]> git.proxmox.com Git - rustc.git/blame - src/libcollections/vec.rs
New upstream version 1.19.0+dfsg3
[rustc.git] / src / libcollections / vec.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
7453a54e
SL
11//! A contiguous growable array type with heap-allocated contents, written
12//! `Vec<T>` but pronounced 'vector.'
1a4d82fc 13//!
62682a34
SL
14//! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
15//! `O(1)` pop (from the end).
1a4d82fc
JJ
16//!
17//! # Examples
18//!
cc61c64b 19//! You can explicitly create a [`Vec<T>`] with [`new`]:
1a4d82fc
JJ
20//!
21//! ```
d9579d0f 22//! let v: Vec<i32> = Vec::new();
1a4d82fc
JJ
23//! ```
24//!
c30ab7b3 25//! ...or by using the [`vec!`] macro:
1a4d82fc
JJ
26//!
27//! ```
d9579d0f 28//! let v: Vec<i32> = vec![];
1a4d82fc 29//!
d9579d0f
AL
30//! let v = vec![1, 2, 3, 4, 5];
31//!
32//! let v = vec![0; 10]; // ten zeroes
1a4d82fc
JJ
33//! ```
34//!
c30ab7b3 35//! You can [`push`] values onto the end of a vector (which will grow the vector
e9174d1e 36//! as needed):
1a4d82fc
JJ
37//!
38//! ```
d9579d0f 39//! let mut v = vec![1, 2];
1a4d82fc 40//!
d9579d0f 41//! v.push(3);
1a4d82fc
JJ
42//! ```
43//!
d9579d0f
AL
44//! Popping values works in much the same way:
45//!
46//! ```
47//! let mut v = vec![1, 2];
1a4d82fc 48//!
d9579d0f 49//! let two = v.pop();
1a4d82fc 50//! ```
1a4d82fc 51//!
c30ab7b3 52//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
d9579d0f
AL
53//!
54//! ```
55//! let mut v = vec![1, 2, 3];
56//! let three = v[2];
57//! v[1] = v[1] + 5;
1a4d82fc 58//! ```
c30ab7b3
SL
59//!
60//! [`Vec<T>`]: ../../std/vec/struct.Vec.html
cc61c64b 61//! [`new`]: ../../std/vec/struct.Vec.html#method.new
c30ab7b3
SL
62//! [`push`]: ../../std/vec/struct.Vec.html#method.push
63//! [`Index`]: ../../std/ops/trait.Index.html
64//! [`IndexMut`]: ../../std/ops/trait.IndexMut.html
65//! [`vec!`]: ../../std/macro.vec.html
1a4d82fc 66
85aaf69f 67#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 68
1a4d82fc 69use alloc::boxed::Box;
7453a54e
SL
70use alloc::raw_vec::RawVec;
71use borrow::ToOwned;
54a0048b 72use borrow::Cow;
c34b1796 73use core::cmp::Ordering;
1a4d82fc
JJ
74use core::fmt;
75use core::hash::{self, Hash};
54a0048b 76use core::intrinsics::{arith_offset, assume};
c30ab7b3 77use core::iter::{FromIterator, FusedIterator, TrustedLen};
1a4d82fc 78use core::mem;
cc61c64b
XL
79#[cfg(not(test))]
80use core::num::Float;
32a655c1 81use core::ops::{InPlace, Index, IndexMut, Place, Placer};
1a4d82fc
JJ
82use core::ops;
83use core::ptr;
5bcae85e 84use core::ptr::Shared;
85aaf69f 85use core::slice;
85aaf69f 86
d9579d0f 87use super::range::RangeArgument;
32a655c1 88use Bound::{Excluded, Included, Unbounded};
d9579d0f 89
c30ab7b3 90/// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'.
1a4d82fc
JJ
91///
92/// # Examples
93///
94/// ```
95/// let mut vec = Vec::new();
85aaf69f
SL
96/// vec.push(1);
97/// vec.push(2);
1a4d82fc
JJ
98///
99/// assert_eq!(vec.len(), 2);
100/// assert_eq!(vec[0], 1);
101///
102/// assert_eq!(vec.pop(), Some(2));
103/// assert_eq!(vec.len(), 1);
104///
85aaf69f 105/// vec[0] = 7;
1a4d82fc
JJ
106/// assert_eq!(vec[0], 7);
107///
62682a34 108/// vec.extend([1, 2, 3].iter().cloned());
1a4d82fc 109///
62682a34 110/// for x in &vec {
1a4d82fc
JJ
111/// println!("{}", x);
112/// }
c34b1796 113/// assert_eq!(vec, [7, 1, 2, 3]);
1a4d82fc
JJ
114/// ```
115///
c30ab7b3 116/// The [`vec!`] macro is provided to make initialization more convenient:
1a4d82fc
JJ
117///
118/// ```
85aaf69f 119/// let mut vec = vec![1, 2, 3];
1a4d82fc 120/// vec.push(4);
c34b1796 121/// assert_eq!(vec, [1, 2, 3, 4]);
1a4d82fc
JJ
122/// ```
123///
c1a9b12d
SL
124/// It can also initialize each element of a `Vec<T>` with a given value:
125///
126/// ```
127/// let vec = vec![0; 5];
128/// assert_eq!(vec, [0, 0, 0, 0, 0]);
129/// ```
130///
1a4d82fc
JJ
131/// Use a `Vec<T>` as an efficient stack:
132///
133/// ```
134/// let mut stack = Vec::new();
135///
85aaf69f
SL
136/// stack.push(1);
137/// stack.push(2);
138/// stack.push(3);
1a4d82fc 139///
bd371182 140/// while let Some(top) = stack.pop() {
1a4d82fc
JJ
141/// // Prints 3, 2, 1
142/// println!("{}", top);
143/// }
144/// ```
145///
7453a54e
SL
146/// # Indexing
147///
c30ab7b3
SL
148/// The `Vec` type allows to access values by index, because it implements the
149/// [`Index`] trait. An example will be more explicit:
7453a54e
SL
150///
151/// ```
c30ab7b3 152/// let v = vec![0, 2, 4, 6];
7453a54e
SL
153/// println!("{}", v[1]); // it will display '2'
154/// ```
155///
c30ab7b3 156/// However be careful: if you try to access an index which isn't in the `Vec`,
7453a54e
SL
157/// your software will panic! You cannot do this:
158///
159/// ```ignore
c30ab7b3 160/// let v = vec![0, 2, 4, 6];
7453a54e
SL
161/// println!("{}", v[6]); // it will panic!
162/// ```
163///
164/// In conclusion: always check if the index you want to get really exists
165/// before doing it.
166///
167/// # Slicing
168///
c30ab7b3
SL
169/// A `Vec` can be mutable. Slices, on the other hand, are read-only objects.
170/// To get a slice, use `&`. Example:
7453a54e
SL
171///
172/// ```
173/// fn read_slice(slice: &[usize]) {
174/// // ...
175/// }
176///
c30ab7b3 177/// let v = vec![0, 1];
7453a54e
SL
178/// read_slice(&v);
179///
180/// // ... and that's all!
181/// // you can also do it like this:
182/// let x : &[usize] = &v;
183/// ```
184///
185/// In Rust, it's more common to pass slices as arguments rather than vectors
c30ab7b3
SL
186/// when you just want to provide a read access. The same goes for [`String`] and
187/// [`&str`].
7453a54e 188///
1a4d82fc
JJ
189/// # Capacity and reallocation
190///
c34b1796
AL
191/// The capacity of a vector is the amount of space allocated for any future
192/// elements that will be added onto the vector. This is not to be confused with
193/// the *length* of a vector, which specifies the number of actual elements
194/// within the vector. If a vector's length exceeds its capacity, its capacity
195/// will automatically be increased, but its elements will have to be
1a4d82fc
JJ
196/// reallocated.
197///
c34b1796
AL
198/// For example, a vector with capacity 10 and length 0 would be an empty vector
199/// with space for 10 more elements. Pushing 10 or fewer elements onto the
200/// vector will not change its capacity or cause reallocation to occur. However,
201/// if the vector's length is increased to 11, it will have to reallocate, which
c30ab7b3 202/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
c34b1796 203/// whenever possible to specify how big the vector is expected to get.
b039eaaf
SL
204///
205/// # Guarantees
206///
c30ab7b3 207/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
b039eaaf
SL
208/// about its design. This ensures that it's as low-overhead as possible in
209/// the general case, and can be correctly manipulated in primitive ways
210/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
211/// If additional type parameters are added (e.g. to support custom allocators),
212/// overriding their defaults may change the behavior.
213///
c30ab7b3 214/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
b039eaaf
SL
215/// triplet. No more, no less. The order of these fields is completely
216/// unspecified, and you should use the appropriate methods to modify these.
217/// The pointer will never be null, so this type is null-pointer-optimized.
218///
219/// However, the pointer may not actually point to allocated memory. In particular,
cc61c64b
XL
220/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
221/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
c30ab7b3
SL
222/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
223/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
cc61c64b
XL
224/// the `Vec` may not report a [`capacity`] of 0*. `Vec` will allocate if and only
225/// if [`mem::size_of::<T>`]` * capacity() > 0`. In general, `Vec`'s allocation
b039eaaf 226/// details are subtle enough that it is strongly recommended that you only
c30ab7b3 227/// free memory allocated by a `Vec` by creating a new `Vec` and dropping it.
b039eaaf 228///
c30ab7b3 229/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
b039eaaf 230/// (as defined by the allocator Rust is configured to use by default), and its
cc61c64b
XL
231/// pointer points to [`len`] initialized elements in order (what you would see
232/// if you coerced it to a slice), followed by [`capacity`]` - `[`len`]
c30ab7b3 233/// logically uninitialized elements.
b039eaaf 234///
c30ab7b3 235/// `Vec` will never perform a "small optimization" where elements are actually
b039eaaf
SL
236/// stored on the stack for two reasons:
237///
238/// * It would make it more difficult for unsafe code to correctly manipulate
c30ab7b3
SL
239/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
240/// only moved, and it would be more difficult to determine if a `Vec` had
b039eaaf
SL
241/// actually allocated memory.
242///
243/// * It would penalize the general case, incurring an additional branch
244/// on every access.
245///
c30ab7b3
SL
246/// `Vec` will never automatically shrink itself, even if completely empty. This
247/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
cc61c64b 248/// and then filling it back up to the same [`len`] should incur no calls to
c30ab7b3 249/// the allocator. If you wish to free up unused memory, use
cc61c64b 250/// [`shrink_to_fit`][`shrink_to_fit`].
b039eaaf 251///
c30ab7b3
SL
252/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
253/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
cc61c64b 254/// [`len`]` == `[`capacity`]. That is, the reported capacity is completely
c30ab7b3
SL
255/// accurate, and can be relied on. It can even be used to manually free the memory
256/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
257/// when not necessary.
b039eaaf 258///
c30ab7b3
SL
259/// `Vec` does not guarantee any particular growth strategy when reallocating
260/// when full, nor when [`reserve`] is called. The current strategy is basic
b039eaaf 261/// and it may prove desirable to use a non-constant growth factor. Whatever
c30ab7b3 262/// strategy is used will of course guarantee `O(1)` amortized [`push`].
b039eaaf 263///
c30ab7b3
SL
264/// `vec![x; n]`, `vec![a, b, c, d]`, and
265/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
cc61c64b 266/// with exactly the requested capacity. If [`len`]` == `[`capacity`],
c30ab7b3
SL
267/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
268/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
b039eaaf 269///
c30ab7b3 270/// `Vec` will not specifically overwrite any data that is removed from it,
b039eaaf
SL
271/// but also won't specifically preserve it. Its uninitialized memory is
272/// scratch space that it may use however it wants. It will generally just do
273/// whatever is most efficient or otherwise easy to implement. Do not rely on
c30ab7b3
SL
274/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
275/// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory
b039eaaf 276/// first, that may not actually happen because the optimizer does not consider
7cac9316
XL
277/// this a side-effect that must be preserved. There is one case which we will
278/// not break, however: using `unsafe` code to write to the excess capacity,
279/// and then increasing the length to match, is always valid.
b039eaaf 280///
c30ab7b3 281/// `Vec` does not currently guarantee the order in which elements are dropped
b039eaaf
SL
282/// (the order has changed in the past, and may change again).
283///
c30ab7b3
SL
284/// [`vec!`]: ../../std/macro.vec.html
285/// [`Index`]: ../../std/ops/trait.Index.html
286/// [`String`]: ../../std/string/struct.String.html
287/// [`&str`]: ../../std/primitive.str.html
288/// [`Vec::with_capacity`]: ../../std/vec/struct.Vec.html#method.with_capacity
cc61c64b
XL
289/// [`Vec::new`]: ../../std/vec/struct.Vec.html#method.new
290/// [`shrink_to_fit`]: ../../std/vec/struct.Vec.html#method.shrink_to_fit
291/// [`capacity`]: ../../std/vec/struct.Vec.html#method.capacity
292/// [`mem::size_of::<T>`]: ../../std/mem/fn.size_of.html
293/// [`len`]: ../../std/vec/struct.Vec.html#method.len
c30ab7b3
SL
294/// [`push`]: ../../std/vec/struct.Vec.html#method.push
295/// [`insert`]: ../../std/vec/struct.Vec.html#method.insert
296/// [`reserve`]: ../../std/vec/struct.Vec.html#method.reserve
297/// [owned slice]: ../../std/boxed/struct.Box.html
85aaf69f 298#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 299pub struct Vec<T> {
c1a9b12d 300 buf: RawVec<T>,
85aaf69f 301 len: usize,
1a4d82fc
JJ
302}
303
1a4d82fc
JJ
304////////////////////////////////////////////////////////////////////////////////
305// Inherent methods
306////////////////////////////////////////////////////////////////////////////////
307
308impl<T> Vec<T> {
309 /// Constructs a new, empty `Vec<T>`.
310 ///
311 /// The vector will not allocate until elements are pushed onto it.
312 ///
313 /// # Examples
314 ///
315 /// ```
92a42be0 316 /// # #![allow(unused_mut)]
85aaf69f 317 /// let mut vec: Vec<i32> = Vec::new();
1a4d82fc
JJ
318 /// ```
319 #[inline]
85aaf69f 320 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 321 pub fn new() -> Vec<T> {
92a42be0
SL
322 Vec {
323 buf: RawVec::new(),
324 len: 0,
325 }
1a4d82fc
JJ
326 }
327
328 /// Constructs a new, empty `Vec<T>` with the specified capacity.
329 ///
e9174d1e
SL
330 /// The vector will be able to hold exactly `capacity` elements without
331 /// reallocating. If `capacity` is 0, the vector will not allocate.
1a4d82fc 332 ///
e9174d1e 333 /// It is important to note that this function does not specify the *length*
c30ab7b3
SL
334 /// of the returned vector, but only the *capacity*. For an explanation of
335 /// the difference between length and capacity, see *[Capacity and reallocation]*.
336 ///
337 /// [Capacity and reallocation]: #capacity-and-reallocation
1a4d82fc
JJ
338 ///
339 /// # Examples
340 ///
341 /// ```
9346a6ac 342 /// let mut vec = Vec::with_capacity(10);
1a4d82fc
JJ
343 ///
344 /// // The vector contains no items, even though it has capacity for more
345 /// assert_eq!(vec.len(), 0);
346 ///
347 /// // These are all done without reallocating...
85aaf69f 348 /// for i in 0..10 {
1a4d82fc
JJ
349 /// vec.push(i);
350 /// }
351 ///
352 /// // ...but this may make the vector reallocate
353 /// vec.push(11);
354 /// ```
355 #[inline]
85aaf69f
SL
356 #[stable(feature = "rust1", since = "1.0.0")]
357 pub fn with_capacity(capacity: usize) -> Vec<T> {
92a42be0
SL
358 Vec {
359 buf: RawVec::with_capacity(capacity),
360 len: 0,
361 }
1a4d82fc
JJ
362 }
363
364 /// Creates a `Vec<T>` directly from the raw components of another vector.
365 ///
b039eaaf 366 /// # Safety
c1a9b12d
SL
367 ///
368 /// This is highly unsafe, due to the number of invariants that aren't
369 /// checked:
370 ///
c30ab7b3 371 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
c1a9b12d 372 /// (at least, it's highly likely to be incorrect if it wasn't).
5bcae85e 373 /// * `length` needs to be less than or equal to `capacity`.
c1a9b12d
SL
374 /// * `capacity` needs to be the capacity that the pointer was allocated with.
375 ///
376 /// Violating these may cause problems like corrupting the allocator's
32a655c1
SL
377 /// internal datastructures. For example it is **not** safe
378 /// to build a `Vec<u8>` from a pointer to a C `char` array and a `size_t`.
1a4d82fc 379 ///
5bcae85e
SL
380 /// The ownership of `ptr` is effectively transferred to the
381 /// `Vec<T>` which may then deallocate, reallocate or change the
382 /// contents of memory pointed to by the pointer at will. Ensure
383 /// that nothing else uses the pointer after calling this
384 /// function.
385 ///
c30ab7b3
SL
386 /// [`String`]: ../../std/string/struct.String.html
387 ///
1a4d82fc
JJ
388 /// # Examples
389 ///
390 /// ```
391 /// use std::ptr;
392 /// use std::mem;
393 ///
394 /// fn main() {
85aaf69f 395 /// let mut v = vec![1, 2, 3];
1a4d82fc
JJ
396 ///
397 /// // Pull out the various important pieces of information about `v`
398 /// let p = v.as_mut_ptr();
399 /// let len = v.len();
400 /// let cap = v.capacity();
401 ///
402 /// unsafe {
403 /// // Cast `v` into the void: no destructor run, so we are in
404 /// // complete control of the allocation to which `p` points.
405 /// mem::forget(v);
406 ///
407 /// // Overwrite memory with 4, 5, 6
85aaf69f 408 /// for i in 0..len as isize {
1a4d82fc
JJ
409 /// ptr::write(p.offset(i), 4 + i);
410 /// }
411 ///
412 /// // Put everything back together into a Vec
413 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
c34b1796 414 /// assert_eq!(rebuilt, [4, 5, 6]);
1a4d82fc
JJ
415 /// }
416 /// }
417 /// ```
85aaf69f 418 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0 419 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T> {
85aaf69f 420 Vec {
c1a9b12d 421 buf: RawVec::from_raw_parts(ptr, capacity),
85aaf69f 422 len: length,
85aaf69f 423 }
1a4d82fc
JJ
424 }
425
1a4d82fc
JJ
426 /// Returns the number of elements the vector can hold without
427 /// reallocating.
428 ///
429 /// # Examples
430 ///
431 /// ```
85aaf69f 432 /// let vec: Vec<i32> = Vec::with_capacity(10);
1a4d82fc
JJ
433 /// assert_eq!(vec.capacity(), 10);
434 /// ```
435 #[inline]
85aaf69f
SL
436 #[stable(feature = "rust1", since = "1.0.0")]
437 pub fn capacity(&self) -> usize {
c1a9b12d 438 self.buf.cap()
1a4d82fc
JJ
439 }
440
c34b1796
AL
441 /// Reserves capacity for at least `additional` more elements to be inserted
442 /// in the given `Vec<T>`. The collection may reserve more space to avoid
8bb4bdeb
XL
443 /// frequent reallocations. After calling `reserve`, capacity will be
444 /// greater than or equal to `self.len() + additional`. Does nothing if
445 /// capacity is already sufficient.
1a4d82fc
JJ
446 ///
447 /// # Panics
448 ///
85aaf69f 449 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
450 ///
451 /// # Examples
452 ///
453 /// ```
85aaf69f 454 /// let mut vec = vec![1];
1a4d82fc
JJ
455 /// vec.reserve(10);
456 /// assert!(vec.capacity() >= 11);
457 /// ```
85aaf69f
SL
458 #[stable(feature = "rust1", since = "1.0.0")]
459 pub fn reserve(&mut self, additional: usize) {
c1a9b12d 460 self.buf.reserve(self.len, additional);
1a4d82fc
JJ
461 }
462
463 /// Reserves the minimum capacity for exactly `additional` more elements to
8bb4bdeb
XL
464 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
465 /// capacity will be greater than or equal to `self.len() + additional`.
466 /// Does nothing if the capacity is already sufficient.
1a4d82fc
JJ
467 ///
468 /// Note that the allocator may give the collection more space than it
469 /// requests. Therefore capacity can not be relied upon to be precisely
470 /// minimal. Prefer `reserve` if future insertions are expected.
471 ///
472 /// # Panics
473 ///
85aaf69f 474 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
475 ///
476 /// # Examples
477 ///
478 /// ```
85aaf69f 479 /// let mut vec = vec![1];
1a4d82fc
JJ
480 /// vec.reserve_exact(10);
481 /// assert!(vec.capacity() >= 11);
482 /// ```
85aaf69f
SL
483 #[stable(feature = "rust1", since = "1.0.0")]
484 pub fn reserve_exact(&mut self, additional: usize) {
c1a9b12d 485 self.buf.reserve_exact(self.len, additional);
1a4d82fc
JJ
486 }
487
488 /// Shrinks the capacity of the vector as much as possible.
489 ///
490 /// It will drop down as close as possible to the length but the allocator
491 /// may still inform the vector that there is space for a few more elements.
492 ///
493 /// # Examples
494 ///
495 /// ```
85aaf69f 496 /// let mut vec = Vec::with_capacity(10);
62682a34 497 /// vec.extend([1, 2, 3].iter().cloned());
1a4d82fc
JJ
498 /// assert_eq!(vec.capacity(), 10);
499 /// vec.shrink_to_fit();
500 /// assert!(vec.capacity() >= 3);
501 /// ```
85aaf69f 502 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 503 pub fn shrink_to_fit(&mut self) {
c1a9b12d 504 self.buf.shrink_to_fit(self.len);
1a4d82fc
JJ
505 }
506
c30ab7b3 507 /// Converts the vector into [`Box<[T]>`][owned slice].
1a4d82fc
JJ
508 ///
509 /// Note that this will drop any excess capacity. Calling this and
cc61c64b
XL
510 /// converting back to a vector with [`into_vec`] is equivalent to calling
511 /// [`shrink_to_fit`].
c30ab7b3
SL
512 ///
513 /// [owned slice]: ../../std/boxed/struct.Box.html
cc61c64b
XL
514 /// [`into_vec`]: ../../std/primitive.slice.html#method.into_vec
515 /// [`shrink_to_fit`]: #method.shrink_to_fit
5bcae85e
SL
516 ///
517 /// # Examples
518 ///
519 /// ```
520 /// let v = vec![1, 2, 3];
521 ///
522 /// let slice = v.into_boxed_slice();
523 /// ```
524 ///
525 /// Any excess capacity is removed:
526 ///
527 /// ```
528 /// let mut vec = Vec::with_capacity(10);
529 /// vec.extend([1, 2, 3].iter().cloned());
530 ///
531 /// assert_eq!(vec.capacity(), 10);
532 /// let slice = vec.into_boxed_slice();
533 /// assert_eq!(slice.into_vec().capacity(), 3);
534 /// ```
c34b1796 535 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 536 pub fn into_boxed_slice(mut self) -> Box<[T]> {
1a4d82fc 537 unsafe {
c1a9b12d
SL
538 self.shrink_to_fit();
539 let buf = ptr::read(&self.buf);
1a4d82fc 540 mem::forget(self);
c1a9b12d 541 buf.into_box()
1a4d82fc
JJ
542 }
543 }
544
5bcae85e
SL
545 /// Shortens the vector, keeping the first `len` elements and dropping
546 /// the rest.
1a4d82fc
JJ
547 ///
548 /// If `len` is greater than the vector's current length, this has no
549 /// effect.
550 ///
5bcae85e
SL
551 /// The [`drain`] method can emulate `truncate`, but causes the excess
552 /// elements to be returned instead of dropped.
553 ///
8bb4bdeb
XL
554 /// Note that this method has no effect on the allocated capacity
555 /// of the vector.
556 ///
1a4d82fc
JJ
557 /// # Examples
558 ///
5bcae85e
SL
559 /// Truncating a five element vector to two elements:
560 ///
1a4d82fc 561 /// ```
92a42be0 562 /// let mut vec = vec![1, 2, 3, 4, 5];
1a4d82fc 563 /// vec.truncate(2);
c34b1796 564 /// assert_eq!(vec, [1, 2]);
1a4d82fc 565 /// ```
5bcae85e
SL
566 ///
567 /// No truncation occurs when `len` is greater than the vector's current
568 /// length:
569 ///
570 /// ```
571 /// let mut vec = vec![1, 2, 3];
572 /// vec.truncate(8);
573 /// assert_eq!(vec, [1, 2, 3]);
574 /// ```
575 ///
576 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
577 /// method.
578 ///
579 /// ```
580 /// let mut vec = vec![1, 2, 3];
581 /// vec.truncate(0);
582 /// assert_eq!(vec, []);
583 /// ```
584 ///
585 /// [`clear`]: #method.clear
586 /// [`drain`]: #method.drain
85aaf69f
SL
587 #[stable(feature = "rust1", since = "1.0.0")]
588 pub fn truncate(&mut self, len: usize) {
1a4d82fc
JJ
589 unsafe {
590 // drop any extra elements
591 while len < self.len {
54a0048b
SL
592 // decrement len before the drop_in_place(), so a panic on Drop
593 // doesn't re-drop the just-failed value.
1a4d82fc 594 self.len -= 1;
54a0048b
SL
595 let len = self.len;
596 ptr::drop_in_place(self.get_unchecked_mut(len));
1a4d82fc
JJ
597 }
598 }
599 }
600
9346a6ac 601 /// Extracts a slice containing the entire vector.
62682a34
SL
602 ///
603 /// Equivalent to `&s[..]`.
5bcae85e
SL
604 ///
605 /// # Examples
606 ///
607 /// ```
608 /// use std::io::{self, Write};
609 /// let buffer = vec![1, 2, 3, 5, 8];
610 /// io::sink().write(buffer.as_slice()).unwrap();
611 /// ```
1a4d82fc 612 #[inline]
9cc50fc6 613 #[stable(feature = "vec_as_slice", since = "1.7.0")]
c34b1796
AL
614 pub fn as_slice(&self) -> &[T] {
615 self
616 }
617
62682a34
SL
618 /// Extracts a mutable slice of the entire vector.
619 ///
620 /// Equivalent to `&mut s[..]`.
5bcae85e
SL
621 ///
622 /// # Examples
623 ///
624 /// ```
625 /// use std::io::{self, Read};
626 /// let mut buffer = vec![0; 3];
627 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
628 /// ```
c34b1796 629 #[inline]
9cc50fc6 630 #[stable(feature = "vec_as_slice", since = "1.7.0")]
85aaf69f 631 pub fn as_mut_slice(&mut self) -> &mut [T] {
5bcae85e 632 self
1a4d82fc
JJ
633 }
634
1a4d82fc
JJ
635 /// Sets the length of a vector.
636 ///
637 /// This will explicitly set the size of the vector, without actually
638 /// modifying its buffers, so it is up to the caller to ensure that the
639 /// vector is actually the specified size.
640 ///
641 /// # Examples
642 ///
643 /// ```
5bcae85e
SL
644 /// use std::ptr;
645 ///
646 /// let mut vec = vec!['r', 'u', 's', 't'];
647 ///
648 /// unsafe {
649 /// ptr::drop_in_place(&mut vec[3]);
650 /// vec.set_len(3);
651 /// }
652 /// assert_eq!(vec, ['r', 'u', 's']);
653 /// ```
654 ///
655 /// In this example, there is a memory leak since the memory locations
656 /// owned by the inner vectors were not freed prior to the `set_len` call:
657 ///
658 /// ```
659 /// let mut vec = vec![vec![1, 0, 0],
660 /// vec![0, 1, 0],
661 /// vec![0, 0, 1]];
1a4d82fc 662 /// unsafe {
5bcae85e
SL
663 /// vec.set_len(0);
664 /// }
665 /// ```
666 ///
667 /// In this example, the vector gets expanded from zero to four items
668 /// without any memory allocations occurring, resulting in vector
669 /// values of unallocated memory:
670 ///
671 /// ```
672 /// let mut vec: Vec<char> = Vec::new();
673 ///
674 /// unsafe {
675 /// vec.set_len(4);
1a4d82fc
JJ
676 /// }
677 /// ```
678 #[inline]
85aaf69f
SL
679 #[stable(feature = "rust1", since = "1.0.0")]
680 pub unsafe fn set_len(&mut self, len: usize) {
1a4d82fc
JJ
681 self.len = len;
682 }
683
cc61c64b
XL
684 /// Removes an element from the vector and returns it.
685 ///
686 /// The removed element is replaced by the last element of the vector.
1a4d82fc
JJ
687 ///
688 /// This does not preserve ordering, but is O(1).
689 ///
690 /// # Panics
691 ///
692 /// Panics if `index` is out of bounds.
693 ///
694 /// # Examples
695 ///
696 /// ```
697 /// let mut v = vec!["foo", "bar", "baz", "qux"];
698 ///
699 /// assert_eq!(v.swap_remove(1), "bar");
c34b1796 700 /// assert_eq!(v, ["foo", "qux", "baz"]);
1a4d82fc
JJ
701 ///
702 /// assert_eq!(v.swap_remove(0), "foo");
c34b1796 703 /// assert_eq!(v, ["baz", "qux"]);
1a4d82fc
JJ
704 /// ```
705 #[inline]
85aaf69f
SL
706 #[stable(feature = "rust1", since = "1.0.0")]
707 pub fn swap_remove(&mut self, index: usize) -> T {
1a4d82fc
JJ
708 let length = self.len();
709 self.swap(index, length - 1);
710 self.pop().unwrap()
711 }
712
713 /// Inserts an element at position `index` within the vector, shifting all
7453a54e 714 /// elements after it to the right.
1a4d82fc
JJ
715 ///
716 /// # Panics
717 ///
c30ab7b3 718 /// Panics if `index` is out of bounds.
1a4d82fc
JJ
719 ///
720 /// # Examples
721 ///
722 /// ```
85aaf69f 723 /// let mut vec = vec![1, 2, 3];
1a4d82fc 724 /// vec.insert(1, 4);
c34b1796 725 /// assert_eq!(vec, [1, 4, 2, 3]);
1a4d82fc 726 /// vec.insert(4, 5);
c34b1796 727 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1a4d82fc 728 /// ```
85aaf69f
SL
729 #[stable(feature = "rust1", since = "1.0.0")]
730 pub fn insert(&mut self, index: usize, element: T) {
1a4d82fc
JJ
731 let len = self.len();
732 assert!(index <= len);
c1a9b12d 733
1a4d82fc 734 // space for the new element
92a42be0
SL
735 if len == self.buf.cap() {
736 self.buf.double();
737 }
1a4d82fc 738
92a42be0
SL
739 unsafe {
740 // infallible
1a4d82fc
JJ
741 // The spot to put the new value
742 {
85aaf69f 743 let p = self.as_mut_ptr().offset(index as isize);
1a4d82fc
JJ
744 // Shift everything over to make space. (Duplicating the
745 // `index`th element into two consecutive places.)
c1a9b12d 746 ptr::copy(p, p.offset(1), len - index);
1a4d82fc
JJ
747 // Write it in, overwriting the first copy of the `index`th
748 // element.
c1a9b12d 749 ptr::write(p, element);
1a4d82fc
JJ
750 }
751 self.set_len(len + 1);
752 }
753 }
754
755 /// Removes and returns the element at position `index` within the vector,
7453a54e 756 /// shifting all elements after it to the left.
1a4d82fc
JJ
757 ///
758 /// # Panics
759 ///
bd371182 760 /// Panics if `index` is out of bounds.
1a4d82fc
JJ
761 ///
762 /// # Examples
763 ///
764 /// ```
85aaf69f 765 /// let mut v = vec![1, 2, 3];
1a4d82fc 766 /// assert_eq!(v.remove(1), 2);
c34b1796 767 /// assert_eq!(v, [1, 3]);
1a4d82fc 768 /// ```
85aaf69f
SL
769 #[stable(feature = "rust1", since = "1.0.0")]
770 pub fn remove(&mut self, index: usize) -> T {
1a4d82fc
JJ
771 let len = self.len();
772 assert!(index < len);
92a42be0
SL
773 unsafe {
774 // infallible
1a4d82fc
JJ
775 let ret;
776 {
777 // the place we are taking from.
85aaf69f 778 let ptr = self.as_mut_ptr().offset(index as isize);
1a4d82fc
JJ
779 // copy it out, unsafely having a copy of the value on
780 // the stack and in the vector at the same time.
85aaf69f 781 ret = ptr::read(ptr);
1a4d82fc
JJ
782
783 // Shift everything down to fill in that spot.
c1a9b12d 784 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1a4d82fc
JJ
785 }
786 self.set_len(len - 1);
787 ret
788 }
789 }
790
791 /// Retains only the elements specified by the predicate.
792 ///
c30ab7b3 793 /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
1a4d82fc
JJ
794 /// This method operates in place and preserves the order of the retained
795 /// elements.
796 ///
797 /// # Examples
798 ///
799 /// ```
85aaf69f 800 /// let mut vec = vec![1, 2, 3, 4];
1a4d82fc 801 /// vec.retain(|&x| x%2 == 0);
c34b1796 802 /// assert_eq!(vec, [2, 4]);
1a4d82fc 803 /// ```
85aaf69f 804 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
805 pub fn retain<F>(&mut self, mut f: F)
806 where F: FnMut(&T) -> bool
807 {
1a4d82fc 808 let len = self.len();
85aaf69f 809 let mut del = 0;
1a4d82fc 810 {
85aaf69f 811 let v = &mut **self;
1a4d82fc 812
85aaf69f 813 for i in 0..len {
1a4d82fc
JJ
814 if !f(&v[i]) {
815 del += 1;
816 } else if del > 0 {
92a42be0 817 v.swap(i - del, i);
1a4d82fc
JJ
818 }
819 }
820 }
821 if del > 0 {
822 self.truncate(len - del);
823 }
824 }
825
c30ab7b3
SL
826 /// Removes consecutive elements in the vector that resolve to the same key.
827 ///
828 /// If the vector is sorted, this removes all duplicates.
829 ///
830 /// # Examples
831 ///
832 /// ```
c30ab7b3
SL
833 /// let mut vec = vec![10, 20, 21, 30, 20];
834 ///
835 /// vec.dedup_by_key(|i| *i / 10);
836 ///
837 /// assert_eq!(vec, [10, 20, 30, 20]);
838 /// ```
32a655c1 839 #[stable(feature = "dedup_by", since = "1.16.0")]
c30ab7b3
SL
840 #[inline]
841 pub fn dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq {
842 self.dedup_by(|a, b| key(a) == key(b))
843 }
844
cc61c64b
XL
845 /// Removes consecutive elements in the vector according to a predicate.
846 ///
847 /// The `same_bucket` function is passed references to two elements from the vector, and
848 /// returns `true` if the elements compare equal, or `false` if they do not. Only the first
849 /// of adjacent equal items is kept.
c30ab7b3
SL
850 ///
851 /// If the vector is sorted, this removes all duplicates.
852 ///
853 /// # Examples
854 ///
855 /// ```
c30ab7b3
SL
856 /// use std::ascii::AsciiExt;
857 ///
858 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
859 ///
860 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
861 ///
862 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
863 /// ```
32a655c1 864 #[stable(feature = "dedup_by", since = "1.16.0")]
c30ab7b3
SL
865 pub fn dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool {
866 unsafe {
867 // Although we have a mutable reference to `self`, we cannot make
868 // *arbitrary* changes. The `same_bucket` calls could panic, so we
869 // must ensure that the vector is in a valid state at all time.
870 //
871 // The way that we handle this is by using swaps; we iterate
872 // over all the elements, swapping as we go so that at the end
873 // the elements we wish to keep are in the front, and those we
874 // wish to reject are at the back. We can then truncate the
875 // vector. This operation is still O(n).
876 //
877 // Example: We start in this state, where `r` represents "next
878 // read" and `w` represents "next_write`.
879 //
880 // r
881 // +---+---+---+---+---+---+
882 // | 0 | 1 | 1 | 2 | 3 | 3 |
883 // +---+---+---+---+---+---+
884 // w
885 //
886 // Comparing self[r] against self[w-1], this is not a duplicate, so
887 // we swap self[r] and self[w] (no effect as r==w) and then increment both
888 // r and w, leaving us with:
889 //
890 // r
891 // +---+---+---+---+---+---+
892 // | 0 | 1 | 1 | 2 | 3 | 3 |
893 // +---+---+---+---+---+---+
894 // w
895 //
896 // Comparing self[r] against self[w-1], this value is a duplicate,
897 // so we increment `r` but leave everything else unchanged:
898 //
899 // r
900 // +---+---+---+---+---+---+
901 // | 0 | 1 | 1 | 2 | 3 | 3 |
902 // +---+---+---+---+---+---+
903 // w
904 //
905 // Comparing self[r] against self[w-1], this is not a duplicate,
906 // so swap self[r] and self[w] and advance r and w:
907 //
908 // r
909 // +---+---+---+---+---+---+
910 // | 0 | 1 | 2 | 1 | 3 | 3 |
911 // +---+---+---+---+---+---+
912 // w
913 //
914 // Not a duplicate, repeat:
915 //
916 // r
917 // +---+---+---+---+---+---+
918 // | 0 | 1 | 2 | 3 | 1 | 3 |
919 // +---+---+---+---+---+---+
920 // w
921 //
922 // Duplicate, advance r. End of vec. Truncate to w.
923
924 let ln = self.len();
925 if ln <= 1 {
926 return;
927 }
928
929 // Avoid bounds checks by using raw pointers.
930 let p = self.as_mut_ptr();
931 let mut r: usize = 1;
932 let mut w: usize = 1;
933
934 while r < ln {
935 let p_r = p.offset(r as isize);
936 let p_wm1 = p.offset((w - 1) as isize);
937 if !same_bucket(&mut *p_r, &mut *p_wm1) {
938 if r != w {
939 let p_w = p_wm1.offset(1);
940 mem::swap(&mut *p_r, &mut *p_w);
941 }
942 w += 1;
943 }
944 r += 1;
945 }
946
947 self.truncate(w);
948 }
949 }
950
1a4d82fc
JJ
951 /// Appends an element to the back of a collection.
952 ///
953 /// # Panics
954 ///
85aaf69f 955 /// Panics if the number of elements in the vector overflows a `usize`.
1a4d82fc
JJ
956 ///
957 /// # Examples
958 ///
c34b1796 959 /// ```
c1a9b12d 960 /// let mut vec = vec![1, 2];
1a4d82fc 961 /// vec.push(3);
c34b1796 962 /// assert_eq!(vec, [1, 2, 3]);
1a4d82fc
JJ
963 /// ```
964 #[inline]
85aaf69f 965 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 966 pub fn push(&mut self, value: T) {
c1a9b12d
SL
967 // This will panic or abort if we would allocate > isize::MAX bytes
968 // or if the length increment would overflow for zero-sized types.
92a42be0
SL
969 if self.len == self.buf.cap() {
970 self.buf.double();
971 }
1a4d82fc 972 unsafe {
c1a9b12d
SL
973 let end = self.as_mut_ptr().offset(self.len as isize);
974 ptr::write(end, value);
1a4d82fc
JJ
975 self.len += 1;
976 }
977 }
978
cc61c64b
XL
979 /// Returns a place for insertion at the back of the `Vec`.
980 ///
981 /// Using this method with placement syntax is equivalent to [`push`](#method.push),
982 /// but may be more efficient.
983 ///
984 /// # Examples
985 ///
986 /// ```
987 /// #![feature(collection_placement)]
988 /// #![feature(placement_in_syntax)]
989 ///
990 /// let mut vec = vec![1, 2];
991 /// vec.place_back() <- 3;
992 /// vec.place_back() <- 4;
993 /// assert_eq!(&vec, &[1, 2, 3, 4]);
994 /// ```
995 #[unstable(feature = "collection_placement",
996 reason = "placement protocol is subject to change",
997 issue = "30172")]
998 pub fn place_back(&mut self) -> PlaceBack<T> {
999 PlaceBack { vec: self }
1000 }
1001
c30ab7b3 1002 /// Removes the last element from a vector and returns it, or [`None`] if it
e9174d1e 1003 /// is empty.
1a4d82fc 1004 ///
c30ab7b3
SL
1005 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1006 ///
1a4d82fc
JJ
1007 /// # Examples
1008 ///
c34b1796 1009 /// ```
85aaf69f 1010 /// let mut vec = vec![1, 2, 3];
1a4d82fc 1011 /// assert_eq!(vec.pop(), Some(3));
c34b1796 1012 /// assert_eq!(vec, [1, 2]);
1a4d82fc
JJ
1013 /// ```
1014 #[inline]
85aaf69f 1015 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1016 pub fn pop(&mut self) -> Option<T> {
1017 if self.len == 0 {
1018 None
1019 } else {
1020 unsafe {
1021 self.len -= 1;
1022 Some(ptr::read(self.get_unchecked(self.len())))
1023 }
1024 }
1025 }
1026
85aaf69f
SL
1027 /// Moves all the elements of `other` into `Self`, leaving `other` empty.
1028 ///
1029 /// # Panics
1030 ///
1031 /// Panics if the number of elements in the vector overflows a `usize`.
1032 ///
1033 /// # Examples
1034 ///
1035 /// ```
1036 /// let mut vec = vec![1, 2, 3];
1037 /// let mut vec2 = vec![4, 5, 6];
1038 /// vec.append(&mut vec2);
c34b1796
AL
1039 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1040 /// assert_eq!(vec2, []);
85aaf69f
SL
1041 /// ```
1042 #[inline]
e9174d1e 1043 #[stable(feature = "append", since = "1.4.0")]
85aaf69f 1044 pub fn append(&mut self, other: &mut Self) {
92a42be0 1045 unsafe {
cc61c64b 1046 self.append_elements(other.as_slice() as _);
92a42be0
SL
1047 other.set_len(0);
1048 }
85aaf69f
SL
1049 }
1050
cc61c64b
XL
1051 /// Appends elements to `Self` from other buffer.
1052 #[inline]
1053 unsafe fn append_elements(&mut self, other: *const [T]) {
1054 let count = (*other).len();
1055 self.reserve(count);
1056 let len = self.len();
1057 ptr::copy_nonoverlapping(other as *const T, self.get_unchecked_mut(len), count);
1058 self.len += count;
1059 }
1060
7cac9316 1061 /// Creates a draining iterator that removes the specified range in the vector
9cc50fc6 1062 /// and yields the removed items.
d9579d0f 1063 ///
32a655c1
SL
1064 /// Note 1: The element range is removed even if the iterator is only
1065 /// partially consumed or not consumed at all.
9cc50fc6 1066 ///
7cac9316 1067 /// Note 2: It is unspecified how many elements are removed from the vector
d9579d0f
AL
1068 /// if the `Drain` value is leaked.
1069 ///
1070 /// # Panics
1071 ///
1072 /// Panics if the starting point is greater than the end point or if
1073 /// the end point is greater than the length of the vector.
1a4d82fc
JJ
1074 ///
1075 /// # Examples
1076 ///
1077 /// ```
d9579d0f 1078 /// let mut v = vec![1, 2, 3];
9cc50fc6
SL
1079 /// let u: Vec<_> = v.drain(1..).collect();
1080 /// assert_eq!(v, &[1]);
1081 /// assert_eq!(u, &[2, 3]);
1082 ///
1083 /// // A full range clears the vector
1084 /// v.drain(..);
d9579d0f 1085 /// assert_eq!(v, &[]);
1a4d82fc 1086 /// ```
92a42be0
SL
1087 #[stable(feature = "drain", since = "1.6.0")]
1088 pub fn drain<R>(&mut self, range: R) -> Drain<T>
1089 where R: RangeArgument<usize>
1090 {
d9579d0f
AL
1091 // Memory safety
1092 //
1093 // When the Drain is first created, it shortens the length of
1094 // the source vector to make sure no uninitalized or moved-from elements
1095 // are accessible at all if the Drain's destructor never gets to run.
1096 //
1097 // Drain will ptr::read out the values to remove.
1098 // When finished, remaining tail of the vec is copied back to cover
1099 // the hole, and the vector length is restored to the new length.
1100 //
1101 let len = self.len();
32a655c1
SL
1102 let start = match range.start() {
1103 Included(&n) => n,
1104 Excluded(&n) => n + 1,
1105 Unbounded => 0,
1106 };
1107 let end = match range.end() {
1108 Included(&n) => n + 1,
1109 Excluded(&n) => n,
1110 Unbounded => len,
1111 };
d9579d0f
AL
1112 assert!(start <= end);
1113 assert!(end <= len);
1114
1a4d82fc 1115 unsafe {
d9579d0f
AL
1116 // set self.vec length's to start, to be safe in case Drain is leaked
1117 self.set_len(start);
1118 // Use the borrow in the IterMut to indicate borrowing behavior of the
1119 // whole Drain iterator (like &mut T).
92a42be0
SL
1120 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().offset(start as isize),
1121 end - start);
1a4d82fc 1122 Drain {
d9579d0f
AL
1123 tail_start: end,
1124 tail_len: len - end,
5bcae85e
SL
1125 iter: range_slice.iter(),
1126 vec: Shared::new(self as *mut _),
1a4d82fc
JJ
1127 }
1128 }
1129 }
1130
1131 /// Clears the vector, removing all values.
1132 ///
8bb4bdeb
XL
1133 /// Note that this method has no effect on the allocated capacity
1134 /// of the vector.
1135 ///
1a4d82fc
JJ
1136 /// # Examples
1137 ///
1138 /// ```
85aaf69f 1139 /// let mut v = vec![1, 2, 3];
1a4d82fc
JJ
1140 ///
1141 /// v.clear();
1142 ///
1143 /// assert!(v.is_empty());
1144 /// ```
1145 #[inline]
85aaf69f 1146 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1147 pub fn clear(&mut self) {
1148 self.truncate(0)
1149 }
1150
7cac9316
XL
1151 /// Returns the number of elements in the vector, also referred to
1152 /// as its 'length'.
1a4d82fc
JJ
1153 ///
1154 /// # Examples
1155 ///
1156 /// ```
85aaf69f 1157 /// let a = vec![1, 2, 3];
1a4d82fc
JJ
1158 /// assert_eq!(a.len(), 3);
1159 /// ```
1160 #[inline]
85aaf69f 1161 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
1162 pub fn len(&self) -> usize {
1163 self.len
1164 }
1a4d82fc
JJ
1165
1166 /// Returns `true` if the vector contains no elements.
1167 ///
1168 /// # Examples
1169 ///
1170 /// ```
1171 /// let mut v = Vec::new();
1172 /// assert!(v.is_empty());
1173 ///
85aaf69f 1174 /// v.push(1);
1a4d82fc
JJ
1175 /// assert!(!v.is_empty());
1176 /// ```
85aaf69f 1177 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
1178 pub fn is_empty(&self) -> bool {
1179 self.len() == 0
1180 }
1a4d82fc 1181
85aaf69f
SL
1182 /// Splits the collection into two at the given index.
1183 ///
1184 /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
1185 /// and the returned `Self` contains elements `[at, len)`.
1186 ///
1187 /// Note that the capacity of `self` does not change.
1188 ///
1189 /// # Panics
1190 ///
1191 /// Panics if `at > len`.
1192 ///
1193 /// # Examples
1194 ///
1195 /// ```
1196 /// let mut vec = vec![1,2,3];
1197 /// let vec2 = vec.split_off(1);
c34b1796
AL
1198 /// assert_eq!(vec, [1]);
1199 /// assert_eq!(vec2, [2, 3]);
85aaf69f
SL
1200 /// ```
1201 #[inline]
e9174d1e 1202 #[stable(feature = "split_off", since = "1.4.0")]
85aaf69f
SL
1203 pub fn split_off(&mut self, at: usize) -> Self {
1204 assert!(at <= self.len(), "`at` out of bounds");
1205
1206 let other_len = self.len - at;
1207 let mut other = Vec::with_capacity(other_len);
1208
1209 // Unsafely `set_len` and copy items to `other`.
1210 unsafe {
1211 self.set_len(at);
1212 other.set_len(other_len);
1213
92a42be0
SL
1214 ptr::copy_nonoverlapping(self.as_ptr().offset(at as isize),
1215 other.as_mut_ptr(),
1216 other.len());
85aaf69f
SL
1217 }
1218 other
1219 }
1a4d82fc
JJ
1220}
1221
1222impl<T: Clone> Vec<T> {
7cac9316 1223 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1a4d82fc 1224 ///
7cac9316 1225 /// If `new_len` is greater than `len`, the `Vec` is extended by the
92a42be0 1226 /// difference, with each additional slot filled with `value`.
7cac9316
XL
1227 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1228 ///
1229 /// This method requires `Clone` to clone the passed value. If you'd
1230 /// rather create a value with `Default` instead, see [`resize_default`].
1a4d82fc
JJ
1231 ///
1232 /// # Examples
1233 ///
1234 /// ```
1235 /// let mut vec = vec!["hello"];
1236 /// vec.resize(3, "world");
c34b1796 1237 /// assert_eq!(vec, ["hello", "world", "world"]);
1a4d82fc 1238 ///
85aaf69f 1239 /// let mut vec = vec![1, 2, 3, 4];
1a4d82fc 1240 /// vec.resize(2, 0);
c34b1796 1241 /// assert_eq!(vec, [1, 2]);
1a4d82fc 1242 /// ```
7cac9316
XL
1243 ///
1244 /// [`resize_default`]: #method.resize_default
b039eaaf 1245 #[stable(feature = "vec_resize", since = "1.5.0")]
85aaf69f 1246 pub fn resize(&mut self, new_len: usize, value: T) {
1a4d82fc
JJ
1247 let len = self.len();
1248
1249 if new_len > len {
7cac9316 1250 self.extend_with(new_len - len, ExtendElement(value))
1a4d82fc
JJ
1251 } else {
1252 self.truncate(new_len);
1253 }
1254 }
1255
7cac9316
XL
1256 /// Clones and appends all elements in a slice to the `Vec`.
1257 ///
1258 /// Iterates over the slice `other`, clones each element, and then appends
1259 /// it to this `Vec`. The `other` vector is traversed in-order.
1260 ///
1261 /// Note that this function is same as `extend` except that it is
1262 /// specialized to work with slices instead. If and when Rust gets
1263 /// specialization this function will likely be deprecated (but still
1264 /// available).
1265 ///
1266 /// # Examples
1267 ///
1268 /// ```
1269 /// let mut vec = vec![1];
1270 /// vec.extend_from_slice(&[2, 3, 4]);
1271 /// assert_eq!(vec, [1, 2, 3, 4]);
1272 /// ```
1273 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
1274 pub fn extend_from_slice(&mut self, other: &[T]) {
1275 self.spec_extend(other.iter())
1276 }
1277}
1278
1279impl<T: Default> Vec<T> {
1280 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1281 ///
1282 /// If `new_len` is greater than `len`, the `Vec` is extended by the
1283 /// difference, with each additional slot filled with `Default::default()`.
1284 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1285 ///
1286 /// This method uses `Default` to create new values on every push. If
1287 /// you'd rather `Clone` a given value, use [`resize`].
1288 ///
1289 ///
1290 /// # Examples
1291 ///
1292 /// ```
1293 /// #![feature(vec_resize_default)]
1294 ///
1295 /// let mut vec = vec![1, 2, 3];
1296 /// vec.resize_default(5);
1297 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
1298 ///
1299 /// let mut vec = vec![1, 2, 3, 4];
1300 /// vec.resize_default(2);
1301 /// assert_eq!(vec, [1, 2]);
1302 /// ```
1303 ///
1304 /// [`resize`]: #method.resize
1305 #[unstable(feature = "vec_resize_default", issue = "41758")]
1306 pub fn resize_default(&mut self, new_len: usize) {
1307 let len = self.len();
1308
1309 if new_len > len {
1310 self.extend_with(new_len - len, ExtendDefault);
1311 } else {
1312 self.truncate(new_len);
1313 }
1314 }
1315}
1316
1317// This code generalises `extend_with_{element,default}`.
1318trait ExtendWith<T> {
1319 fn next(&self) -> T;
1320 fn last(self) -> T;
1321}
1322
1323struct ExtendElement<T>(T);
1324impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
1325 fn next(&self) -> T { self.0.clone() }
1326 fn last(self) -> T { self.0 }
1327}
1328
1329struct ExtendDefault;
1330impl<T: Default> ExtendWith<T> for ExtendDefault {
1331 fn next(&self) -> T { Default::default() }
1332 fn last(self) -> T { Default::default() }
1333}
1334impl<T> Vec<T> {
1335 /// Extend the vector by `n` values, using the given generator.
1336 fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, value: E) {
c1a9b12d
SL
1337 self.reserve(n);
1338
1339 unsafe {
9e0c209e
SL
1340 let mut ptr = self.as_mut_ptr().offset(self.len() as isize);
1341 // Use SetLenOnDrop to work around bug where compiler
8bb4bdeb 1342 // may not realize the store through `ptr` through self.set_len()
9e0c209e
SL
1343 // don't alias.
1344 let mut local_len = SetLenOnDrop::new(&mut self.len);
1345
c1a9b12d 1346 // Write all elements except the last one
9e0c209e 1347 for _ in 1..n {
7cac9316 1348 ptr::write(ptr, value.next());
c1a9b12d 1349 ptr = ptr.offset(1);
7cac9316 1350 // Increment the length in every step in case next() panics
9e0c209e 1351 local_len.increment_len(1);
c1a9b12d
SL
1352 }
1353
1354 if n > 0 {
1355 // We can write the last element directly without cloning needlessly
7cac9316 1356 ptr::write(ptr, value.last());
9e0c209e 1357 local_len.increment_len(1);
c1a9b12d 1358 }
9e0c209e
SL
1359
1360 // len set by scope guard
c1a9b12d
SL
1361 }
1362 }
1a4d82fc
JJ
1363}
1364
9e0c209e
SL
1365// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
1366//
1367// The idea is: The length field in SetLenOnDrop is a local variable
1368// that the optimizer will see does not alias with any stores through the Vec's data
1369// pointer. This is a workaround for alias analysis issue #32155
1370struct SetLenOnDrop<'a> {
1371 len: &'a mut usize,
1372 local_len: usize,
1373}
1374
1375impl<'a> SetLenOnDrop<'a> {
1376 #[inline]
1377 fn new(len: &'a mut usize) -> Self {
1378 SetLenOnDrop { local_len: *len, len: len }
1379 }
1380
1381 #[inline]
1382 fn increment_len(&mut self, increment: usize) {
1383 self.local_len += increment;
1384 }
1385}
1386
1387impl<'a> Drop for SetLenOnDrop<'a> {
1388 #[inline]
1389 fn drop(&mut self) {
1390 *self.len = self.local_len;
1391 }
1392}
1393
1a4d82fc
JJ
1394impl<T: PartialEq> Vec<T> {
1395 /// Removes consecutive repeated elements in the vector.
1396 ///
1397 /// If the vector is sorted, this removes all duplicates.
1398 ///
1399 /// # Examples
1400 ///
1401 /// ```
85aaf69f 1402 /// let mut vec = vec![1, 2, 2, 3, 2];
1a4d82fc
JJ
1403 ///
1404 /// vec.dedup();
1405 ///
c34b1796 1406 /// assert_eq!(vec, [1, 2, 3, 2]);
1a4d82fc 1407 /// ```
85aaf69f 1408 #[stable(feature = "rust1", since = "1.0.0")]
c30ab7b3 1409 #[inline]
1a4d82fc 1410 pub fn dedup(&mut self) {
c30ab7b3 1411 self.dedup_by(|a, b| a == b)
1a4d82fc 1412 }
8bb4bdeb
XL
1413
1414 /// Removes the first instance of `item` from the vector if the item exists.
1415 ///
1416 /// # Examples
1417 ///
1418 /// ```
cc61c64b 1419 /// # #![feature(vec_remove_item)]
8bb4bdeb
XL
1420 /// let mut vec = vec![1, 2, 3, 1];
1421 ///
1422 /// vec.remove_item(&1);
1423 ///
1424 /// assert_eq!(vec, vec![2, 3, 1]);
1425 /// ```
1426 #[unstable(feature = "vec_remove_item", reason = "recently added", issue = "40062")]
1427 pub fn remove_item(&mut self, item: &T) -> Option<T> {
1428 let pos = match self.iter().position(|x| *x == *item) {
1429 Some(x) => x,
1430 None => return None,
1431 };
1432 Some(self.remove(pos))
1433 }
1a4d82fc
JJ
1434}
1435
1436////////////////////////////////////////////////////////////////////////////////
1437// Internal methods and functions
1438////////////////////////////////////////////////////////////////////////////////
1439
85aaf69f
SL
1440#[doc(hidden)]
1441#[stable(feature = "rust1", since = "1.0.0")]
1442pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
cc61c64b
XL
1443 <T as SpecFromElem>::from_elem(elem, n)
1444}
1445
1446// Specialization trait used for Vec::from_elem
1447trait SpecFromElem: Sized {
1448 fn from_elem(elem: Self, n: usize) -> Vec<Self>;
1449}
1450
1451impl<T: Clone> SpecFromElem for T {
1452 default fn from_elem(elem: Self, n: usize) -> Vec<Self> {
1453 let mut v = Vec::with_capacity(n);
7cac9316 1454 v.extend_with(n, ExtendElement(elem));
cc61c64b
XL
1455 v
1456 }
85aaf69f
SL
1457}
1458
cc61c64b
XL
1459impl SpecFromElem for u8 {
1460 #[inline]
1461 fn from_elem(elem: u8, n: usize) -> Vec<u8> {
1462 if elem == 0 {
1463 return Vec {
1464 buf: RawVec::with_capacity_zeroed(n),
1465 len: n,
1466 }
1467 }
1468 unsafe {
1469 let mut v = Vec::with_capacity(n);
1470 ptr::write_bytes(v.as_mut_ptr(), elem, n);
1471 v.set_len(n);
1472 v
1473 }
1474 }
1475}
1476
1477macro_rules! impl_spec_from_elem {
1478 ($t: ty, $is_zero: expr) => {
1479 impl SpecFromElem for $t {
1480 #[inline]
1481 fn from_elem(elem: $t, n: usize) -> Vec<$t> {
1482 if $is_zero(elem) {
1483 return Vec {
1484 buf: RawVec::with_capacity_zeroed(n),
1485 len: n,
1486 }
1487 }
1488 let mut v = Vec::with_capacity(n);
7cac9316 1489 v.extend_with(n, ExtendElement(elem));
cc61c64b
XL
1490 v
1491 }
1492 }
1493 };
1494}
1495
1496impl_spec_from_elem!(i8, |x| x == 0);
1497impl_spec_from_elem!(i16, |x| x == 0);
1498impl_spec_from_elem!(i32, |x| x == 0);
1499impl_spec_from_elem!(i64, |x| x == 0);
1500impl_spec_from_elem!(i128, |x| x == 0);
1501impl_spec_from_elem!(isize, |x| x == 0);
1502
1503impl_spec_from_elem!(u16, |x| x == 0);
1504impl_spec_from_elem!(u32, |x| x == 0);
1505impl_spec_from_elem!(u64, |x| x == 0);
1506impl_spec_from_elem!(u128, |x| x == 0);
1507impl_spec_from_elem!(usize, |x| x == 0);
1508
1509impl_spec_from_elem!(f32, |x: f32| x == 0. && x.is_sign_positive());
1510impl_spec_from_elem!(f64, |x: f64| x == 0. && x.is_sign_positive());
1511
1a4d82fc
JJ
1512////////////////////////////////////////////////////////////////////////////////
1513// Common trait implementations for Vec
1514////////////////////////////////////////////////////////////////////////////////
1515
bd371182 1516#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 1517impl<T: Clone> Clone for Vec<T> {
c34b1796 1518 #[cfg(not(test))]
92a42be0
SL
1519 fn clone(&self) -> Vec<T> {
1520 <[T]>::to_vec(&**self)
1521 }
c34b1796
AL
1522
1523 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
1524 // required for this method definition, is not available. Instead use the
1525 // `slice::to_vec` function which is only available with cfg(test)
1526 // NB see the slice::hack module in slice.rs for more information
1527 #[cfg(test)]
1528 fn clone(&self) -> Vec<T> {
1529 ::slice::to_vec(&**self)
1530 }
1a4d82fc
JJ
1531
1532 fn clone_from(&mut self, other: &Vec<T>) {
cc61c64b 1533 other.as_slice().clone_into(self);
1a4d82fc
JJ
1534 }
1535}
1536
85aaf69f 1537#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1538impl<T: Hash> Hash for Vec<T> {
1a4d82fc 1539 #[inline]
85aaf69f
SL
1540 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1541 Hash::hash(&**self, state)
1a4d82fc
JJ
1542 }
1543}
1544
85aaf69f
SL
1545#[stable(feature = "rust1", since = "1.0.0")]
1546impl<T> Index<usize> for Vec<T> {
1a4d82fc
JJ
1547 type Output = T;
1548
1549 #[inline]
c34b1796 1550 fn index(&self, index: usize) -> &T {
85aaf69f 1551 // NB built-in indexing via `&[T]`
c34b1796 1552 &(**self)[index]
1a4d82fc
JJ
1553 }
1554}
1555
85aaf69f
SL
1556#[stable(feature = "rust1", since = "1.0.0")]
1557impl<T> IndexMut<usize> for Vec<T> {
1a4d82fc 1558 #[inline]
c34b1796 1559 fn index_mut(&mut self, index: usize) -> &mut T {
85aaf69f 1560 // NB built-in indexing via `&mut [T]`
c34b1796 1561 &mut (**self)[index]
1a4d82fc
JJ
1562 }
1563}
1564
1565
85aaf69f
SL
1566#[stable(feature = "rust1", since = "1.0.0")]
1567impl<T> ops::Index<ops::Range<usize>> for Vec<T> {
1a4d82fc 1568 type Output = [T];
c34b1796 1569
1a4d82fc 1570 #[inline]
c34b1796 1571 fn index(&self, index: ops::Range<usize>) -> &[T] {
85aaf69f 1572 Index::index(&**self, index)
1a4d82fc
JJ
1573 }
1574}
85aaf69f
SL
1575#[stable(feature = "rust1", since = "1.0.0")]
1576impl<T> ops::Index<ops::RangeTo<usize>> for Vec<T> {
1a4d82fc 1577 type Output = [T];
c34b1796 1578
1a4d82fc 1579 #[inline]
c34b1796 1580 fn index(&self, index: ops::RangeTo<usize>) -> &[T] {
85aaf69f 1581 Index::index(&**self, index)
1a4d82fc
JJ
1582 }
1583}
85aaf69f
SL
1584#[stable(feature = "rust1", since = "1.0.0")]
1585impl<T> ops::Index<ops::RangeFrom<usize>> for Vec<T> {
1a4d82fc 1586 type Output = [T];
c34b1796 1587
1a4d82fc 1588 #[inline]
c34b1796 1589 fn index(&self, index: ops::RangeFrom<usize>) -> &[T] {
85aaf69f 1590 Index::index(&**self, index)
1a4d82fc
JJ
1591 }
1592}
85aaf69f
SL
1593#[stable(feature = "rust1", since = "1.0.0")]
1594impl<T> ops::Index<ops::RangeFull> for Vec<T> {
1a4d82fc 1595 type Output = [T];
c34b1796 1596
1a4d82fc 1597 #[inline]
c34b1796
AL
1598 fn index(&self, _index: ops::RangeFull) -> &[T] {
1599 self
1a4d82fc
JJ
1600 }
1601}
54a0048b
SL
1602#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1603impl<T> ops::Index<ops::RangeInclusive<usize>> for Vec<T> {
1604 type Output = [T];
1605
1606 #[inline]
1607 fn index(&self, index: ops::RangeInclusive<usize>) -> &[T] {
1608 Index::index(&**self, index)
1609 }
1610}
1611#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1612impl<T> ops::Index<ops::RangeToInclusive<usize>> for Vec<T> {
1613 type Output = [T];
1614
1615 #[inline]
1616 fn index(&self, index: ops::RangeToInclusive<usize>) -> &[T] {
1617 Index::index(&**self, index)
1618 }
1619}
1a4d82fc 1620
85aaf69f
SL
1621#[stable(feature = "rust1", since = "1.0.0")]
1622impl<T> ops::IndexMut<ops::Range<usize>> for Vec<T> {
1a4d82fc 1623 #[inline]
c34b1796 1624 fn index_mut(&mut self, index: ops::Range<usize>) -> &mut [T] {
85aaf69f 1625 IndexMut::index_mut(&mut **self, index)
1a4d82fc
JJ
1626 }
1627}
85aaf69f
SL
1628#[stable(feature = "rust1", since = "1.0.0")]
1629impl<T> ops::IndexMut<ops::RangeTo<usize>> for Vec<T> {
1a4d82fc 1630 #[inline]
c34b1796 1631 fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut [T] {
85aaf69f 1632 IndexMut::index_mut(&mut **self, index)
1a4d82fc
JJ
1633 }
1634}
85aaf69f
SL
1635#[stable(feature = "rust1", since = "1.0.0")]
1636impl<T> ops::IndexMut<ops::RangeFrom<usize>> for Vec<T> {
1a4d82fc 1637 #[inline]
c34b1796 1638 fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut [T] {
85aaf69f 1639 IndexMut::index_mut(&mut **self, index)
1a4d82fc
JJ
1640 }
1641}
85aaf69f
SL
1642#[stable(feature = "rust1", since = "1.0.0")]
1643impl<T> ops::IndexMut<ops::RangeFull> for Vec<T> {
1a4d82fc 1644 #[inline]
c34b1796
AL
1645 fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [T] {
1646 self
1a4d82fc
JJ
1647 }
1648}
54a0048b
SL
1649#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1650impl<T> ops::IndexMut<ops::RangeInclusive<usize>> for Vec<T> {
1651 #[inline]
1652 fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut [T] {
1653 IndexMut::index_mut(&mut **self, index)
1654 }
1655}
1656#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1657impl<T> ops::IndexMut<ops::RangeToInclusive<usize>> for Vec<T> {
1658 #[inline]
1659 fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut [T] {
1660 IndexMut::index_mut(&mut **self, index)
1661 }
1662}
1a4d82fc 1663
85aaf69f 1664#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1665impl<T> ops::Deref for Vec<T> {
1666 type Target = [T];
1667
c34b1796
AL
1668 fn deref(&self) -> &[T] {
1669 unsafe {
c1a9b12d 1670 let p = self.buf.ptr();
e9174d1e 1671 assume(!p.is_null());
c34b1796
AL
1672 slice::from_raw_parts(p, self.len)
1673 }
1674 }
1a4d82fc
JJ
1675}
1676
85aaf69f 1677#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1678impl<T> ops::DerefMut for Vec<T> {
c34b1796
AL
1679 fn deref_mut(&mut self) -> &mut [T] {
1680 unsafe {
c1a9b12d 1681 let ptr = self.buf.ptr();
c34b1796
AL
1682 assume(!ptr.is_null());
1683 slice::from_raw_parts_mut(ptr, self.len)
1684 }
1685 }
1a4d82fc
JJ
1686}
1687
85aaf69f 1688#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1689impl<T> FromIterator<T> for Vec<T> {
1690 #[inline]
54a0048b 1691 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
cc61c64b 1692 <Self as SpecExtend<T, I::IntoIter>>::from_iter(iter.into_iter())
1a4d82fc
JJ
1693 }
1694}
1695
85aaf69f
SL
1696#[stable(feature = "rust1", since = "1.0.0")]
1697impl<T> IntoIterator for Vec<T> {
1698 type Item = T;
1699 type IntoIter = IntoIter<T>;
1700
9346a6ac
AL
1701 /// Creates a consuming iterator, that is, one that moves each value out of
1702 /// the vector (from start to end). The vector cannot be used after calling
1703 /// this.
1704 ///
1705 /// # Examples
1706 ///
1707 /// ```
1708 /// let v = vec!["a".to_string(), "b".to_string()];
1709 /// for s in v.into_iter() {
1710 /// // s has type String, not &String
1711 /// println!("{}", s);
1712 /// }
1713 /// ```
1714 #[inline]
c1a9b12d 1715 fn into_iter(mut self) -> IntoIter<T> {
9346a6ac 1716 unsafe {
5bcae85e
SL
1717 let begin = self.as_mut_ptr();
1718 assume(!begin.is_null());
9346a6ac 1719 let end = if mem::size_of::<T>() == 0 {
5bcae85e 1720 arith_offset(begin as *const i8, self.len() as isize) as *const T
9346a6ac 1721 } else {
5bcae85e 1722 begin.offset(self.len() as isize) as *const T
9346a6ac 1723 };
5bcae85e 1724 let cap = self.buf.cap();
9346a6ac 1725 mem::forget(self);
92a42be0 1726 IntoIter {
5bcae85e
SL
1727 buf: Shared::new(begin),
1728 cap: cap,
92a42be0
SL
1729 ptr: begin,
1730 end: end,
1731 }
9346a6ac 1732 }
85aaf69f
SL
1733 }
1734}
1735
1736#[stable(feature = "rust1", since = "1.0.0")]
1737impl<'a, T> IntoIterator for &'a Vec<T> {
1738 type Item = &'a T;
1739 type IntoIter = slice::Iter<'a, T>;
1740
1741 fn into_iter(self) -> slice::Iter<'a, T> {
1742 self.iter()
1743 }
1744}
1745
1746#[stable(feature = "rust1", since = "1.0.0")]
1747impl<'a, T> IntoIterator for &'a mut Vec<T> {
1748 type Item = &'a mut T;
1749 type IntoIter = slice::IterMut<'a, T>;
1750
1751 fn into_iter(mut self) -> slice::IterMut<'a, T> {
1752 self.iter_mut()
1753 }
1754}
1755
bd371182 1756#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1757impl<T> Extend<T> for Vec<T> {
1758 #[inline]
54a0048b 1759 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
cc61c64b 1760 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
62682a34
SL
1761 }
1762}
1763
476ff2be
SL
1764// Specialization trait used for Vec::from_iter and Vec::extend
1765trait SpecExtend<T, I> {
1766 fn from_iter(iter: I) -> Self;
1767 fn spec_extend(&mut self, iter: I);
c30ab7b3 1768}
c30ab7b3 1769
476ff2be
SL
1770impl<T, I> SpecExtend<T, I> for Vec<T>
1771 where I: Iterator<Item=T>,
c30ab7b3 1772{
476ff2be
SL
1773 default fn from_iter(mut iterator: I) -> Self {
1774 // Unroll the first iteration, as the vector is going to be
1775 // expanded on this iteration in every case when the iterable is not
1776 // empty, but the loop in extend_desugared() is not going to see the
1777 // vector being full in the few subsequent loop iterations.
1778 // So we get better branch prediction.
1779 let mut vector = match iterator.next() {
1780 None => return Vec::new(),
1781 Some(element) => {
1782 let (lower, _) = iterator.size_hint();
1783 let mut vector = Vec::with_capacity(lower.saturating_add(1));
1784 unsafe {
1785 ptr::write(vector.get_unchecked_mut(0), element);
1786 vector.set_len(1);
1787 }
1788 vector
1789 }
1790 };
cc61c64b 1791 <Vec<T> as SpecExtend<T, I>>::spec_extend(&mut vector, iterator);
476ff2be
SL
1792 vector
1793 }
1794
1795 default fn spec_extend(&mut self, iter: I) {
1796 self.extend_desugared(iter)
1797 }
1798}
1799
1800impl<T, I> SpecExtend<T, I> for Vec<T>
1801 where I: TrustedLen<Item=T>,
1802{
cc61c64b 1803 default fn from_iter(iterator: I) -> Self {
476ff2be
SL
1804 let mut vector = Vec::new();
1805 vector.spec_extend(iterator);
1806 vector
1807 }
1808
cc61c64b 1809 default fn spec_extend(&mut self, iterator: I) {
476ff2be
SL
1810 // This is the case for a TrustedLen iterator.
1811 let (low, high) = iterator.size_hint();
c30ab7b3
SL
1812 if let Some(high_value) = high {
1813 debug_assert_eq!(low, high_value,
1814 "TrustedLen iterator's size hint is not exact: {:?}",
1815 (low, high));
1816 }
476ff2be 1817 if let Some(additional) = high {
c30ab7b3 1818 self.reserve(additional);
62682a34 1819 unsafe {
c30ab7b3
SL
1820 let mut ptr = self.as_mut_ptr().offset(self.len() as isize);
1821 let mut local_len = SetLenOnDrop::new(&mut self.len);
1822 for element in iterator {
1823 ptr::write(ptr, element);
1824 ptr = ptr.offset(1);
1825 // NB can't overflow since we would have had to alloc the address space
1826 local_len.increment_len(1);
1827 }
1828 }
1829 } else {
476ff2be
SL
1830 self.extend_desugared(iterator)
1831 }
1832 }
1833}
1834
cc61c64b
XL
1835impl<T> SpecExtend<T, IntoIter<T>> for Vec<T> {
1836 fn from_iter(iterator: IntoIter<T>) -> Self {
1837 // A common case is passing a vector into a function which immediately
1838 // re-collects into a vector. We can short circuit this if the IntoIter
1839 // has not been advanced at all.
7cac9316 1840 if iterator.buf.as_ptr() as *const _ == iterator.ptr {
cc61c64b 1841 unsafe {
7cac9316 1842 let vec = Vec::from_raw_parts(iterator.buf.as_ptr(),
cc61c64b
XL
1843 iterator.len(),
1844 iterator.cap);
1845 mem::forget(iterator);
1846 vec
1847 }
1848 } else {
1849 let mut vector = Vec::new();
1850 vector.spec_extend(iterator);
1851 vector
1852 }
1853 }
1854
1855 fn spec_extend(&mut self, mut iterator: IntoIter<T>) {
1856 unsafe {
1857 self.append_elements(iterator.as_slice() as _);
1858 }
1859 iterator.ptr = iterator.end;
1860 }
1861}
1862
476ff2be
SL
1863impl<'a, T: 'a, I> SpecExtend<&'a T, I> for Vec<T>
1864 where I: Iterator<Item=&'a T>,
1865 T: Clone,
1866{
1867 default fn from_iter(iterator: I) -> Self {
1868 SpecExtend::from_iter(iterator.cloned())
1869 }
1870
1871 default fn spec_extend(&mut self, iterator: I) {
1872 self.spec_extend(iterator.cloned())
1873 }
1874}
1875
1876impl<'a, T: 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T>
1877 where T: Copy,
1878{
1879 fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) {
1880 let slice = iterator.as_slice();
1881 self.reserve(slice.len());
1882 unsafe {
1883 let len = self.len();
1884 self.set_len(len + slice.len());
1885 self.get_unchecked_mut(len..).copy_from_slice(slice);
1886 }
1887 }
1888}
1889
1890impl<T> Vec<T> {
1891 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
1892 // This is the case for a general iterator.
1893 //
1894 // This function should be the moral equivalent of:
1895 //
1896 // for item in iterator {
1897 // self.push(item);
1898 // }
1899 while let Some(element) = iterator.next() {
1900 let len = self.len();
1901 if len == self.capacity() {
1902 let (lower, _) = iterator.size_hint();
1903 self.reserve(lower.saturating_add(1));
1904 }
1905 unsafe {
1906 ptr::write(self.get_unchecked_mut(len), element);
1907 // NB can't overflow since we would have had to alloc the address space
1908 self.set_len(len + 1);
62682a34 1909 }
1a4d82fc
JJ
1910 }
1911 }
7cac9316
XL
1912
1913 /// Creates a splicing iterator that replaces the specified range in the vector
1914 /// with the given `replace_with` iterator and yields the removed items.
1915 /// `replace_with` does not need to be the same length as `range`.
1916 ///
1917 /// Note 1: The element range is removed even if the iterator is not
1918 /// consumed until the end.
1919 ///
1920 /// Note 2: It is unspecified how many elements are removed from the vector,
1921 /// if the `Splice` value is leaked.
1922 ///
1923 /// Note 3: The input iterator `replace_with` is only consumed
1924 /// when the `Splice` value is dropped.
1925 ///
1926 /// Note 4: This is optimal if:
1927 ///
1928 /// * The tail (elements in the vector after `range`) is empty,
1929 /// * or `replace_with` yields fewer elements than `range`’s length
1930 /// * or the lower bound of its `size_hint()` is exact.
1931 ///
1932 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
1933 ///
1934 /// # Panics
1935 ///
1936 /// Panics if the starting point is greater than the end point or if
1937 /// the end point is greater than the length of the vector.
1938 ///
1939 /// # Examples
1940 ///
1941 /// ```
1942 /// #![feature(splice)]
1943 /// let mut v = vec![1, 2, 3];
1944 /// let new = [7, 8];
1945 /// let u: Vec<_> = v.splice(..2, new.iter().cloned()).collect();
1946 /// assert_eq!(v, &[7, 8, 3]);
1947 /// assert_eq!(u, &[1, 2]);
1948 /// ```
1949 #[inline]
1950 #[unstable(feature = "splice", reason = "recently added", issue = "32310")]
1951 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<I::IntoIter>
1952 where R: RangeArgument<usize>, I: IntoIterator<Item=T>
1953 {
1954 Splice {
1955 drain: self.drain(range),
1956 replace_with: replace_with.into_iter(),
1957 }
1958 }
1959
1a4d82fc
JJ
1960}
1961
62682a34
SL
1962#[stable(feature = "extend_ref", since = "1.2.0")]
1963impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T> {
92a42be0 1964 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
476ff2be 1965 self.spec_extend(iter.into_iter())
62682a34
SL
1966 }
1967}
1968
92a42be0
SL
1969macro_rules! __impl_slice_eq1 {
1970 ($Lhs: ty, $Rhs: ty) => {
1971 __impl_slice_eq1! { $Lhs, $Rhs, Sized }
1972 };
1973 ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
1974 #[stable(feature = "rust1", since = "1.0.0")]
1975 impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
1976 #[inline]
1977 fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] }
1978 #[inline]
1979 fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] }
1980 }
1981 }
1982}
1983
c34b1796
AL
1984__impl_slice_eq1! { Vec<A>, Vec<B> }
1985__impl_slice_eq1! { Vec<A>, &'b [B] }
1986__impl_slice_eq1! { Vec<A>, &'b mut [B] }
1987__impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone }
1988__impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone }
1989__impl_slice_eq1! { Cow<'a, [A]>, Vec<B>, Clone }
1990
1991macro_rules! array_impls {
1992 ($($N: expr)+) => {
1993 $(
1994 // NOTE: some less important impls are omitted to reduce code bloat
1995 __impl_slice_eq1! { Vec<A>, [B; $N] }
1996 __impl_slice_eq1! { Vec<A>, &'b [B; $N] }
1997 // __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] }
1998 // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone }
1999 // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone }
2000 // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone }
2001 )+
1a4d82fc
JJ
2002 }
2003}
2004
c34b1796
AL
2005array_impls! {
2006 0 1 2 3 4 5 6 7 8 9
2007 10 11 12 13 14 15 16 17 18 19
2008 20 21 22 23 24 25 26 27 28 29
2009 30 31 32
1a4d82fc
JJ
2010}
2011
8bb4bdeb 2012/// Implements comparison of vectors, lexicographically.
85aaf69f 2013#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2014impl<T: PartialOrd> PartialOrd for Vec<T> {
2015 #[inline]
2016 fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> {
85aaf69f 2017 PartialOrd::partial_cmp(&**self, &**other)
1a4d82fc
JJ
2018 }
2019}
2020
85aaf69f 2021#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2022impl<T: Eq> Eq for Vec<T> {}
2023
8bb4bdeb 2024/// Implements ordering of vectors, lexicographically.
85aaf69f 2025#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2026impl<T: Ord> Ord for Vec<T> {
2027 #[inline]
2028 fn cmp(&self, other: &Vec<T>) -> Ordering {
85aaf69f 2029 Ord::cmp(&**self, &**other)
1a4d82fc
JJ
2030 }
2031}
2032
85aaf69f 2033#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 2034unsafe impl<#[may_dangle] T> Drop for Vec<T> {
1a4d82fc 2035 fn drop(&mut self) {
9e0c209e
SL
2036 unsafe {
2037 // use drop for [T]
2038 ptr::drop_in_place(&mut self[..]);
1a4d82fc 2039 }
c1a9b12d 2040 // RawVec handles deallocation
1a4d82fc
JJ
2041 }
2042}
2043
85aaf69f 2044#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 2045impl<T> Default for Vec<T> {
9e0c209e 2046 /// Creates an empty `Vec<T>`.
1a4d82fc
JJ
2047 fn default() -> Vec<T> {
2048 Vec::new()
2049 }
2050}
2051
85aaf69f
SL
2052#[stable(feature = "rust1", since = "1.0.0")]
2053impl<T: fmt::Debug> fmt::Debug for Vec<T> {
1a4d82fc 2054 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85aaf69f 2055 fmt::Debug::fmt(&**self, f)
1a4d82fc
JJ
2056 }
2057}
2058
c34b1796
AL
2059#[stable(feature = "rust1", since = "1.0.0")]
2060impl<T> AsRef<Vec<T>> for Vec<T> {
2061 fn as_ref(&self) -> &Vec<T> {
2062 self
2063 }
2064}
2065
b039eaaf
SL
2066#[stable(feature = "vec_as_mut", since = "1.5.0")]
2067impl<T> AsMut<Vec<T>> for Vec<T> {
2068 fn as_mut(&mut self) -> &mut Vec<T> {
2069 self
2070 }
2071}
2072
c34b1796
AL
2073#[stable(feature = "rust1", since = "1.0.0")]
2074impl<T> AsRef<[T]> for Vec<T> {
2075 fn as_ref(&self) -> &[T] {
2076 self
2077 }
2078}
2079
b039eaaf
SL
2080#[stable(feature = "vec_as_mut", since = "1.5.0")]
2081impl<T> AsMut<[T]> for Vec<T> {
2082 fn as_mut(&mut self) -> &mut [T] {
2083 self
2084 }
2085}
2086
c34b1796
AL
2087#[stable(feature = "rust1", since = "1.0.0")]
2088impl<'a, T: Clone> From<&'a [T]> for Vec<T> {
2089 #[cfg(not(test))]
2090 fn from(s: &'a [T]) -> Vec<T> {
2091 s.to_vec()
2092 }
2093 #[cfg(test)]
2094 fn from(s: &'a [T]) -> Vec<T> {
2095 ::slice::to_vec(s)
2096 }
2097}
2098
7cac9316
XL
2099#[stable(feature = "vec_from_mut", since = "1.19.0")]
2100impl<'a, T: Clone> From<&'a mut [T]> for Vec<T> {
2101 #[cfg(not(test))]
2102 fn from(s: &'a mut [T]) -> Vec<T> {
2103 s.to_vec()
2104 }
2105 #[cfg(test)]
2106 fn from(s: &'a mut [T]) -> Vec<T> {
2107 ::slice::to_vec(s)
2108 }
2109}
2110
c30ab7b3
SL
2111#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
2112impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where [T]: ToOwned<Owned=Vec<T>> {
2113 fn from(s: Cow<'a, [T]>) -> Vec<T> {
2114 s.into_owned()
2115 }
2116}
2117
cc61c64b
XL
2118// note: test pulls in libstd, which causes errors here
2119#[cfg(not(test))]
7cac9316 2120#[stable(feature = "vec_from_box", since = "1.18.0")]
cc61c64b
XL
2121impl<T> From<Box<[T]>> for Vec<T> {
2122 fn from(s: Box<[T]>) -> Vec<T> {
2123 s.into_vec()
2124 }
2125}
2126
7cac9316 2127#[stable(feature = "box_from_vec", since = "1.18.0")]
cc61c64b
XL
2128impl<T> Into<Box<[T]>> for Vec<T> {
2129 fn into(self) -> Box<[T]> {
2130 self.into_boxed_slice()
2131 }
2132}
2133
c34b1796
AL
2134#[stable(feature = "rust1", since = "1.0.0")]
2135impl<'a> From<&'a str> for Vec<u8> {
2136 fn from(s: &'a str) -> Vec<u8> {
2137 From::from(s.as_bytes())
2138 }
2139}
2140
1a4d82fc
JJ
2141////////////////////////////////////////////////////////////////////////////////
2142// Clone-on-write
2143////////////////////////////////////////////////////////////////////////////////
2144
7cac9316 2145#[stable(feature = "cow_from_vec", since = "1.8.0")]
7453a54e
SL
2146impl<'a, T: Clone> From<&'a [T]> for Cow<'a, [T]> {
2147 fn from(s: &'a [T]) -> Cow<'a, [T]> {
2148 Cow::Borrowed(s)
2149 }
2150}
2151
7cac9316 2152#[stable(feature = "cow_from_vec", since = "1.8.0")]
7453a54e
SL
2153impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]> {
2154 fn from(v: Vec<T>) -> Cow<'a, [T]> {
2155 Cow::Owned(v)
2156 }
2157}
2158
bd371182 2159#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 2160impl<'a, T> FromIterator<T> for Cow<'a, [T]> where T: Clone {
92a42be0 2161 fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Cow<'a, [T]> {
1a4d82fc
JJ
2162 Cow::Owned(FromIterator::from_iter(it))
2163 }
2164}
2165
1a4d82fc
JJ
2166////////////////////////////////////////////////////////////////////////////////
2167// Iterators
2168////////////////////////////////////////////////////////////////////////////////
2169
2170/// An iterator that moves out of a vector.
5bcae85e
SL
2171///
2172/// This `struct` is created by the `into_iter` method on [`Vec`][`Vec`] (provided
2173/// by the [`IntoIterator`] trait).
2174///
2175/// [`Vec`]: struct.Vec.html
2176/// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html
85aaf69f 2177#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 2178pub struct IntoIter<T> {
5bcae85e
SL
2179 buf: Shared<T>,
2180 cap: usize,
1a4d82fc 2181 ptr: *const T,
92a42be0 2182 end: *const T,
1a4d82fc
JJ
2183}
2184
c30ab7b3 2185#[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
9e0c209e
SL
2186impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
2187 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2188 f.debug_tuple("IntoIter")
2189 .field(&self.as_slice())
2190 .finish()
2191 }
2192}
2193
5bcae85e
SL
2194impl<T> IntoIter<T> {
2195 /// Returns the remaining items of this iterator as a slice.
2196 ///
2197 /// # Examples
2198 ///
c30ab7b3 2199 /// ```
5bcae85e
SL
2200 /// let vec = vec!['a', 'b', 'c'];
2201 /// let mut into_iter = vec.into_iter();
2202 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
2203 /// let _ = into_iter.next().unwrap();
2204 /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
2205 /// ```
476ff2be 2206 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
5bcae85e
SL
2207 pub fn as_slice(&self) -> &[T] {
2208 unsafe {
2209 slice::from_raw_parts(self.ptr, self.len())
2210 }
2211 }
2212
2213 /// Returns the remaining items of this iterator as a mutable slice.
2214 ///
2215 /// # Examples
2216 ///
c30ab7b3 2217 /// ```
5bcae85e
SL
2218 /// let vec = vec!['a', 'b', 'c'];
2219 /// let mut into_iter = vec.into_iter();
2220 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
2221 /// into_iter.as_mut_slice()[2] = 'z';
2222 /// assert_eq!(into_iter.next().unwrap(), 'a');
2223 /// assert_eq!(into_iter.next().unwrap(), 'b');
2224 /// assert_eq!(into_iter.next().unwrap(), 'z');
2225 /// ```
476ff2be 2226 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
e81b0574 2227 pub fn as_mut_slice(&mut self) -> &mut [T] {
5bcae85e
SL
2228 unsafe {
2229 slice::from_raw_parts_mut(self.ptr as *mut T, self.len())
2230 }
2231 }
2232}
2233
92a42be0
SL
2234#[stable(feature = "rust1", since = "1.0.0")]
2235unsafe impl<T: Send> Send for IntoIter<T> {}
2236#[stable(feature = "rust1", since = "1.0.0")]
2237unsafe impl<T: Sync> Sync for IntoIter<T> {}
85aaf69f 2238
85aaf69f 2239#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2240impl<T> Iterator for IntoIter<T> {
2241 type Item = T;
2242
2243 #[inline]
85aaf69f 2244 fn next(&mut self) -> Option<T> {
1a4d82fc 2245 unsafe {
5bcae85e 2246 if self.ptr as *const _ == self.end {
1a4d82fc
JJ
2247 None
2248 } else {
2249 if mem::size_of::<T>() == 0 {
2250 // purposefully don't use 'ptr.offset' because for
2251 // vectors with 0-size elements this would return the
2252 // same pointer.
5bcae85e 2253 self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T;
1a4d82fc
JJ
2254
2255 // Use a non-null pointer value
7cac9316
XL
2256 // (self.ptr might be null because of wrapping)
2257 Some(ptr::read(1 as *mut T))
1a4d82fc
JJ
2258 } else {
2259 let old = self.ptr;
2260 self.ptr = self.ptr.offset(1);
2261
2262 Some(ptr::read(old))
2263 }
2264 }
2265 }
2266 }
2267
2268 #[inline]
85aaf69f 2269 fn size_hint(&self) -> (usize, Option<usize>) {
cc61c64b
XL
2270 let exact = match self.ptr.offset_to(self.end) {
2271 Some(x) => x as usize,
2272 None => (self.end as usize).wrapping_sub(self.ptr as usize),
2273 };
1a4d82fc
JJ
2274 (exact, Some(exact))
2275 }
d9579d0f
AL
2276
2277 #[inline]
2278 fn count(self) -> usize {
3157f602 2279 self.len()
d9579d0f 2280 }
1a4d82fc
JJ
2281}
2282
85aaf69f 2283#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2284impl<T> DoubleEndedIterator for IntoIter<T> {
2285 #[inline]
85aaf69f 2286 fn next_back(&mut self) -> Option<T> {
1a4d82fc
JJ
2287 unsafe {
2288 if self.end == self.ptr {
2289 None
2290 } else {
2291 if mem::size_of::<T>() == 0 {
2292 // See above for why 'ptr.offset' isn't used
5bcae85e 2293 self.end = arith_offset(self.end as *const i8, -1) as *mut T;
1a4d82fc
JJ
2294
2295 // Use a non-null pointer value
7cac9316
XL
2296 // (self.end might be null because of wrapping)
2297 Some(ptr::read(1 as *mut T))
1a4d82fc
JJ
2298 } else {
2299 self.end = self.end.offset(-1);
2300
e9174d1e 2301 Some(ptr::read(self.end))
1a4d82fc
JJ
2302 }
2303 }
2304 }
2305 }
2306}
2307
85aaf69f 2308#[stable(feature = "rust1", since = "1.0.0")]
476ff2be
SL
2309impl<T> ExactSizeIterator for IntoIter<T> {
2310 fn is_empty(&self) -> bool {
2311 self.ptr == self.end
2312 }
2313}
1a4d82fc 2314
9e0c209e
SL
2315#[unstable(feature = "fused", issue = "35602")]
2316impl<T> FusedIterator for IntoIter<T> {}
2317
c30ab7b3
SL
2318#[unstable(feature = "trusted_len", issue = "37572")]
2319unsafe impl<T> TrustedLen for IntoIter<T> {}
2320
7453a54e
SL
2321#[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
2322impl<T: Clone> Clone for IntoIter<T> {
2323 fn clone(&self) -> IntoIter<T> {
5bcae85e 2324 self.as_slice().to_owned().into_iter()
7453a54e
SL
2325 }
2326}
2327
85aaf69f 2328#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 2329unsafe impl<#[may_dangle] T> Drop for IntoIter<T> {
1a4d82fc
JJ
2330 fn drop(&mut self) {
2331 // destroy the remaining elements
5bcae85e 2332 for _x in self.by_ref() {}
c1a9b12d
SL
2333
2334 // RawVec handles deallocation
7cac9316 2335 let _ = unsafe { RawVec::from_raw_parts(self.buf.as_ptr(), self.cap) };
1a4d82fc
JJ
2336 }
2337}
2338
d9579d0f 2339/// A draining iterator for `Vec<T>`.
5bcae85e
SL
2340///
2341/// This `struct` is created by the [`drain`] method on [`Vec`].
2342///
2343/// [`drain`]: struct.Vec.html#method.drain
2344/// [`Vec`]: struct.Vec.html
92a42be0 2345#[stable(feature = "drain", since = "1.6.0")]
d9579d0f
AL
2346pub struct Drain<'a, T: 'a> {
2347 /// Index of tail to preserve
2348 tail_start: usize,
2349 /// Length of tail
2350 tail_len: usize,
2351 /// Current remaining range to remove
5bcae85e
SL
2352 iter: slice::Iter<'a, T>,
2353 vec: Shared<Vec<T>>,
1a4d82fc
JJ
2354}
2355
8bb4bdeb
XL
2356#[stable(feature = "collection_debug", since = "1.17.0")]
2357impl<'a, T: 'a + fmt::Debug> fmt::Debug for Drain<'a, T> {
2358 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2359 f.debug_tuple("Drain")
2360 .field(&self.iter.as_slice())
2361 .finish()
2362 }
2363}
2364
92a42be0 2365#[stable(feature = "drain", since = "1.6.0")]
c34b1796 2366unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {}
92a42be0 2367#[stable(feature = "drain", since = "1.6.0")]
c34b1796
AL
2368unsafe impl<'a, T: Send> Send for Drain<'a, T> {}
2369
c30ab7b3 2370#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
2371impl<'a, T> Iterator for Drain<'a, T> {
2372 type Item = T;
2373
2374 #[inline]
2375 fn next(&mut self) -> Option<T> {
92a42be0 2376 self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) })
1a4d82fc
JJ
2377 }
2378
85aaf69f 2379 fn size_hint(&self) -> (usize, Option<usize>) {
d9579d0f 2380 self.iter.size_hint()
1a4d82fc
JJ
2381 }
2382}
2383
c30ab7b3 2384#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
2385impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
2386 #[inline]
2387 fn next_back(&mut self) -> Option<T> {
92a42be0 2388 self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) })
1a4d82fc
JJ
2389 }
2390}
2391
c30ab7b3 2392#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
2393impl<'a, T> Drop for Drain<'a, T> {
2394 fn drop(&mut self) {
d9579d0f 2395 // exhaust self first
92a42be0 2396 while let Some(_) = self.next() {}
1a4d82fc 2397
d9579d0f
AL
2398 if self.tail_len > 0 {
2399 unsafe {
7cac9316 2400 let source_vec = self.vec.as_mut();
d9579d0f
AL
2401 // memmove back untouched tail, update to new length
2402 let start = source_vec.len();
2403 let tail = self.tail_start;
2404 let src = source_vec.as_ptr().offset(tail as isize);
2405 let dst = source_vec.as_mut_ptr().offset(start as isize);
2406 ptr::copy(src, dst, self.tail_len);
2407 source_vec.set_len(start + self.tail_len);
2408 }
2409 }
1a4d82fc
JJ
2410 }
2411}
2412
d9579d0f 2413
c30ab7b3 2414#[stable(feature = "drain", since = "1.6.0")]
476ff2be
SL
2415impl<'a, T> ExactSizeIterator for Drain<'a, T> {
2416 fn is_empty(&self) -> bool {
2417 self.iter.is_empty()
2418 }
2419}
9e0c209e
SL
2420
2421#[unstable(feature = "fused", issue = "35602")]
2422impl<'a, T> FusedIterator for Drain<'a, T> {}
32a655c1
SL
2423
2424/// A place for insertion at the back of a `Vec`.
2425///
2426/// See [`Vec::place_back`](struct.Vec.html#method.place_back) for details.
2427#[must_use = "places do nothing unless written to with `<-` syntax"]
2428#[unstable(feature = "collection_placement",
2429 reason = "struct name and placement protocol are subject to change",
2430 issue = "30172")]
8bb4bdeb 2431#[derive(Debug)]
32a655c1
SL
2432pub struct PlaceBack<'a, T: 'a> {
2433 vec: &'a mut Vec<T>,
2434}
2435
2436#[unstable(feature = "collection_placement",
2437 reason = "placement protocol is subject to change",
2438 issue = "30172")]
2439impl<'a, T> Placer<T> for PlaceBack<'a, T> {
2440 type Place = PlaceBack<'a, T>;
2441
2442 fn make_place(self) -> Self {
2443 // This will panic or abort if we would allocate > isize::MAX bytes
2444 // or if the length increment would overflow for zero-sized types.
2445 if self.vec.len == self.vec.buf.cap() {
2446 self.vec.buf.double();
2447 }
2448 self
2449 }
2450}
2451
2452#[unstable(feature = "collection_placement",
2453 reason = "placement protocol is subject to change",
2454 issue = "30172")]
2455impl<'a, T> Place<T> for PlaceBack<'a, T> {
2456 fn pointer(&mut self) -> *mut T {
2457 unsafe { self.vec.as_mut_ptr().offset(self.vec.len as isize) }
2458 }
2459}
2460
2461#[unstable(feature = "collection_placement",
2462 reason = "placement protocol is subject to change",
2463 issue = "30172")]
2464impl<'a, T> InPlace<T> for PlaceBack<'a, T> {
2465 type Owner = &'a mut T;
2466
2467 unsafe fn finalize(mut self) -> &'a mut T {
2468 let ptr = self.pointer();
2469 self.vec.len += 1;
2470 &mut *ptr
2471 }
2472}
7cac9316
XL
2473
2474
2475/// A splicing iterator for `Vec`.
2476///
2477/// This struct is created by the [`splice()`] method on [`Vec`]. See its
2478/// documentation for more.
2479///
2480/// [`splice()`]: struct.Vec.html#method.splice
2481/// [`Vec`]: struct.Vec.html
2482#[derive(Debug)]
2483#[unstable(feature = "splice", reason = "recently added", issue = "32310")]
2484pub struct Splice<'a, I: Iterator + 'a> {
2485 drain: Drain<'a, I::Item>,
2486 replace_with: I,
2487}
2488
2489#[unstable(feature = "splice", reason = "recently added", issue = "32310")]
2490impl<'a, I: Iterator> Iterator for Splice<'a, I> {
2491 type Item = I::Item;
2492
2493 fn next(&mut self) -> Option<Self::Item> {
2494 self.drain.next()
2495 }
2496
2497 fn size_hint(&self) -> (usize, Option<usize>) {
2498 self.drain.size_hint()
2499 }
2500}
2501
2502#[unstable(feature = "splice", reason = "recently added", issue = "32310")]
2503impl<'a, I: Iterator> DoubleEndedIterator for Splice<'a, I> {
2504 fn next_back(&mut self) -> Option<Self::Item> {
2505 self.drain.next_back()
2506 }
2507}
2508
2509#[unstable(feature = "splice", reason = "recently added", issue = "32310")]
2510impl<'a, I: Iterator> ExactSizeIterator for Splice<'a, I> {}
2511
2512
2513#[unstable(feature = "splice", reason = "recently added", issue = "32310")]
2514impl<'a, I: Iterator> Drop for Splice<'a, I> {
2515 fn drop(&mut self) {
2516 // exhaust drain first
2517 while let Some(_) = self.drain.next() {}
2518
2519
2520 unsafe {
2521 if self.drain.tail_len == 0 {
2522 self.drain.vec.as_mut().extend(self.replace_with.by_ref());
2523 return
2524 }
2525
2526 // First fill the range left by drain().
2527 if !self.drain.fill(&mut self.replace_with) {
2528 return
2529 }
2530
2531 // There may be more elements. Use the lower bound as an estimate.
2532 // FIXME: Is the upper bound a better guess? Or something else?
2533 let (lower_bound, _upper_bound) = self.replace_with.size_hint();
2534 if lower_bound > 0 {
2535 self.drain.move_tail(lower_bound);
2536 if !self.drain.fill(&mut self.replace_with) {
2537 return
2538 }
2539 }
2540
2541 // Collect any remaining elements.
2542 // This is a zero-length vector which does not allocate if `lower_bound` was exact.
2543 let mut collected = self.replace_with.by_ref().collect::<Vec<I::Item>>().into_iter();
2544 // Now we have an exact count.
2545 if collected.len() > 0 {
2546 self.drain.move_tail(collected.len());
2547 let filled = self.drain.fill(&mut collected);
2548 debug_assert!(filled);
2549 debug_assert_eq!(collected.len(), 0);
2550 }
2551 }
2552 // Let `Drain::drop` move the tail back if necessary and restore `vec.len`.
2553 }
2554}
2555
2556/// Private helper methods for `Splice::drop`
2557impl<'a, T> Drain<'a, T> {
2558 /// The range from `self.vec.len` to `self.tail_start` contains elements
2559 /// that have been moved out.
2560 /// Fill that range as much as possible with new elements from the `replace_with` iterator.
2561 /// Return whether we filled the entire range. (`replace_with.next()` didn’t return `None`.)
2562 unsafe fn fill<I: Iterator<Item=T>>(&mut self, replace_with: &mut I) -> bool {
2563 let vec = self.vec.as_mut();
2564 let range_start = vec.len;
2565 let range_end = self.tail_start;
2566 let range_slice = slice::from_raw_parts_mut(
2567 vec.as_mut_ptr().offset(range_start as isize),
2568 range_end - range_start);
2569
2570 for place in range_slice {
2571 if let Some(new_item) = replace_with.next() {
2572 ptr::write(place, new_item);
2573 vec.len += 1;
2574 } else {
2575 return false
2576 }
2577 }
2578 true
2579 }
2580
2581 /// Make room for inserting more elements before the tail.
2582 unsafe fn move_tail(&mut self, extra_capacity: usize) {
2583 let vec = self.vec.as_mut();
2584 let used_capacity = self.tail_start + self.tail_len;
2585 vec.buf.reserve(used_capacity, extra_capacity);
2586
2587 let new_tail_start = self.tail_start + extra_capacity;
2588 let src = vec.as_ptr().offset(self.tail_start as isize);
2589 let dst = vec.as_mut_ptr().offset(new_tail_start as isize);
2590 ptr::copy(src, dst, self.tail_len);
2591 self.tail_start = new_tail_start;
2592 }
2593}