new();
345 /// heap.reserve(100);
346 /// assert!(heap.capacity() >= 100);
85aaf69f 347 /// heap.push(4);
1a4d82fc 348 /// ```
85aaf69f
SL
349 #[stable(feature = "rust1", since = "1.0.0")]
350 pub fn reserve(&mut self, additional: usize) {
1a4d82fc
JJ
351 self.data.reserve(additional);
352 }
353
354 /// Discards as much additional capacity as possible.
85aaf69f 355 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
356 pub fn shrink_to_fit(&mut self) {
357 self.data.shrink_to_fit();
358 }
359
360 /// Removes the greatest item from the binary heap and returns it, or `None` if it
361 /// is empty.
362 ///
363 /// # Examples
364 ///
365 /// ```
c34b1796 366 /// # #![feature(collections)]
1a4d82fc 367 /// use std::collections::BinaryHeap;
85aaf69f 368 /// let mut heap = BinaryHeap::from_vec(vec![1, 3]);
1a4d82fc
JJ
369 ///
370 /// assert_eq!(heap.pop(), Some(3));
371 /// assert_eq!(heap.pop(), Some(1));
372 /// assert_eq!(heap.pop(), None);
373 /// ```
85aaf69f 374 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
375 pub fn pop(&mut self) -> Option<T> {
376 self.data.pop().map(|mut item| {
377 if !self.is_empty() {
378 swap(&mut item, &mut self.data[0]);
379 self.sift_down(0);
380 }
381 item
382 })
383 }
384
385 /// Pushes an item onto the binary heap.
386 ///
387 /// # Examples
388 ///
389 /// ```
390 /// use std::collections::BinaryHeap;
391 /// let mut heap = BinaryHeap::new();
85aaf69f 392 /// heap.push(3);
1a4d82fc
JJ
393 /// heap.push(5);
394 /// heap.push(1);
395 ///
396 /// assert_eq!(heap.len(), 3);
397 /// assert_eq!(heap.peek(), Some(&5));
398 /// ```
85aaf69f 399 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
400 pub fn push(&mut self, item: T) {
401 let old_len = self.len();
402 self.data.push(item);
403 self.sift_up(0, old_len);
404 }
405
406 /// Pushes an item onto the binary heap, then pops the greatest item off the queue in
407 /// an optimized fashion.
408 ///
409 /// # Examples
410 ///
411 /// ```
c34b1796 412 /// # #![feature(collections)]
1a4d82fc
JJ
413 /// use std::collections::BinaryHeap;
414 /// let mut heap = BinaryHeap::new();
85aaf69f 415 /// heap.push(1);
1a4d82fc
JJ
416 /// heap.push(5);
417 ///
418 /// assert_eq!(heap.push_pop(3), 5);
419 /// assert_eq!(heap.push_pop(9), 9);
420 /// assert_eq!(heap.len(), 2);
421 /// assert_eq!(heap.peek(), Some(&3));
422 /// ```
423 pub fn push_pop(&mut self, mut item: T) -> T {
424 match self.data.get_mut(0) {
425 None => return item,
426 Some(top) => if *top > item {
427 swap(&mut item, top);
428 } else {
429 return item;
430 },
431 }
432
433 self.sift_down(0);
434 item
435 }
436
437 /// Pops the greatest item off the binary heap, then pushes an item onto the queue in
438 /// an optimized fashion. The push is done regardless of whether the binary heap
439 /// was empty.
440 ///
441 /// # Examples
442 ///
443 /// ```
c34b1796 444 /// # #![feature(collections)]
1a4d82fc
JJ
445 /// use std::collections::BinaryHeap;
446 /// let mut heap = BinaryHeap::new();
447 ///
85aaf69f 448 /// assert_eq!(heap.replace(1), None);
1a4d82fc
JJ
449 /// assert_eq!(heap.replace(3), Some(1));
450 /// assert_eq!(heap.len(), 1);
451 /// assert_eq!(heap.peek(), Some(&3));
452 /// ```
453 pub fn replace(&mut self, mut item: T) -> Option<T> {
454 if !self.is_empty() {
455 swap(&mut item, &mut self.data[0]);
456 self.sift_down(0);
457 Some(item)
458 } else {
459 self.push(item);
460 None
461 }
462 }
463
464 /// Consumes the `BinaryHeap` and returns the underlying vector
465 /// in arbitrary order.
466 ///
467 /// # Examples
468 ///
469 /// ```
c34b1796 470 /// # #![feature(collections)]
1a4d82fc 471 /// use std::collections::BinaryHeap;
85aaf69f 472 /// let heap = BinaryHeap::from_vec(vec![1, 2, 3, 4, 5, 6, 7]);
1a4d82fc
JJ
473 /// let vec = heap.into_vec();
474 ///
475 /// // Will print in some order
476 /// for x in vec.iter() {
477 /// println!("{}", x);
478 /// }
479 /// ```
480 pub fn into_vec(self) -> Vec<T> { self.data }
481
482 /// Consumes the `BinaryHeap` and returns a vector in sorted
483 /// (ascending) order.
484 ///
485 /// # Examples
486 ///
487 /// ```
c34b1796 488 /// # #![feature(collections)]
1a4d82fc
JJ
489 /// use std::collections::BinaryHeap;
490 ///
85aaf69f 491 /// let mut heap = BinaryHeap::from_vec(vec![1, 2, 4, 5, 7]);
1a4d82fc
JJ
492 /// heap.push(6);
493 /// heap.push(3);
494 ///
495 /// let vec = heap.into_sorted_vec();
c34b1796 496 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
1a4d82fc
JJ
497 /// ```
498 pub fn into_sorted_vec(mut self) -> Vec<T> {
499 let mut end = self.len();
500 while end > 1 {
501 end -= 1;
502 self.data.swap(0, end);
503 self.sift_down_range(0, end);
504 }
505 self.into_vec()
506 }
507
508 // The implementations of sift_up and sift_down use unsafe blocks in
509 // order to move an element out of the vector (leaving behind a
510 // zeroed element), shift along the others and move it back into the
511 // vector over the junk element. This reduces the constant factor
512 // compared to using swaps, which involves twice as many moves.
85aaf69f 513 fn sift_up(&mut self, start: usize, mut pos: usize) {
1a4d82fc
JJ
514 unsafe {
515 let new = replace(&mut self.data[pos], zeroed());
516
517 while pos > start {
518 let parent = (pos - 1) >> 1;
519
520 if new <= self.data[parent] { break; }
521
522 let x = replace(&mut self.data[parent], zeroed());
523 ptr::write(&mut self.data[pos], x);
524 pos = parent;
525 }
526 ptr::write(&mut self.data[pos], new);
527 }
528 }
529
85aaf69f 530 fn sift_down_range(&mut self, mut pos: usize, end: usize) {
1a4d82fc
JJ
531 unsafe {
532 let start = pos;
533 let new = replace(&mut self.data[pos], zeroed());
534
535 let mut child = 2 * pos + 1;
536 while child < end {
537 let right = child + 1;
538 if right < end && !(self.data[child] > self.data[right]) {
539 child = right;
540 }
541 let x = replace(&mut self.data[child], zeroed());
542 ptr::write(&mut self.data[pos], x);
543 pos = child;
544 child = 2 * pos + 1;
545 }
546
547 ptr::write(&mut self.data[pos], new);
548 self.sift_up(start, pos);
549 }
550 }
551
85aaf69f 552 fn sift_down(&mut self, pos: usize) {
1a4d82fc
JJ
553 let len = self.len();
554 self.sift_down_range(pos, len);
555 }
556
557 /// Returns the length of the binary heap.
85aaf69f
SL
558 #[stable(feature = "rust1", since = "1.0.0")]
559 pub fn len(&self) -> usize { self.data.len() }
1a4d82fc
JJ
560
561 /// Checks if the binary heap is empty.
85aaf69f 562 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
563 pub fn is_empty(&self) -> bool { self.len() == 0 }
564
565 /// Clears the binary heap, returning an iterator over the removed elements.
c34b1796
AL
566 ///
567 /// The elements are removed in arbitrary order.
1a4d82fc 568 #[inline]
85aaf69f
SL
569 #[unstable(feature = "collections",
570 reason = "matches collection reform specification, waiting for dust to settle")]
1a4d82fc
JJ
571 pub fn drain(&mut self) -> Drain<T> {
572 Drain { iter: self.data.drain() }
573 }
574
575 /// Drops all items from the binary heap.
85aaf69f 576 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
577 pub fn clear(&mut self) { self.drain(); }
578}
579
580/// `BinaryHeap` iterator.
85aaf69f 581#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
582pub struct Iter <'a, T: 'a> {
583 iter: slice::Iter<'a, T>,
584}
585
586// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
85aaf69f 587#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
588impl<'a, T> Clone for Iter<'a, T> {
589 fn clone(&self) -> Iter<'a, T> {
590 Iter { iter: self.iter.clone() }
591 }
592}
593
85aaf69f 594#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
595impl<'a, T> Iterator for Iter<'a, T> {
596 type Item = &'a T;
597
598 #[inline]
599 fn next(&mut self) -> Option<&'a T> { self.iter.next() }
600
601 #[inline]
85aaf69f 602 fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
1a4d82fc
JJ
603}
604
85aaf69f 605#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
606impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
607 #[inline]
608 fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() }
609}
610
85aaf69f 611#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
612impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
613
614/// An iterator that moves out of a `BinaryHeap`.
85aaf69f 615#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
616pub struct IntoIter<T> {
617 iter: vec::IntoIter<T>,
618}
619
85aaf69f 620#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
621impl<T> Iterator for IntoIter<T> {
622 type Item = T;
623
624 #[inline]
625 fn next(&mut self) -> Option<T> { self.iter.next() }
626
627 #[inline]
85aaf69f 628 fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
1a4d82fc
JJ
629}
630
85aaf69f 631#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
632impl<T> DoubleEndedIterator for IntoIter<T> {
633 #[inline]
634 fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
635}
636
85aaf69f 637#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
638impl<T> ExactSizeIterator for IntoIter<T> {}
639
640/// An iterator that drains a `BinaryHeap`.
85aaf69f 641#[unstable(feature = "collections", reason = "recent addition")]
1a4d82fc
JJ
642pub struct Drain<'a, T: 'a> {
643 iter: vec::Drain<'a, T>,
644}
645
85aaf69f 646#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
647impl<'a, T: 'a> Iterator for Drain<'a, T> {
648 type Item = T;
649
650 #[inline]
651 fn next(&mut self) -> Option<T> { self.iter.next() }
652
653 #[inline]
85aaf69f 654 fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
1a4d82fc
JJ
655}
656
85aaf69f 657#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
658impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> {
659 #[inline]
660 fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
661}
662
85aaf69f 663#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
664impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {}
665
85aaf69f 666#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 667impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
85aaf69f
SL
668 fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> BinaryHeap<T> {
669 BinaryHeap::from_vec(iter.into_iter().collect())
670 }
671}
672
673#[stable(feature = "rust1", since = "1.0.0")]
674impl<T: Ord> IntoIterator for BinaryHeap<T> {
675 type Item = T;
676 type IntoIter = IntoIter<T>;
677
678 fn into_iter(self) -> IntoIter<T> {
679 self.into_iter()
680 }
681}
682
683#[stable(feature = "rust1", since = "1.0.0")]
684impl<'a, T> IntoIterator for &'a BinaryHeap<T> where T: Ord {
685 type Item = &'a T;
686 type IntoIter = Iter<'a, T>;
687
688 fn into_iter(self) -> Iter<'a, T> {
689 self.iter()
1a4d82fc
JJ
690 }
691}
692
85aaf69f 693#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 694impl<T: Ord> Extend<T> for BinaryHeap<T> {
85aaf69f
SL
695 fn extend<I: IntoIterator<Item=T>>(&mut self, iterable: I) {
696 let iter = iterable.into_iter();
1a4d82fc
JJ
697 let (lower, _) = iter.size_hint();
698
699 self.reserve(lower);
700
701 for elem in iter {
702 self.push(elem);
703 }
704 }
705}