]> git.proxmox.com Git - rustc.git/blame - src/libcollections/vec.rs
New upstream version 1.14.0+dfsg1
[rustc.git] / src / libcollections / vec.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
7453a54e
SL
11//! A contiguous growable array type with heap-allocated contents, written
12//! `Vec<T>` but pronounced 'vector.'
1a4d82fc 13//!
62682a34
SL
14//! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
15//! `O(1)` pop (from the end).
1a4d82fc
JJ
16//!
17//! # Examples
18//!
c30ab7b3 19//! You can explicitly create a [`Vec<T>`] with [`new()`]:
1a4d82fc
JJ
20//!
21//! ```
d9579d0f 22//! let v: Vec<i32> = Vec::new();
1a4d82fc
JJ
23//! ```
24//!
c30ab7b3 25//! ...or by using the [`vec!`] macro:
1a4d82fc
JJ
26//!
27//! ```
d9579d0f 28//! let v: Vec<i32> = vec![];
1a4d82fc 29//!
d9579d0f
AL
30//! let v = vec![1, 2, 3, 4, 5];
31//!
32//! let v = vec![0; 10]; // ten zeroes
1a4d82fc
JJ
33//! ```
34//!
c30ab7b3 35//! You can [`push`] values onto the end of a vector (which will grow the vector
e9174d1e 36//! as needed):
1a4d82fc
JJ
37//!
38//! ```
d9579d0f 39//! let mut v = vec![1, 2];
1a4d82fc 40//!
d9579d0f 41//! v.push(3);
1a4d82fc
JJ
42//! ```
43//!
d9579d0f
AL
44//! Popping values works in much the same way:
45//!
46//! ```
47//! let mut v = vec![1, 2];
1a4d82fc 48//!
d9579d0f 49//! let two = v.pop();
1a4d82fc 50//! ```
1a4d82fc 51//!
c30ab7b3 52//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
d9579d0f
AL
53//!
54//! ```
55//! let mut v = vec![1, 2, 3];
56//! let three = v[2];
57//! v[1] = v[1] + 5;
1a4d82fc 58//! ```
c30ab7b3
SL
59//!
60//! [`Vec<T>`]: ../../std/vec/struct.Vec.html
61//! [`new()`]: ../../std/vec/struct.Vec.html#method.new
62//! [`push`]: ../../std/vec/struct.Vec.html#method.push
63//! [`Index`]: ../../std/ops/trait.Index.html
64//! [`IndexMut`]: ../../std/ops/trait.IndexMut.html
65//! [`vec!`]: ../../std/macro.vec.html
1a4d82fc 66
85aaf69f 67#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 68
1a4d82fc 69use alloc::boxed::Box;
c1a9b12d 70use alloc::heap::EMPTY;
7453a54e
SL
71use alloc::raw_vec::RawVec;
72use borrow::ToOwned;
54a0048b 73use borrow::Cow;
c34b1796 74use core::cmp::Ordering;
1a4d82fc
JJ
75use core::fmt;
76use core::hash::{self, Hash};
54a0048b 77use core::intrinsics::{arith_offset, assume};
c30ab7b3 78use core::iter::{FromIterator, FusedIterator, TrustedLen};
1a4d82fc 79use core::mem;
9cc50fc6 80use core::ops::{Index, IndexMut};
1a4d82fc
JJ
81use core::ops;
82use core::ptr;
5bcae85e 83use core::ptr::Shared;
85aaf69f 84use core::slice;
85aaf69f 85
d9579d0f
AL
86use super::range::RangeArgument;
87
c30ab7b3 88/// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'.
1a4d82fc
JJ
89///
90/// # Examples
91///
92/// ```
93/// let mut vec = Vec::new();
85aaf69f
SL
94/// vec.push(1);
95/// vec.push(2);
1a4d82fc
JJ
96///
97/// assert_eq!(vec.len(), 2);
98/// assert_eq!(vec[0], 1);
99///
100/// assert_eq!(vec.pop(), Some(2));
101/// assert_eq!(vec.len(), 1);
102///
85aaf69f 103/// vec[0] = 7;
1a4d82fc
JJ
104/// assert_eq!(vec[0], 7);
105///
62682a34 106/// vec.extend([1, 2, 3].iter().cloned());
1a4d82fc 107///
62682a34 108/// for x in &vec {
1a4d82fc
JJ
109/// println!("{}", x);
110/// }
c34b1796 111/// assert_eq!(vec, [7, 1, 2, 3]);
1a4d82fc
JJ
112/// ```
113///
c30ab7b3 114/// The [`vec!`] macro is provided to make initialization more convenient:
1a4d82fc
JJ
115///
116/// ```
85aaf69f 117/// let mut vec = vec![1, 2, 3];
1a4d82fc 118/// vec.push(4);
c34b1796 119/// assert_eq!(vec, [1, 2, 3, 4]);
1a4d82fc
JJ
120/// ```
121///
c1a9b12d
SL
122/// It can also initialize each element of a `Vec<T>` with a given value:
123///
124/// ```
125/// let vec = vec![0; 5];
126/// assert_eq!(vec, [0, 0, 0, 0, 0]);
127/// ```
128///
1a4d82fc
JJ
129/// Use a `Vec<T>` as an efficient stack:
130///
131/// ```
132/// let mut stack = Vec::new();
133///
85aaf69f
SL
134/// stack.push(1);
135/// stack.push(2);
136/// stack.push(3);
1a4d82fc 137///
bd371182 138/// while let Some(top) = stack.pop() {
1a4d82fc
JJ
139/// // Prints 3, 2, 1
140/// println!("{}", top);
141/// }
142/// ```
143///
7453a54e
SL
144/// # Indexing
145///
c30ab7b3
SL
146/// The `Vec` type allows to access values by index, because it implements the
147/// [`Index`] trait. An example will be more explicit:
7453a54e
SL
148///
149/// ```
c30ab7b3 150/// let v = vec![0, 2, 4, 6];
7453a54e
SL
151/// println!("{}", v[1]); // it will display '2'
152/// ```
153///
c30ab7b3 154/// However be careful: if you try to access an index which isn't in the `Vec`,
7453a54e
SL
155/// your software will panic! You cannot do this:
156///
157/// ```ignore
c30ab7b3 158/// let v = vec![0, 2, 4, 6];
7453a54e
SL
159/// println!("{}", v[6]); // it will panic!
160/// ```
161///
162/// In conclusion: always check if the index you want to get really exists
163/// before doing it.
164///
165/// # Slicing
166///
c30ab7b3
SL
167/// A `Vec` can be mutable. Slices, on the other hand, are read-only objects.
168/// To get a slice, use `&`. Example:
7453a54e
SL
169///
170/// ```
171/// fn read_slice(slice: &[usize]) {
172/// // ...
173/// }
174///
c30ab7b3 175/// let v = vec![0, 1];
7453a54e
SL
176/// read_slice(&v);
177///
178/// // ... and that's all!
179/// // you can also do it like this:
180/// let x : &[usize] = &v;
181/// ```
182///
183/// In Rust, it's more common to pass slices as arguments rather than vectors
c30ab7b3
SL
184/// when you just want to provide a read access. The same goes for [`String`] and
185/// [`&str`].
7453a54e 186///
1a4d82fc
JJ
187/// # Capacity and reallocation
188///
c34b1796
AL
189/// The capacity of a vector is the amount of space allocated for any future
190/// elements that will be added onto the vector. This is not to be confused with
191/// the *length* of a vector, which specifies the number of actual elements
192/// within the vector. If a vector's length exceeds its capacity, its capacity
193/// will automatically be increased, but its elements will have to be
1a4d82fc
JJ
194/// reallocated.
195///
c34b1796
AL
196/// For example, a vector with capacity 10 and length 0 would be an empty vector
197/// with space for 10 more elements. Pushing 10 or fewer elements onto the
198/// vector will not change its capacity or cause reallocation to occur. However,
199/// if the vector's length is increased to 11, it will have to reallocate, which
c30ab7b3 200/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
c34b1796 201/// whenever possible to specify how big the vector is expected to get.
b039eaaf
SL
202///
203/// # Guarantees
204///
c30ab7b3 205/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
b039eaaf
SL
206/// about its design. This ensures that it's as low-overhead as possible in
207/// the general case, and can be correctly manipulated in primitive ways
208/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
209/// If additional type parameters are added (e.g. to support custom allocators),
210/// overriding their defaults may change the behavior.
211///
c30ab7b3 212/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
b039eaaf
SL
213/// triplet. No more, no less. The order of these fields is completely
214/// unspecified, and you should use the appropriate methods to modify these.
215/// The pointer will never be null, so this type is null-pointer-optimized.
216///
217/// However, the pointer may not actually point to allocated memory. In particular,
c30ab7b3
SL
218/// if you construct a `Vec` with capacity 0 via [`Vec::new()`], [`vec![]`][`vec!`],
219/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit()`]
220/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
221/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
222/// the `Vec` may not report a [`capacity()`] of 0*. `Vec` will allocate if and only
223/// if [`mem::size_of::<T>()`]` * capacity() > 0`. In general, `Vec`'s allocation
b039eaaf 224/// details are subtle enough that it is strongly recommended that you only
c30ab7b3 225/// free memory allocated by a `Vec` by creating a new `Vec` and dropping it.
b039eaaf 226///
c30ab7b3 227/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
b039eaaf 228/// (as defined by the allocator Rust is configured to use by default), and its
c30ab7b3
SL
229/// pointer points to [`len()`] initialized elements in order (what you would see
230/// if you coerced it to a slice), followed by [`capacity()`]` - `[`len()`]
231/// logically uninitialized elements.
b039eaaf 232///
c30ab7b3 233/// `Vec` will never perform a "small optimization" where elements are actually
b039eaaf
SL
234/// stored on the stack for two reasons:
235///
236/// * It would make it more difficult for unsafe code to correctly manipulate
c30ab7b3
SL
237/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
238/// only moved, and it would be more difficult to determine if a `Vec` had
b039eaaf
SL
239/// actually allocated memory.
240///
241/// * It would penalize the general case, incurring an additional branch
242/// on every access.
243///
c30ab7b3
SL
244/// `Vec` will never automatically shrink itself, even if completely empty. This
245/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
246/// and then filling it back up to the same [`len()`] should incur no calls to
247/// the allocator. If you wish to free up unused memory, use
248/// [`shrink_to_fit`][`shrink_to_fit()`].
b039eaaf 249///
c30ab7b3
SL
250/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
251/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
252/// [`len()`]` == `[`capacity()`]. That is, the reported capacity is completely
253/// accurate, and can be relied on. It can even be used to manually free the memory
254/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
255/// when not necessary.
b039eaaf 256///
c30ab7b3
SL
257/// `Vec` does not guarantee any particular growth strategy when reallocating
258/// when full, nor when [`reserve`] is called. The current strategy is basic
b039eaaf 259/// and it may prove desirable to use a non-constant growth factor. Whatever
c30ab7b3 260/// strategy is used will of course guarantee `O(1)` amortized [`push`].
b039eaaf 261///
c30ab7b3
SL
262/// `vec![x; n]`, `vec![a, b, c, d]`, and
263/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
264/// with exactly the requested capacity. If [`len()`]` == `[`capacity()`],
265/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
266/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
b039eaaf 267///
c30ab7b3 268/// `Vec` will not specifically overwrite any data that is removed from it,
b039eaaf
SL
269/// but also won't specifically preserve it. Its uninitialized memory is
270/// scratch space that it may use however it wants. It will generally just do
271/// whatever is most efficient or otherwise easy to implement. Do not rely on
c30ab7b3
SL
272/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
273/// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory
b039eaaf
SL
274/// first, that may not actually happen because the optimizer does not consider
275/// this a side-effect that must be preserved.
276///
c30ab7b3 277/// `Vec` does not currently guarantee the order in which elements are dropped
b039eaaf
SL
278/// (the order has changed in the past, and may change again).
279///
c30ab7b3
SL
280/// [`vec!`]: ../../std/macro.vec.html
281/// [`Index`]: ../../std/ops/trait.Index.html
282/// [`String`]: ../../std/string/struct.String.html
283/// [`&str`]: ../../std/primitive.str.html
284/// [`Vec::with_capacity`]: ../../std/vec/struct.Vec.html#method.with_capacity
285/// [`Vec::new()`]: ../../std/vec/struct.Vec.html#method.new
286/// [`shrink_to_fit()`]: ../../std/vec/struct.Vec.html#method.shrink_to_fit
287/// [`capacity()`]: ../../std/vec/struct.Vec.html#method.capacity
288/// [`mem::size_of::<T>()`]: ../../std/mem/fn.size_of.html
289/// [`len()`]: ../../std/vec/struct.Vec.html#method.len
290/// [`push`]: ../../std/vec/struct.Vec.html#method.push
291/// [`insert`]: ../../std/vec/struct.Vec.html#method.insert
292/// [`reserve`]: ../../std/vec/struct.Vec.html#method.reserve
293/// [owned slice]: ../../std/boxed/struct.Box.html
85aaf69f 294#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 295pub struct Vec<T> {
c1a9b12d 296 buf: RawVec<T>,
85aaf69f 297 len: usize,
1a4d82fc
JJ
298}
299
1a4d82fc
JJ
300////////////////////////////////////////////////////////////////////////////////
301// Inherent methods
302////////////////////////////////////////////////////////////////////////////////
303
304impl<T> Vec<T> {
305 /// Constructs a new, empty `Vec<T>`.
306 ///
307 /// The vector will not allocate until elements are pushed onto it.
308 ///
309 /// # Examples
310 ///
311 /// ```
92a42be0 312 /// # #![allow(unused_mut)]
85aaf69f 313 /// let mut vec: Vec<i32> = Vec::new();
1a4d82fc
JJ
314 /// ```
315 #[inline]
85aaf69f 316 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 317 pub fn new() -> Vec<T> {
92a42be0
SL
318 Vec {
319 buf: RawVec::new(),
320 len: 0,
321 }
1a4d82fc
JJ
322 }
323
324 /// Constructs a new, empty `Vec<T>` with the specified capacity.
325 ///
e9174d1e
SL
326 /// The vector will be able to hold exactly `capacity` elements without
327 /// reallocating. If `capacity` is 0, the vector will not allocate.
1a4d82fc 328 ///
e9174d1e 329 /// It is important to note that this function does not specify the *length*
c30ab7b3
SL
330 /// of the returned vector, but only the *capacity*. For an explanation of
331 /// the difference between length and capacity, see *[Capacity and reallocation]*.
332 ///
333 /// [Capacity and reallocation]: #capacity-and-reallocation
1a4d82fc
JJ
334 ///
335 /// # Examples
336 ///
337 /// ```
9346a6ac 338 /// let mut vec = Vec::with_capacity(10);
1a4d82fc
JJ
339 ///
340 /// // The vector contains no items, even though it has capacity for more
341 /// assert_eq!(vec.len(), 0);
342 ///
343 /// // These are all done without reallocating...
85aaf69f 344 /// for i in 0..10 {
1a4d82fc
JJ
345 /// vec.push(i);
346 /// }
347 ///
348 /// // ...but this may make the vector reallocate
349 /// vec.push(11);
350 /// ```
351 #[inline]
85aaf69f
SL
352 #[stable(feature = "rust1", since = "1.0.0")]
353 pub fn with_capacity(capacity: usize) -> Vec<T> {
92a42be0
SL
354 Vec {
355 buf: RawVec::with_capacity(capacity),
356 len: 0,
357 }
1a4d82fc
JJ
358 }
359
360 /// Creates a `Vec<T>` directly from the raw components of another vector.
361 ///
b039eaaf 362 /// # Safety
c1a9b12d
SL
363 ///
364 /// This is highly unsafe, due to the number of invariants that aren't
365 /// checked:
366 ///
c30ab7b3 367 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
c1a9b12d 368 /// (at least, it's highly likely to be incorrect if it wasn't).
5bcae85e 369 /// * `length` needs to be less than or equal to `capacity`.
c1a9b12d
SL
370 /// * `capacity` needs to be the capacity that the pointer was allocated with.
371 ///
372 /// Violating these may cause problems like corrupting the allocator's
373 /// internal datastructures.
1a4d82fc 374 ///
5bcae85e
SL
375 /// The ownership of `ptr` is effectively transferred to the
376 /// `Vec<T>` which may then deallocate, reallocate or change the
377 /// contents of memory pointed to by the pointer at will. Ensure
378 /// that nothing else uses the pointer after calling this
379 /// function.
380 ///
c30ab7b3
SL
381 /// [`String`]: ../../std/string/struct.String.html
382 ///
1a4d82fc
JJ
383 /// # Examples
384 ///
385 /// ```
386 /// use std::ptr;
387 /// use std::mem;
388 ///
389 /// fn main() {
85aaf69f 390 /// let mut v = vec![1, 2, 3];
1a4d82fc
JJ
391 ///
392 /// // Pull out the various important pieces of information about `v`
393 /// let p = v.as_mut_ptr();
394 /// let len = v.len();
395 /// let cap = v.capacity();
396 ///
397 /// unsafe {
398 /// // Cast `v` into the void: no destructor run, so we are in
399 /// // complete control of the allocation to which `p` points.
400 /// mem::forget(v);
401 ///
402 /// // Overwrite memory with 4, 5, 6
85aaf69f 403 /// for i in 0..len as isize {
1a4d82fc
JJ
404 /// ptr::write(p.offset(i), 4 + i);
405 /// }
406 ///
407 /// // Put everything back together into a Vec
408 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
c34b1796 409 /// assert_eq!(rebuilt, [4, 5, 6]);
1a4d82fc
JJ
410 /// }
411 /// }
412 /// ```
85aaf69f 413 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0 414 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T> {
85aaf69f 415 Vec {
c1a9b12d 416 buf: RawVec::from_raw_parts(ptr, capacity),
85aaf69f 417 len: length,
85aaf69f 418 }
1a4d82fc
JJ
419 }
420
1a4d82fc
JJ
421 /// Returns the number of elements the vector can hold without
422 /// reallocating.
423 ///
424 /// # Examples
425 ///
426 /// ```
85aaf69f 427 /// let vec: Vec<i32> = Vec::with_capacity(10);
1a4d82fc
JJ
428 /// assert_eq!(vec.capacity(), 10);
429 /// ```
430 #[inline]
85aaf69f
SL
431 #[stable(feature = "rust1", since = "1.0.0")]
432 pub fn capacity(&self) -> usize {
c1a9b12d 433 self.buf.cap()
1a4d82fc
JJ
434 }
435
c34b1796
AL
436 /// Reserves capacity for at least `additional` more elements to be inserted
437 /// in the given `Vec<T>`. The collection may reserve more space to avoid
438 /// frequent reallocations.
1a4d82fc
JJ
439 ///
440 /// # Panics
441 ///
85aaf69f 442 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
443 ///
444 /// # Examples
445 ///
446 /// ```
85aaf69f 447 /// let mut vec = vec![1];
1a4d82fc
JJ
448 /// vec.reserve(10);
449 /// assert!(vec.capacity() >= 11);
450 /// ```
85aaf69f
SL
451 #[stable(feature = "rust1", since = "1.0.0")]
452 pub fn reserve(&mut self, additional: usize) {
c1a9b12d 453 self.buf.reserve(self.len, additional);
1a4d82fc
JJ
454 }
455
456 /// Reserves the minimum capacity for exactly `additional` more elements to
457 /// be inserted in the given `Vec<T>`. Does nothing if the capacity is already
458 /// sufficient.
459 ///
460 /// Note that the allocator may give the collection more space than it
461 /// requests. Therefore capacity can not be relied upon to be precisely
462 /// minimal. Prefer `reserve` if future insertions are expected.
463 ///
464 /// # Panics
465 ///
85aaf69f 466 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
467 ///
468 /// # Examples
469 ///
470 /// ```
85aaf69f 471 /// let mut vec = vec![1];
1a4d82fc
JJ
472 /// vec.reserve_exact(10);
473 /// assert!(vec.capacity() >= 11);
474 /// ```
85aaf69f
SL
475 #[stable(feature = "rust1", since = "1.0.0")]
476 pub fn reserve_exact(&mut self, additional: usize) {
c1a9b12d 477 self.buf.reserve_exact(self.len, additional);
1a4d82fc
JJ
478 }
479
480 /// Shrinks the capacity of the vector as much as possible.
481 ///
482 /// It will drop down as close as possible to the length but the allocator
483 /// may still inform the vector that there is space for a few more elements.
484 ///
485 /// # Examples
486 ///
487 /// ```
85aaf69f 488 /// let mut vec = Vec::with_capacity(10);
62682a34 489 /// vec.extend([1, 2, 3].iter().cloned());
1a4d82fc
JJ
490 /// assert_eq!(vec.capacity(), 10);
491 /// vec.shrink_to_fit();
492 /// assert!(vec.capacity() >= 3);
493 /// ```
85aaf69f 494 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 495 pub fn shrink_to_fit(&mut self) {
c1a9b12d 496 self.buf.shrink_to_fit(self.len);
1a4d82fc
JJ
497 }
498
c30ab7b3 499 /// Converts the vector into [`Box<[T]>`][owned slice].
1a4d82fc
JJ
500 ///
501 /// Note that this will drop any excess capacity. Calling this and
c30ab7b3
SL
502 /// converting back to a vector with [`into_vec()`] is equivalent to calling
503 /// [`shrink_to_fit()`].
504 ///
505 /// [owned slice]: ../../std/boxed/struct.Box.html
506 /// [`into_vec()`]: ../../std/primitive.slice.html#method.into_vec
507 /// [`shrink_to_fit()`]: #method.shrink_to_fit
5bcae85e
SL
508 ///
509 /// # Examples
510 ///
511 /// ```
512 /// let v = vec![1, 2, 3];
513 ///
514 /// let slice = v.into_boxed_slice();
515 /// ```
516 ///
517 /// Any excess capacity is removed:
518 ///
519 /// ```
520 /// let mut vec = Vec::with_capacity(10);
521 /// vec.extend([1, 2, 3].iter().cloned());
522 ///
523 /// assert_eq!(vec.capacity(), 10);
524 /// let slice = vec.into_boxed_slice();
525 /// assert_eq!(slice.into_vec().capacity(), 3);
526 /// ```
c34b1796 527 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 528 pub fn into_boxed_slice(mut self) -> Box<[T]> {
1a4d82fc 529 unsafe {
c1a9b12d
SL
530 self.shrink_to_fit();
531 let buf = ptr::read(&self.buf);
1a4d82fc 532 mem::forget(self);
c1a9b12d 533 buf.into_box()
1a4d82fc
JJ
534 }
535 }
536
5bcae85e
SL
537 /// Shortens the vector, keeping the first `len` elements and dropping
538 /// the rest.
1a4d82fc
JJ
539 ///
540 /// If `len` is greater than the vector's current length, this has no
541 /// effect.
542 ///
5bcae85e
SL
543 /// The [`drain`] method can emulate `truncate`, but causes the excess
544 /// elements to be returned instead of dropped.
545 ///
1a4d82fc
JJ
546 /// # Examples
547 ///
5bcae85e
SL
548 /// Truncating a five element vector to two elements:
549 ///
1a4d82fc 550 /// ```
92a42be0 551 /// let mut vec = vec![1, 2, 3, 4, 5];
1a4d82fc 552 /// vec.truncate(2);
c34b1796 553 /// assert_eq!(vec, [1, 2]);
1a4d82fc 554 /// ```
5bcae85e
SL
555 ///
556 /// No truncation occurs when `len` is greater than the vector's current
557 /// length:
558 ///
559 /// ```
560 /// let mut vec = vec![1, 2, 3];
561 /// vec.truncate(8);
562 /// assert_eq!(vec, [1, 2, 3]);
563 /// ```
564 ///
565 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
566 /// method.
567 ///
568 /// ```
569 /// let mut vec = vec![1, 2, 3];
570 /// vec.truncate(0);
571 /// assert_eq!(vec, []);
572 /// ```
573 ///
574 /// [`clear`]: #method.clear
575 /// [`drain`]: #method.drain
85aaf69f
SL
576 #[stable(feature = "rust1", since = "1.0.0")]
577 pub fn truncate(&mut self, len: usize) {
1a4d82fc
JJ
578 unsafe {
579 // drop any extra elements
580 while len < self.len {
54a0048b
SL
581 // decrement len before the drop_in_place(), so a panic on Drop
582 // doesn't re-drop the just-failed value.
1a4d82fc 583 self.len -= 1;
54a0048b
SL
584 let len = self.len;
585 ptr::drop_in_place(self.get_unchecked_mut(len));
1a4d82fc
JJ
586 }
587 }
588 }
589
9346a6ac 590 /// Extracts a slice containing the entire vector.
62682a34
SL
591 ///
592 /// Equivalent to `&s[..]`.
5bcae85e
SL
593 ///
594 /// # Examples
595 ///
596 /// ```
597 /// use std::io::{self, Write};
598 /// let buffer = vec![1, 2, 3, 5, 8];
599 /// io::sink().write(buffer.as_slice()).unwrap();
600 /// ```
1a4d82fc 601 #[inline]
9cc50fc6 602 #[stable(feature = "vec_as_slice", since = "1.7.0")]
c34b1796
AL
603 pub fn as_slice(&self) -> &[T] {
604 self
605 }
606
62682a34
SL
607 /// Extracts a mutable slice of the entire vector.
608 ///
609 /// Equivalent to `&mut s[..]`.
5bcae85e
SL
610 ///
611 /// # Examples
612 ///
613 /// ```
614 /// use std::io::{self, Read};
615 /// let mut buffer = vec![0; 3];
616 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
617 /// ```
c34b1796 618 #[inline]
9cc50fc6 619 #[stable(feature = "vec_as_slice", since = "1.7.0")]
85aaf69f 620 pub fn as_mut_slice(&mut self) -> &mut [T] {
5bcae85e 621 self
1a4d82fc
JJ
622 }
623
1a4d82fc
JJ
624 /// Sets the length of a vector.
625 ///
626 /// This will explicitly set the size of the vector, without actually
627 /// modifying its buffers, so it is up to the caller to ensure that the
628 /// vector is actually the specified size.
629 ///
630 /// # Examples
631 ///
632 /// ```
5bcae85e
SL
633 /// use std::ptr;
634 ///
635 /// let mut vec = vec!['r', 'u', 's', 't'];
636 ///
637 /// unsafe {
638 /// ptr::drop_in_place(&mut vec[3]);
639 /// vec.set_len(3);
640 /// }
641 /// assert_eq!(vec, ['r', 'u', 's']);
642 /// ```
643 ///
644 /// In this example, there is a memory leak since the memory locations
645 /// owned by the inner vectors were not freed prior to the `set_len` call:
646 ///
647 /// ```
648 /// let mut vec = vec![vec![1, 0, 0],
649 /// vec![0, 1, 0],
650 /// vec![0, 0, 1]];
1a4d82fc 651 /// unsafe {
5bcae85e
SL
652 /// vec.set_len(0);
653 /// }
654 /// ```
655 ///
656 /// In this example, the vector gets expanded from zero to four items
657 /// without any memory allocations occurring, resulting in vector
658 /// values of unallocated memory:
659 ///
660 /// ```
661 /// let mut vec: Vec<char> = Vec::new();
662 ///
663 /// unsafe {
664 /// vec.set_len(4);
1a4d82fc
JJ
665 /// }
666 /// ```
667 #[inline]
85aaf69f
SL
668 #[stable(feature = "rust1", since = "1.0.0")]
669 pub unsafe fn set_len(&mut self, len: usize) {
1a4d82fc
JJ
670 self.len = len;
671 }
672
673 /// Removes an element from anywhere in the vector and return it, replacing
674 /// it with the last element.
675 ///
676 /// This does not preserve ordering, but is O(1).
677 ///
678 /// # Panics
679 ///
680 /// Panics if `index` is out of bounds.
681 ///
682 /// # Examples
683 ///
684 /// ```
685 /// let mut v = vec!["foo", "bar", "baz", "qux"];
686 ///
687 /// assert_eq!(v.swap_remove(1), "bar");
c34b1796 688 /// assert_eq!(v, ["foo", "qux", "baz"]);
1a4d82fc
JJ
689 ///
690 /// assert_eq!(v.swap_remove(0), "foo");
c34b1796 691 /// assert_eq!(v, ["baz", "qux"]);
1a4d82fc
JJ
692 /// ```
693 #[inline]
85aaf69f
SL
694 #[stable(feature = "rust1", since = "1.0.0")]
695 pub fn swap_remove(&mut self, index: usize) -> T {
1a4d82fc
JJ
696 let length = self.len();
697 self.swap(index, length - 1);
698 self.pop().unwrap()
699 }
700
701 /// Inserts an element at position `index` within the vector, shifting all
7453a54e 702 /// elements after it to the right.
1a4d82fc
JJ
703 ///
704 /// # Panics
705 ///
c30ab7b3 706 /// Panics if `index` is out of bounds.
1a4d82fc
JJ
707 ///
708 /// # Examples
709 ///
710 /// ```
85aaf69f 711 /// let mut vec = vec![1, 2, 3];
1a4d82fc 712 /// vec.insert(1, 4);
c34b1796 713 /// assert_eq!(vec, [1, 4, 2, 3]);
1a4d82fc 714 /// vec.insert(4, 5);
c34b1796 715 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1a4d82fc 716 /// ```
85aaf69f
SL
717 #[stable(feature = "rust1", since = "1.0.0")]
718 pub fn insert(&mut self, index: usize, element: T) {
1a4d82fc
JJ
719 let len = self.len();
720 assert!(index <= len);
c1a9b12d 721
1a4d82fc 722 // space for the new element
92a42be0
SL
723 if len == self.buf.cap() {
724 self.buf.double();
725 }
1a4d82fc 726
92a42be0
SL
727 unsafe {
728 // infallible
1a4d82fc
JJ
729 // The spot to put the new value
730 {
85aaf69f 731 let p = self.as_mut_ptr().offset(index as isize);
1a4d82fc
JJ
732 // Shift everything over to make space. (Duplicating the
733 // `index`th element into two consecutive places.)
c1a9b12d 734 ptr::copy(p, p.offset(1), len - index);
1a4d82fc
JJ
735 // Write it in, overwriting the first copy of the `index`th
736 // element.
c1a9b12d 737 ptr::write(p, element);
1a4d82fc
JJ
738 }
739 self.set_len(len + 1);
740 }
741 }
742
743 /// Removes and returns the element at position `index` within the vector,
7453a54e 744 /// shifting all elements after it to the left.
1a4d82fc
JJ
745 ///
746 /// # Panics
747 ///
bd371182 748 /// Panics if `index` is out of bounds.
1a4d82fc
JJ
749 ///
750 /// # Examples
751 ///
752 /// ```
85aaf69f 753 /// let mut v = vec![1, 2, 3];
1a4d82fc 754 /// assert_eq!(v.remove(1), 2);
c34b1796 755 /// assert_eq!(v, [1, 3]);
1a4d82fc 756 /// ```
85aaf69f
SL
757 #[stable(feature = "rust1", since = "1.0.0")]
758 pub fn remove(&mut self, index: usize) -> T {
1a4d82fc
JJ
759 let len = self.len();
760 assert!(index < len);
92a42be0
SL
761 unsafe {
762 // infallible
1a4d82fc
JJ
763 let ret;
764 {
765 // the place we are taking from.
85aaf69f 766 let ptr = self.as_mut_ptr().offset(index as isize);
1a4d82fc
JJ
767 // copy it out, unsafely having a copy of the value on
768 // the stack and in the vector at the same time.
85aaf69f 769 ret = ptr::read(ptr);
1a4d82fc
JJ
770
771 // Shift everything down to fill in that spot.
c1a9b12d 772 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1a4d82fc
JJ
773 }
774 self.set_len(len - 1);
775 ret
776 }
777 }
778
779 /// Retains only the elements specified by the predicate.
780 ///
c30ab7b3 781 /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
1a4d82fc
JJ
782 /// This method operates in place and preserves the order of the retained
783 /// elements.
784 ///
785 /// # Examples
786 ///
787 /// ```
85aaf69f 788 /// let mut vec = vec![1, 2, 3, 4];
1a4d82fc 789 /// vec.retain(|&x| x%2 == 0);
c34b1796 790 /// assert_eq!(vec, [2, 4]);
1a4d82fc 791 /// ```
85aaf69f 792 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
793 pub fn retain<F>(&mut self, mut f: F)
794 where F: FnMut(&T) -> bool
795 {
1a4d82fc 796 let len = self.len();
85aaf69f 797 let mut del = 0;
1a4d82fc 798 {
85aaf69f 799 let v = &mut **self;
1a4d82fc 800
85aaf69f 801 for i in 0..len {
1a4d82fc
JJ
802 if !f(&v[i]) {
803 del += 1;
804 } else if del > 0 {
92a42be0 805 v.swap(i - del, i);
1a4d82fc
JJ
806 }
807 }
808 }
809 if del > 0 {
810 self.truncate(len - del);
811 }
812 }
813
c30ab7b3
SL
814 /// Removes consecutive elements in the vector that resolve to the same key.
815 ///
816 /// If the vector is sorted, this removes all duplicates.
817 ///
818 /// # Examples
819 ///
820 /// ```
821 /// #![feature(dedup_by)]
822 ///
823 /// let mut vec = vec![10, 20, 21, 30, 20];
824 ///
825 /// vec.dedup_by_key(|i| *i / 10);
826 ///
827 /// assert_eq!(vec, [10, 20, 30, 20]);
828 /// ```
829 #[unstable(feature = "dedup_by", reason = "recently added", issue = "37087")]
830 #[inline]
831 pub fn dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq {
832 self.dedup_by(|a, b| key(a) == key(b))
833 }
834
835 /// Removes consecutive elements in the vector that resolve to the same key.
836 ///
837 /// If the vector is sorted, this removes all duplicates.
838 ///
839 /// # Examples
840 ///
841 /// ```
842 /// #![feature(dedup_by)]
843 /// use std::ascii::AsciiExt;
844 ///
845 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
846 ///
847 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
848 ///
849 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
850 /// ```
851 #[unstable(feature = "dedup_by", reason = "recently added", issue = "37087")]
852 pub fn dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool {
853 unsafe {
854 // Although we have a mutable reference to `self`, we cannot make
855 // *arbitrary* changes. The `same_bucket` calls could panic, so we
856 // must ensure that the vector is in a valid state at all time.
857 //
858 // The way that we handle this is by using swaps; we iterate
859 // over all the elements, swapping as we go so that at the end
860 // the elements we wish to keep are in the front, and those we
861 // wish to reject are at the back. We can then truncate the
862 // vector. This operation is still O(n).
863 //
864 // Example: We start in this state, where `r` represents "next
865 // read" and `w` represents "next_write`.
866 //
867 // r
868 // +---+---+---+---+---+---+
869 // | 0 | 1 | 1 | 2 | 3 | 3 |
870 // +---+---+---+---+---+---+
871 // w
872 //
873 // Comparing self[r] against self[w-1], this is not a duplicate, so
874 // we swap self[r] and self[w] (no effect as r==w) and then increment both
875 // r and w, leaving us with:
876 //
877 // r
878 // +---+---+---+---+---+---+
879 // | 0 | 1 | 1 | 2 | 3 | 3 |
880 // +---+---+---+---+---+---+
881 // w
882 //
883 // Comparing self[r] against self[w-1], this value is a duplicate,
884 // so we increment `r` but leave everything else unchanged:
885 //
886 // r
887 // +---+---+---+---+---+---+
888 // | 0 | 1 | 1 | 2 | 3 | 3 |
889 // +---+---+---+---+---+---+
890 // w
891 //
892 // Comparing self[r] against self[w-1], this is not a duplicate,
893 // so swap self[r] and self[w] and advance r and w:
894 //
895 // r
896 // +---+---+---+---+---+---+
897 // | 0 | 1 | 2 | 1 | 3 | 3 |
898 // +---+---+---+---+---+---+
899 // w
900 //
901 // Not a duplicate, repeat:
902 //
903 // r
904 // +---+---+---+---+---+---+
905 // | 0 | 1 | 2 | 3 | 1 | 3 |
906 // +---+---+---+---+---+---+
907 // w
908 //
909 // Duplicate, advance r. End of vec. Truncate to w.
910
911 let ln = self.len();
912 if ln <= 1 {
913 return;
914 }
915
916 // Avoid bounds checks by using raw pointers.
917 let p = self.as_mut_ptr();
918 let mut r: usize = 1;
919 let mut w: usize = 1;
920
921 while r < ln {
922 let p_r = p.offset(r as isize);
923 let p_wm1 = p.offset((w - 1) as isize);
924 if !same_bucket(&mut *p_r, &mut *p_wm1) {
925 if r != w {
926 let p_w = p_wm1.offset(1);
927 mem::swap(&mut *p_r, &mut *p_w);
928 }
929 w += 1;
930 }
931 r += 1;
932 }
933
934 self.truncate(w);
935 }
936 }
937
1a4d82fc
JJ
938 /// Appends an element to the back of a collection.
939 ///
940 /// # Panics
941 ///
85aaf69f 942 /// Panics if the number of elements in the vector overflows a `usize`.
1a4d82fc
JJ
943 ///
944 /// # Examples
945 ///
c34b1796 946 /// ```
c1a9b12d 947 /// let mut vec = vec![1, 2];
1a4d82fc 948 /// vec.push(3);
c34b1796 949 /// assert_eq!(vec, [1, 2, 3]);
1a4d82fc
JJ
950 /// ```
951 #[inline]
85aaf69f 952 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 953 pub fn push(&mut self, value: T) {
c1a9b12d
SL
954 // This will panic or abort if we would allocate > isize::MAX bytes
955 // or if the length increment would overflow for zero-sized types.
92a42be0
SL
956 if self.len == self.buf.cap() {
957 self.buf.double();
958 }
1a4d82fc 959 unsafe {
c1a9b12d
SL
960 let end = self.as_mut_ptr().offset(self.len as isize);
961 ptr::write(end, value);
1a4d82fc
JJ
962 self.len += 1;
963 }
964 }
965
c30ab7b3 966 /// Removes the last element from a vector and returns it, or [`None`] if it
e9174d1e 967 /// is empty.
1a4d82fc 968 ///
c30ab7b3
SL
969 /// [`None`]: ../../std/option/enum.Option.html#variant.None
970 ///
1a4d82fc
JJ
971 /// # Examples
972 ///
c34b1796 973 /// ```
85aaf69f 974 /// let mut vec = vec![1, 2, 3];
1a4d82fc 975 /// assert_eq!(vec.pop(), Some(3));
c34b1796 976 /// assert_eq!(vec, [1, 2]);
1a4d82fc
JJ
977 /// ```
978 #[inline]
85aaf69f 979 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
980 pub fn pop(&mut self) -> Option<T> {
981 if self.len == 0 {
982 None
983 } else {
984 unsafe {
985 self.len -= 1;
986 Some(ptr::read(self.get_unchecked(self.len())))
987 }
988 }
989 }
990
85aaf69f
SL
991 /// Moves all the elements of `other` into `Self`, leaving `other` empty.
992 ///
993 /// # Panics
994 ///
995 /// Panics if the number of elements in the vector overflows a `usize`.
996 ///
997 /// # Examples
998 ///
999 /// ```
1000 /// let mut vec = vec![1, 2, 3];
1001 /// let mut vec2 = vec![4, 5, 6];
1002 /// vec.append(&mut vec2);
c34b1796
AL
1003 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1004 /// assert_eq!(vec2, []);
85aaf69f
SL
1005 /// ```
1006 #[inline]
e9174d1e 1007 #[stable(feature = "append", since = "1.4.0")]
85aaf69f 1008 pub fn append(&mut self, other: &mut Self) {
85aaf69f
SL
1009 self.reserve(other.len());
1010 let len = self.len();
1011 unsafe {
92a42be0 1012 ptr::copy_nonoverlapping(other.as_ptr(), self.get_unchecked_mut(len), other.len());
85aaf69f
SL
1013 }
1014
1015 self.len += other.len();
92a42be0
SL
1016 unsafe {
1017 other.set_len(0);
1018 }
85aaf69f
SL
1019 }
1020
d9579d0f 1021 /// Create a draining iterator that removes the specified range in the vector
9cc50fc6 1022 /// and yields the removed items.
d9579d0f 1023 ///
9cc50fc6
SL
1024 /// Note 1: The element range is removed even if the iterator is not
1025 /// consumed until the end.
1026 ///
1027 /// Note 2: It is unspecified how many elements are removed from the vector,
d9579d0f
AL
1028 /// if the `Drain` value is leaked.
1029 ///
1030 /// # Panics
1031 ///
1032 /// Panics if the starting point is greater than the end point or if
1033 /// the end point is greater than the length of the vector.
1a4d82fc
JJ
1034 ///
1035 /// # Examples
1036 ///
1037 /// ```
d9579d0f 1038 /// let mut v = vec![1, 2, 3];
9cc50fc6
SL
1039 /// let u: Vec<_> = v.drain(1..).collect();
1040 /// assert_eq!(v, &[1]);
1041 /// assert_eq!(u, &[2, 3]);
1042 ///
1043 /// // A full range clears the vector
1044 /// v.drain(..);
d9579d0f 1045 /// assert_eq!(v, &[]);
1a4d82fc 1046 /// ```
92a42be0
SL
1047 #[stable(feature = "drain", since = "1.6.0")]
1048 pub fn drain<R>(&mut self, range: R) -> Drain<T>
1049 where R: RangeArgument<usize>
1050 {
d9579d0f
AL
1051 // Memory safety
1052 //
1053 // When the Drain is first created, it shortens the length of
1054 // the source vector to make sure no uninitalized or moved-from elements
1055 // are accessible at all if the Drain's destructor never gets to run.
1056 //
1057 // Drain will ptr::read out the values to remove.
1058 // When finished, remaining tail of the vec is copied back to cover
1059 // the hole, and the vector length is restored to the new length.
1060 //
1061 let len = self.len();
1062 let start = *range.start().unwrap_or(&0);
1063 let end = *range.end().unwrap_or(&len);
1064 assert!(start <= end);
1065 assert!(end <= len);
1066
1a4d82fc 1067 unsafe {
d9579d0f
AL
1068 // set self.vec length's to start, to be safe in case Drain is leaked
1069 self.set_len(start);
1070 // Use the borrow in the IterMut to indicate borrowing behavior of the
1071 // whole Drain iterator (like &mut T).
92a42be0
SL
1072 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().offset(start as isize),
1073 end - start);
1a4d82fc 1074 Drain {
d9579d0f
AL
1075 tail_start: end,
1076 tail_len: len - end,
5bcae85e
SL
1077 iter: range_slice.iter(),
1078 vec: Shared::new(self as *mut _),
1a4d82fc
JJ
1079 }
1080 }
1081 }
1082
1083 /// Clears the vector, removing all values.
1084 ///
1085 /// # Examples
1086 ///
1087 /// ```
85aaf69f 1088 /// let mut v = vec![1, 2, 3];
1a4d82fc
JJ
1089 ///
1090 /// v.clear();
1091 ///
1092 /// assert!(v.is_empty());
1093 /// ```
1094 #[inline]
85aaf69f 1095 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1096 pub fn clear(&mut self) {
1097 self.truncate(0)
1098 }
1099
1100 /// Returns the number of elements in the vector.
1101 ///
1102 /// # Examples
1103 ///
1104 /// ```
85aaf69f 1105 /// let a = vec![1, 2, 3];
1a4d82fc
JJ
1106 /// assert_eq!(a.len(), 3);
1107 /// ```
1108 #[inline]
85aaf69f 1109 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
1110 pub fn len(&self) -> usize {
1111 self.len
1112 }
1a4d82fc
JJ
1113
1114 /// Returns `true` if the vector contains no elements.
1115 ///
1116 /// # Examples
1117 ///
1118 /// ```
1119 /// let mut v = Vec::new();
1120 /// assert!(v.is_empty());
1121 ///
85aaf69f 1122 /// v.push(1);
1a4d82fc
JJ
1123 /// assert!(!v.is_empty());
1124 /// ```
85aaf69f 1125 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
1126 pub fn is_empty(&self) -> bool {
1127 self.len() == 0
1128 }
1a4d82fc 1129
85aaf69f
SL
1130 /// Splits the collection into two at the given index.
1131 ///
1132 /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
1133 /// and the returned `Self` contains elements `[at, len)`.
1134 ///
1135 /// Note that the capacity of `self` does not change.
1136 ///
1137 /// # Panics
1138 ///
1139 /// Panics if `at > len`.
1140 ///
1141 /// # Examples
1142 ///
1143 /// ```
1144 /// let mut vec = vec![1,2,3];
1145 /// let vec2 = vec.split_off(1);
c34b1796
AL
1146 /// assert_eq!(vec, [1]);
1147 /// assert_eq!(vec2, [2, 3]);
85aaf69f
SL
1148 /// ```
1149 #[inline]
e9174d1e 1150 #[stable(feature = "split_off", since = "1.4.0")]
85aaf69f
SL
1151 pub fn split_off(&mut self, at: usize) -> Self {
1152 assert!(at <= self.len(), "`at` out of bounds");
1153
1154 let other_len = self.len - at;
1155 let mut other = Vec::with_capacity(other_len);
1156
1157 // Unsafely `set_len` and copy items to `other`.
1158 unsafe {
1159 self.set_len(at);
1160 other.set_len(other_len);
1161
92a42be0
SL
1162 ptr::copy_nonoverlapping(self.as_ptr().offset(at as isize),
1163 other.as_mut_ptr(),
1164 other.len());
85aaf69f
SL
1165 }
1166 other
1167 }
1a4d82fc
JJ
1168}
1169
1170impl<T: Clone> Vec<T> {
1171 /// Resizes the `Vec` in-place so that `len()` is equal to `new_len`.
1172 ///
92a42be0
SL
1173 /// If `new_len` is greater than `len()`, the `Vec` is extended by the
1174 /// difference, with each additional slot filled with `value`.
1175 /// If `new_len` is less than `len()`, the `Vec` is simply truncated.
1a4d82fc
JJ
1176 ///
1177 /// # Examples
1178 ///
1179 /// ```
1180 /// let mut vec = vec!["hello"];
1181 /// vec.resize(3, "world");
c34b1796 1182 /// assert_eq!(vec, ["hello", "world", "world"]);
1a4d82fc 1183 ///
85aaf69f 1184 /// let mut vec = vec![1, 2, 3, 4];
1a4d82fc 1185 /// vec.resize(2, 0);
c34b1796 1186 /// assert_eq!(vec, [1, 2]);
1a4d82fc 1187 /// ```
b039eaaf 1188 #[stable(feature = "vec_resize", since = "1.5.0")]
85aaf69f 1189 pub fn resize(&mut self, new_len: usize, value: T) {
1a4d82fc
JJ
1190 let len = self.len();
1191
1192 if new_len > len {
c1a9b12d 1193 self.extend_with_element(new_len - len, value);
1a4d82fc
JJ
1194 } else {
1195 self.truncate(new_len);
1196 }
1197 }
1198
c1a9b12d
SL
1199 /// Extend the vector by `n` additional clones of `value`.
1200 fn extend_with_element(&mut self, n: usize, value: T) {
1201 self.reserve(n);
1202
1203 unsafe {
9e0c209e
SL
1204 let mut ptr = self.as_mut_ptr().offset(self.len() as isize);
1205 // Use SetLenOnDrop to work around bug where compiler
1206 // may not realize the store through `ptr` trough self.set_len()
1207 // don't alias.
1208 let mut local_len = SetLenOnDrop::new(&mut self.len);
1209
c1a9b12d 1210 // Write all elements except the last one
9e0c209e 1211 for _ in 1..n {
c1a9b12d
SL
1212 ptr::write(ptr, value.clone());
1213 ptr = ptr.offset(1);
1214 // Increment the length in every step in case clone() panics
9e0c209e 1215 local_len.increment_len(1);
c1a9b12d
SL
1216 }
1217
1218 if n > 0 {
1219 // We can write the last element directly without cloning needlessly
1220 ptr::write(ptr, value);
9e0c209e 1221 local_len.increment_len(1);
c1a9b12d 1222 }
9e0c209e
SL
1223
1224 // len set by scope guard
c1a9b12d
SL
1225 }
1226 }
1227
3157f602 1228 /// Clones and appends all elements in a slice to the `Vec`.
1a4d82fc
JJ
1229 ///
1230 /// Iterates over the slice `other`, clones each element, and then appends
1231 /// it to this `Vec`. The `other` vector is traversed in-order.
1232 ///
92a42be0
SL
1233 /// Note that this function is same as `extend` except that it is
1234 /// specialized to work with slices instead. If and when Rust gets
1235 /// specialization this function will likely be deprecated (but still
1236 /// available).
1237 ///
1a4d82fc
JJ
1238 /// # Examples
1239 ///
1240 /// ```
85aaf69f 1241 /// let mut vec = vec![1];
92a42be0 1242 /// vec.extend_from_slice(&[2, 3, 4]);
c34b1796 1243 /// assert_eq!(vec, [1, 2, 3, 4]);
1a4d82fc 1244 /// ```
92a42be0
SL
1245 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
1246 pub fn extend_from_slice(&mut self, other: &[T]) {
c30ab7b3 1247 self.extend(other.iter().cloned())
1a4d82fc
JJ
1248 }
1249}
1250
9e0c209e
SL
1251// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
1252//
1253// The idea is: The length field in SetLenOnDrop is a local variable
1254// that the optimizer will see does not alias with any stores through the Vec's data
1255// pointer. This is a workaround for alias analysis issue #32155
1256struct SetLenOnDrop<'a> {
1257 len: &'a mut usize,
1258 local_len: usize,
1259}
1260
1261impl<'a> SetLenOnDrop<'a> {
1262 #[inline]
1263 fn new(len: &'a mut usize) -> Self {
1264 SetLenOnDrop { local_len: *len, len: len }
1265 }
1266
1267 #[inline]
1268 fn increment_len(&mut self, increment: usize) {
1269 self.local_len += increment;
1270 }
1271}
1272
1273impl<'a> Drop for SetLenOnDrop<'a> {
1274 #[inline]
1275 fn drop(&mut self) {
1276 *self.len = self.local_len;
1277 }
1278}
1279
1a4d82fc
JJ
1280impl<T: PartialEq> Vec<T> {
1281 /// Removes consecutive repeated elements in the vector.
1282 ///
1283 /// If the vector is sorted, this removes all duplicates.
1284 ///
1285 /// # Examples
1286 ///
1287 /// ```
85aaf69f 1288 /// let mut vec = vec![1, 2, 2, 3, 2];
1a4d82fc
JJ
1289 ///
1290 /// vec.dedup();
1291 ///
c34b1796 1292 /// assert_eq!(vec, [1, 2, 3, 2]);
1a4d82fc 1293 /// ```
85aaf69f 1294 #[stable(feature = "rust1", since = "1.0.0")]
c30ab7b3 1295 #[inline]
1a4d82fc 1296 pub fn dedup(&mut self) {
c30ab7b3 1297 self.dedup_by(|a, b| a == b)
1a4d82fc
JJ
1298 }
1299}
1300
1301////////////////////////////////////////////////////////////////////////////////
1302// Internal methods and functions
1303////////////////////////////////////////////////////////////////////////////////
1304
85aaf69f
SL
1305#[doc(hidden)]
1306#[stable(feature = "rust1", since = "1.0.0")]
1307pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
c1a9b12d
SL
1308 let mut v = Vec::with_capacity(n);
1309 v.extend_with_element(n, elem);
1310 v
85aaf69f
SL
1311}
1312
1a4d82fc
JJ
1313////////////////////////////////////////////////////////////////////////////////
1314// Common trait implementations for Vec
1315////////////////////////////////////////////////////////////////////////////////
1316
bd371182 1317#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 1318impl<T: Clone> Clone for Vec<T> {
c34b1796 1319 #[cfg(not(test))]
92a42be0
SL
1320 fn clone(&self) -> Vec<T> {
1321 <[T]>::to_vec(&**self)
1322 }
c34b1796
AL
1323
1324 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
1325 // required for this method definition, is not available. Instead use the
1326 // `slice::to_vec` function which is only available with cfg(test)
1327 // NB see the slice::hack module in slice.rs for more information
1328 #[cfg(test)]
1329 fn clone(&self) -> Vec<T> {
1330 ::slice::to_vec(&**self)
1331 }
1a4d82fc
JJ
1332
1333 fn clone_from(&mut self, other: &Vec<T>) {
1334 // drop anything in self that will not be overwritten
b039eaaf
SL
1335 self.truncate(other.len());
1336 let len = self.len();
1a4d82fc
JJ
1337
1338 // reuse the contained values' allocations/resources.
b039eaaf 1339 self.clone_from_slice(&other[..len]);
1a4d82fc
JJ
1340
1341 // self.len <= other.len due to the truncate above, so the
1342 // slice here is always in-bounds.
92a42be0 1343 self.extend_from_slice(&other[len..]);
1a4d82fc
JJ
1344 }
1345}
1346
85aaf69f 1347#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1348impl<T: Hash> Hash for Vec<T> {
1a4d82fc 1349 #[inline]
85aaf69f
SL
1350 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1351 Hash::hash(&**self, state)
1a4d82fc
JJ
1352 }
1353}
1354
85aaf69f
SL
1355#[stable(feature = "rust1", since = "1.0.0")]
1356impl<T> Index<usize> for Vec<T> {
1a4d82fc
JJ
1357 type Output = T;
1358
1359 #[inline]
c34b1796 1360 fn index(&self, index: usize) -> &T {
85aaf69f 1361 // NB built-in indexing via `&[T]`
c34b1796 1362 &(**self)[index]
1a4d82fc
JJ
1363 }
1364}
1365
85aaf69f
SL
1366#[stable(feature = "rust1", since = "1.0.0")]
1367impl<T> IndexMut<usize> for Vec<T> {
1a4d82fc 1368 #[inline]
c34b1796 1369 fn index_mut(&mut self, index: usize) -> &mut T {
85aaf69f 1370 // NB built-in indexing via `&mut [T]`
c34b1796 1371 &mut (**self)[index]
1a4d82fc
JJ
1372 }
1373}
1374
1375
85aaf69f
SL
1376#[stable(feature = "rust1", since = "1.0.0")]
1377impl<T> ops::Index<ops::Range<usize>> for Vec<T> {
1a4d82fc 1378 type Output = [T];
c34b1796 1379
1a4d82fc 1380 #[inline]
c34b1796 1381 fn index(&self, index: ops::Range<usize>) -> &[T] {
85aaf69f 1382 Index::index(&**self, index)
1a4d82fc
JJ
1383 }
1384}
85aaf69f
SL
1385#[stable(feature = "rust1", since = "1.0.0")]
1386impl<T> ops::Index<ops::RangeTo<usize>> for Vec<T> {
1a4d82fc 1387 type Output = [T];
c34b1796 1388
1a4d82fc 1389 #[inline]
c34b1796 1390 fn index(&self, index: ops::RangeTo<usize>) -> &[T] {
85aaf69f 1391 Index::index(&**self, index)
1a4d82fc
JJ
1392 }
1393}
85aaf69f
SL
1394#[stable(feature = "rust1", since = "1.0.0")]
1395impl<T> ops::Index<ops::RangeFrom<usize>> for Vec<T> {
1a4d82fc 1396 type Output = [T];
c34b1796 1397
1a4d82fc 1398 #[inline]
c34b1796 1399 fn index(&self, index: ops::RangeFrom<usize>) -> &[T] {
85aaf69f 1400 Index::index(&**self, index)
1a4d82fc
JJ
1401 }
1402}
85aaf69f
SL
1403#[stable(feature = "rust1", since = "1.0.0")]
1404impl<T> ops::Index<ops::RangeFull> for Vec<T> {
1a4d82fc 1405 type Output = [T];
c34b1796 1406
1a4d82fc 1407 #[inline]
c34b1796
AL
1408 fn index(&self, _index: ops::RangeFull) -> &[T] {
1409 self
1a4d82fc
JJ
1410 }
1411}
54a0048b
SL
1412#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1413impl<T> ops::Index<ops::RangeInclusive<usize>> for Vec<T> {
1414 type Output = [T];
1415
1416 #[inline]
1417 fn index(&self, index: ops::RangeInclusive<usize>) -> &[T] {
1418 Index::index(&**self, index)
1419 }
1420}
1421#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1422impl<T> ops::Index<ops::RangeToInclusive<usize>> for Vec<T> {
1423 type Output = [T];
1424
1425 #[inline]
1426 fn index(&self, index: ops::RangeToInclusive<usize>) -> &[T] {
1427 Index::index(&**self, index)
1428 }
1429}
1a4d82fc 1430
85aaf69f
SL
1431#[stable(feature = "rust1", since = "1.0.0")]
1432impl<T> ops::IndexMut<ops::Range<usize>> for Vec<T> {
1a4d82fc 1433 #[inline]
c34b1796 1434 fn index_mut(&mut self, index: ops::Range<usize>) -> &mut [T] {
85aaf69f 1435 IndexMut::index_mut(&mut **self, index)
1a4d82fc
JJ
1436 }
1437}
85aaf69f
SL
1438#[stable(feature = "rust1", since = "1.0.0")]
1439impl<T> ops::IndexMut<ops::RangeTo<usize>> for Vec<T> {
1a4d82fc 1440 #[inline]
c34b1796 1441 fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut [T] {
85aaf69f 1442 IndexMut::index_mut(&mut **self, index)
1a4d82fc
JJ
1443 }
1444}
85aaf69f
SL
1445#[stable(feature = "rust1", since = "1.0.0")]
1446impl<T> ops::IndexMut<ops::RangeFrom<usize>> for Vec<T> {
1a4d82fc 1447 #[inline]
c34b1796 1448 fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut [T] {
85aaf69f 1449 IndexMut::index_mut(&mut **self, index)
1a4d82fc
JJ
1450 }
1451}
85aaf69f
SL
1452#[stable(feature = "rust1", since = "1.0.0")]
1453impl<T> ops::IndexMut<ops::RangeFull> for Vec<T> {
1a4d82fc 1454 #[inline]
c34b1796
AL
1455 fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [T] {
1456 self
1a4d82fc
JJ
1457 }
1458}
54a0048b
SL
1459#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1460impl<T> ops::IndexMut<ops::RangeInclusive<usize>> for Vec<T> {
1461 #[inline]
1462 fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut [T] {
1463 IndexMut::index_mut(&mut **self, index)
1464 }
1465}
1466#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
1467impl<T> ops::IndexMut<ops::RangeToInclusive<usize>> for Vec<T> {
1468 #[inline]
1469 fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut [T] {
1470 IndexMut::index_mut(&mut **self, index)
1471 }
1472}
1a4d82fc 1473
85aaf69f 1474#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1475impl<T> ops::Deref for Vec<T> {
1476 type Target = [T];
1477
c34b1796
AL
1478 fn deref(&self) -> &[T] {
1479 unsafe {
c1a9b12d 1480 let p = self.buf.ptr();
e9174d1e 1481 assume(!p.is_null());
c34b1796
AL
1482 slice::from_raw_parts(p, self.len)
1483 }
1484 }
1a4d82fc
JJ
1485}
1486
85aaf69f 1487#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1488impl<T> ops::DerefMut for Vec<T> {
c34b1796
AL
1489 fn deref_mut(&mut self) -> &mut [T] {
1490 unsafe {
c1a9b12d 1491 let ptr = self.buf.ptr();
c34b1796
AL
1492 assume(!ptr.is_null());
1493 slice::from_raw_parts_mut(ptr, self.len)
1494 }
1495 }
1a4d82fc
JJ
1496}
1497
85aaf69f 1498#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1499impl<T> FromIterator<T> for Vec<T> {
1500 #[inline]
54a0048b 1501 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
62682a34
SL
1502 // Unroll the first iteration, as the vector is going to be
1503 // expanded on this iteration in every case when the iterable is not
1504 // empty, but the loop in extend_desugared() is not going to see the
1505 // vector being full in the few subsequent loop iterations.
92a42be0 1506 // So we get better branch prediction.
54a0048b 1507 let mut iterator = iter.into_iter();
62682a34
SL
1508 let mut vector = match iterator.next() {
1509 None => return Vec::new(),
1510 Some(element) => {
1511 let (lower, _) = iterator.size_hint();
1512 let mut vector = Vec::with_capacity(lower.saturating_add(1));
1513 unsafe {
1514 ptr::write(vector.get_unchecked_mut(0), element);
1515 vector.set_len(1);
1516 }
1517 vector
85aaf69f 1518 }
62682a34
SL
1519 };
1520 vector.extend_desugared(iterator);
1a4d82fc
JJ
1521 vector
1522 }
1523}
1524
85aaf69f
SL
1525#[stable(feature = "rust1", since = "1.0.0")]
1526impl<T> IntoIterator for Vec<T> {
1527 type Item = T;
1528 type IntoIter = IntoIter<T>;
1529
9346a6ac
AL
1530 /// Creates a consuming iterator, that is, one that moves each value out of
1531 /// the vector (from start to end). The vector cannot be used after calling
1532 /// this.
1533 ///
1534 /// # Examples
1535 ///
1536 /// ```
1537 /// let v = vec!["a".to_string(), "b".to_string()];
1538 /// for s in v.into_iter() {
1539 /// // s has type String, not &String
1540 /// println!("{}", s);
1541 /// }
1542 /// ```
1543 #[inline]
c1a9b12d 1544 fn into_iter(mut self) -> IntoIter<T> {
9346a6ac 1545 unsafe {
5bcae85e
SL
1546 let begin = self.as_mut_ptr();
1547 assume(!begin.is_null());
9346a6ac 1548 let end = if mem::size_of::<T>() == 0 {
5bcae85e 1549 arith_offset(begin as *const i8, self.len() as isize) as *const T
9346a6ac 1550 } else {
5bcae85e 1551 begin.offset(self.len() as isize) as *const T
9346a6ac 1552 };
5bcae85e 1553 let cap = self.buf.cap();
9346a6ac 1554 mem::forget(self);
92a42be0 1555 IntoIter {
5bcae85e
SL
1556 buf: Shared::new(begin),
1557 cap: cap,
92a42be0
SL
1558 ptr: begin,
1559 end: end,
1560 }
9346a6ac 1561 }
85aaf69f
SL
1562 }
1563}
1564
1565#[stable(feature = "rust1", since = "1.0.0")]
1566impl<'a, T> IntoIterator for &'a Vec<T> {
1567 type Item = &'a T;
1568 type IntoIter = slice::Iter<'a, T>;
1569
1570 fn into_iter(self) -> slice::Iter<'a, T> {
1571 self.iter()
1572 }
1573}
1574
1575#[stable(feature = "rust1", since = "1.0.0")]
1576impl<'a, T> IntoIterator for &'a mut Vec<T> {
1577 type Item = &'a mut T;
1578 type IntoIter = slice::IterMut<'a, T>;
1579
1580 fn into_iter(mut self) -> slice::IterMut<'a, T> {
1581 self.iter_mut()
1582 }
1583}
1584
bd371182 1585#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1586impl<T> Extend<T> for Vec<T> {
1587 #[inline]
54a0048b
SL
1588 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1589 self.extend_desugared(iter.into_iter())
62682a34
SL
1590 }
1591}
1592
c30ab7b3
SL
1593trait IsTrustedLen : Iterator {
1594 fn trusted_len(&self) -> Option<usize> { None }
1595}
1596impl<I> IsTrustedLen for I where I: Iterator { }
1597
1598impl<I> IsTrustedLen for I where I: TrustedLen
1599{
1600 fn trusted_len(&self) -> Option<usize> {
1601 let (low, high) = self.size_hint();
1602 if let Some(high_value) = high {
1603 debug_assert_eq!(low, high_value,
1604 "TrustedLen iterator's size hint is not exact: {:?}",
1605 (low, high));
1606 }
1607 high
a7813a04
XL
1608 }
1609}
1610
62682a34 1611impl<T> Vec<T> {
92a42be0 1612 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
62682a34
SL
1613 // This function should be the moral equivalent of:
1614 //
1615 // for item in iterator {
1616 // self.push(item);
1617 // }
c30ab7b3
SL
1618 if let Some(additional) = iterator.trusted_len() {
1619 self.reserve(additional);
62682a34 1620 unsafe {
c30ab7b3
SL
1621 let mut ptr = self.as_mut_ptr().offset(self.len() as isize);
1622 let mut local_len = SetLenOnDrop::new(&mut self.len);
1623 for element in iterator {
1624 ptr::write(ptr, element);
1625 ptr = ptr.offset(1);
1626 // NB can't overflow since we would have had to alloc the address space
1627 local_len.increment_len(1);
1628 }
1629 }
1630 } else {
1631 while let Some(element) = iterator.next() {
1632 let len = self.len();
1633 if len == self.capacity() {
1634 let (lower, _) = iterator.size_hint();
1635 self.reserve(lower.saturating_add(1));
1636 }
1637 unsafe {
1638 ptr::write(self.get_unchecked_mut(len), element);
1639 // NB can't overflow since we would have had to alloc the address space
1640 self.set_len(len + 1);
1641 }
62682a34 1642 }
1a4d82fc
JJ
1643 }
1644 }
1645}
1646
62682a34
SL
1647#[stable(feature = "extend_ref", since = "1.2.0")]
1648impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T> {
92a42be0 1649 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
c30ab7b3 1650 self.extend(iter.into_iter().map(|&x| x))
62682a34
SL
1651 }
1652}
1653
92a42be0
SL
1654macro_rules! __impl_slice_eq1 {
1655 ($Lhs: ty, $Rhs: ty) => {
1656 __impl_slice_eq1! { $Lhs, $Rhs, Sized }
1657 };
1658 ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
1659 #[stable(feature = "rust1", since = "1.0.0")]
1660 impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
1661 #[inline]
1662 fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] }
1663 #[inline]
1664 fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] }
1665 }
1666 }
1667}
1668
c34b1796
AL
1669__impl_slice_eq1! { Vec<A>, Vec<B> }
1670__impl_slice_eq1! { Vec<A>, &'b [B] }
1671__impl_slice_eq1! { Vec<A>, &'b mut [B] }
1672__impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone }
1673__impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone }
1674__impl_slice_eq1! { Cow<'a, [A]>, Vec<B>, Clone }
1675
1676macro_rules! array_impls {
1677 ($($N: expr)+) => {
1678 $(
1679 // NOTE: some less important impls are omitted to reduce code bloat
1680 __impl_slice_eq1! { Vec<A>, [B; $N] }
1681 __impl_slice_eq1! { Vec<A>, &'b [B; $N] }
1682 // __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] }
1683 // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone }
1684 // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone }
1685 // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone }
1686 )+
1a4d82fc
JJ
1687 }
1688}
1689
c34b1796
AL
1690array_impls! {
1691 0 1 2 3 4 5 6 7 8 9
1692 10 11 12 13 14 15 16 17 18 19
1693 20 21 22 23 24 25 26 27 28 29
1694 30 31 32
1a4d82fc
JJ
1695}
1696
85aaf69f 1697#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1698impl<T: PartialOrd> PartialOrd for Vec<T> {
1699 #[inline]
1700 fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> {
85aaf69f 1701 PartialOrd::partial_cmp(&**self, &**other)
1a4d82fc
JJ
1702 }
1703}
1704
85aaf69f 1705#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1706impl<T: Eq> Eq for Vec<T> {}
1707
85aaf69f 1708#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1709impl<T: Ord> Ord for Vec<T> {
1710 #[inline]
1711 fn cmp(&self, other: &Vec<T>) -> Ordering {
85aaf69f 1712 Ord::cmp(&**self, &**other)
1a4d82fc
JJ
1713 }
1714}
1715
85aaf69f 1716#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1717impl<T> Drop for Vec<T> {
b039eaaf 1718 #[unsafe_destructor_blind_to_params]
1a4d82fc 1719 fn drop(&mut self) {
9e0c209e
SL
1720 unsafe {
1721 // use drop for [T]
1722 ptr::drop_in_place(&mut self[..]);
1a4d82fc 1723 }
c1a9b12d 1724 // RawVec handles deallocation
1a4d82fc
JJ
1725 }
1726}
1727
85aaf69f 1728#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1729impl<T> Default for Vec<T> {
9e0c209e 1730 /// Creates an empty `Vec<T>`.
1a4d82fc
JJ
1731 fn default() -> Vec<T> {
1732 Vec::new()
1733 }
1734}
1735
85aaf69f
SL
1736#[stable(feature = "rust1", since = "1.0.0")]
1737impl<T: fmt::Debug> fmt::Debug for Vec<T> {
1a4d82fc 1738 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85aaf69f 1739 fmt::Debug::fmt(&**self, f)
1a4d82fc
JJ
1740 }
1741}
1742
c34b1796
AL
1743#[stable(feature = "rust1", since = "1.0.0")]
1744impl<T> AsRef<Vec<T>> for Vec<T> {
1745 fn as_ref(&self) -> &Vec<T> {
1746 self
1747 }
1748}
1749
b039eaaf
SL
1750#[stable(feature = "vec_as_mut", since = "1.5.0")]
1751impl<T> AsMut<Vec<T>> for Vec<T> {
1752 fn as_mut(&mut self) -> &mut Vec<T> {
1753 self
1754 }
1755}
1756
c34b1796
AL
1757#[stable(feature = "rust1", since = "1.0.0")]
1758impl<T> AsRef<[T]> for Vec<T> {
1759 fn as_ref(&self) -> &[T] {
1760 self
1761 }
1762}
1763
b039eaaf
SL
1764#[stable(feature = "vec_as_mut", since = "1.5.0")]
1765impl<T> AsMut<[T]> for Vec<T> {
1766 fn as_mut(&mut self) -> &mut [T] {
1767 self
1768 }
1769}
1770
c34b1796
AL
1771#[stable(feature = "rust1", since = "1.0.0")]
1772impl<'a, T: Clone> From<&'a [T]> for Vec<T> {
1773 #[cfg(not(test))]
1774 fn from(s: &'a [T]) -> Vec<T> {
1775 s.to_vec()
1776 }
1777 #[cfg(test)]
1778 fn from(s: &'a [T]) -> Vec<T> {
1779 ::slice::to_vec(s)
1780 }
1781}
1782
c30ab7b3
SL
1783#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
1784impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where [T]: ToOwned<Owned=Vec<T>> {
1785 fn from(s: Cow<'a, [T]>) -> Vec<T> {
1786 s.into_owned()
1787 }
1788}
1789
c34b1796
AL
1790#[stable(feature = "rust1", since = "1.0.0")]
1791impl<'a> From<&'a str> for Vec<u8> {
1792 fn from(s: &'a str) -> Vec<u8> {
1793 From::from(s.as_bytes())
1794 }
1795}
1796
1a4d82fc
JJ
1797////////////////////////////////////////////////////////////////////////////////
1798// Clone-on-write
1799////////////////////////////////////////////////////////////////////////////////
1800
7453a54e
SL
1801#[stable(feature = "cow_from_vec", since = "1.7.0")]
1802impl<'a, T: Clone> From<&'a [T]> for Cow<'a, [T]> {
1803 fn from(s: &'a [T]) -> Cow<'a, [T]> {
1804 Cow::Borrowed(s)
1805 }
1806}
1807
1808#[stable(feature = "cow_from_vec", since = "1.7.0")]
1809impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]> {
1810 fn from(v: Vec<T>) -> Cow<'a, [T]> {
1811 Cow::Owned(v)
1812 }
1813}
1814
bd371182 1815#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1816impl<'a, T> FromIterator<T> for Cow<'a, [T]> where T: Clone {
92a42be0 1817 fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Cow<'a, [T]> {
1a4d82fc
JJ
1818 Cow::Owned(FromIterator::from_iter(it))
1819 }
1820}
1821
1a4d82fc
JJ
1822////////////////////////////////////////////////////////////////////////////////
1823// Iterators
1824////////////////////////////////////////////////////////////////////////////////
1825
1826/// An iterator that moves out of a vector.
5bcae85e
SL
1827///
1828/// This `struct` is created by the `into_iter` method on [`Vec`][`Vec`] (provided
1829/// by the [`IntoIterator`] trait).
1830///
1831/// [`Vec`]: struct.Vec.html
1832/// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html
85aaf69f 1833#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1834pub struct IntoIter<T> {
5bcae85e
SL
1835 buf: Shared<T>,
1836 cap: usize,
1a4d82fc 1837 ptr: *const T,
92a42be0 1838 end: *const T,
1a4d82fc
JJ
1839}
1840
c30ab7b3 1841#[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
9e0c209e
SL
1842impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
1843 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1844 f.debug_tuple("IntoIter")
1845 .field(&self.as_slice())
1846 .finish()
1847 }
1848}
1849
5bcae85e
SL
1850impl<T> IntoIter<T> {
1851 /// Returns the remaining items of this iterator as a slice.
1852 ///
1853 /// # Examples
1854 ///
c30ab7b3 1855 /// ```
5bcae85e
SL
1856 /// # #![feature(vec_into_iter_as_slice)]
1857 /// let vec = vec!['a', 'b', 'c'];
1858 /// let mut into_iter = vec.into_iter();
1859 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
1860 /// let _ = into_iter.next().unwrap();
1861 /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
1862 /// ```
1863 #[unstable(feature = "vec_into_iter_as_slice", issue = "35601")]
1864 pub fn as_slice(&self) -> &[T] {
1865 unsafe {
1866 slice::from_raw_parts(self.ptr, self.len())
1867 }
1868 }
1869
1870 /// Returns the remaining items of this iterator as a mutable slice.
1871 ///
1872 /// # Examples
1873 ///
c30ab7b3 1874 /// ```
5bcae85e
SL
1875 /// # #![feature(vec_into_iter_as_slice)]
1876 /// let vec = vec!['a', 'b', 'c'];
1877 /// let mut into_iter = vec.into_iter();
1878 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
1879 /// into_iter.as_mut_slice()[2] = 'z';
1880 /// assert_eq!(into_iter.next().unwrap(), 'a');
1881 /// assert_eq!(into_iter.next().unwrap(), 'b');
1882 /// assert_eq!(into_iter.next().unwrap(), 'z');
1883 /// ```
1884 #[unstable(feature = "vec_into_iter_as_slice", issue = "35601")]
1885 pub fn as_mut_slice(&self) -> &mut [T] {
1886 unsafe {
1887 slice::from_raw_parts_mut(self.ptr as *mut T, self.len())
1888 }
1889 }
1890}
1891
92a42be0
SL
1892#[stable(feature = "rust1", since = "1.0.0")]
1893unsafe impl<T: Send> Send for IntoIter<T> {}
1894#[stable(feature = "rust1", since = "1.0.0")]
1895unsafe impl<T: Sync> Sync for IntoIter<T> {}
85aaf69f 1896
85aaf69f 1897#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1898impl<T> Iterator for IntoIter<T> {
1899 type Item = T;
1900
1901 #[inline]
85aaf69f 1902 fn next(&mut self) -> Option<T> {
1a4d82fc 1903 unsafe {
5bcae85e 1904 if self.ptr as *const _ == self.end {
1a4d82fc
JJ
1905 None
1906 } else {
1907 if mem::size_of::<T>() == 0 {
1908 // purposefully don't use 'ptr.offset' because for
1909 // vectors with 0-size elements this would return the
1910 // same pointer.
5bcae85e 1911 self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T;
1a4d82fc
JJ
1912
1913 // Use a non-null pointer value
85aaf69f 1914 Some(ptr::read(EMPTY as *mut T))
1a4d82fc
JJ
1915 } else {
1916 let old = self.ptr;
1917 self.ptr = self.ptr.offset(1);
1918
1919 Some(ptr::read(old))
1920 }
1921 }
1922 }
1923 }
1924
1925 #[inline]
85aaf69f
SL
1926 fn size_hint(&self) -> (usize, Option<usize>) {
1927 let diff = (self.end as usize) - (self.ptr as usize);
1a4d82fc 1928 let size = mem::size_of::<T>();
92a42be0
SL
1929 let exact = diff /
1930 (if size == 0 {
1931 1
1932 } else {
1933 size
1934 });
1a4d82fc
JJ
1935 (exact, Some(exact))
1936 }
d9579d0f
AL
1937
1938 #[inline]
1939 fn count(self) -> usize {
3157f602 1940 self.len()
d9579d0f 1941 }
1a4d82fc
JJ
1942}
1943
85aaf69f 1944#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1945impl<T> DoubleEndedIterator for IntoIter<T> {
1946 #[inline]
85aaf69f 1947 fn next_back(&mut self) -> Option<T> {
1a4d82fc
JJ
1948 unsafe {
1949 if self.end == self.ptr {
1950 None
1951 } else {
1952 if mem::size_of::<T>() == 0 {
1953 // See above for why 'ptr.offset' isn't used
5bcae85e 1954 self.end = arith_offset(self.end as *const i8, -1) as *mut T;
1a4d82fc
JJ
1955
1956 // Use a non-null pointer value
85aaf69f 1957 Some(ptr::read(EMPTY as *mut T))
1a4d82fc
JJ
1958 } else {
1959 self.end = self.end.offset(-1);
1960
e9174d1e 1961 Some(ptr::read(self.end))
1a4d82fc
JJ
1962 }
1963 }
1964 }
1965 }
1966}
1967
85aaf69f 1968#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1969impl<T> ExactSizeIterator for IntoIter<T> {}
1970
9e0c209e
SL
1971#[unstable(feature = "fused", issue = "35602")]
1972impl<T> FusedIterator for IntoIter<T> {}
1973
c30ab7b3
SL
1974#[unstable(feature = "trusted_len", issue = "37572")]
1975unsafe impl<T> TrustedLen for IntoIter<T> {}
1976
7453a54e
SL
1977#[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
1978impl<T: Clone> Clone for IntoIter<T> {
1979 fn clone(&self) -> IntoIter<T> {
5bcae85e 1980 self.as_slice().to_owned().into_iter()
7453a54e
SL
1981 }
1982}
1983
85aaf69f 1984#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1985impl<T> Drop for IntoIter<T> {
b039eaaf 1986 #[unsafe_destructor_blind_to_params]
1a4d82fc
JJ
1987 fn drop(&mut self) {
1988 // destroy the remaining elements
5bcae85e 1989 for _x in self.by_ref() {}
c1a9b12d
SL
1990
1991 // RawVec handles deallocation
5bcae85e 1992 let _ = unsafe { RawVec::from_raw_parts(*self.buf, self.cap) };
1a4d82fc
JJ
1993 }
1994}
1995
d9579d0f 1996/// A draining iterator for `Vec<T>`.
5bcae85e
SL
1997///
1998/// This `struct` is created by the [`drain`] method on [`Vec`].
1999///
2000/// [`drain`]: struct.Vec.html#method.drain
2001/// [`Vec`]: struct.Vec.html
92a42be0 2002#[stable(feature = "drain", since = "1.6.0")]
d9579d0f
AL
2003pub struct Drain<'a, T: 'a> {
2004 /// Index of tail to preserve
2005 tail_start: usize,
2006 /// Length of tail
2007 tail_len: usize,
2008 /// Current remaining range to remove
5bcae85e
SL
2009 iter: slice::Iter<'a, T>,
2010 vec: Shared<Vec<T>>,
1a4d82fc
JJ
2011}
2012
92a42be0 2013#[stable(feature = "drain", since = "1.6.0")]
c34b1796 2014unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {}
92a42be0 2015#[stable(feature = "drain", since = "1.6.0")]
c34b1796
AL
2016unsafe impl<'a, T: Send> Send for Drain<'a, T> {}
2017
c30ab7b3 2018#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
2019impl<'a, T> Iterator for Drain<'a, T> {
2020 type Item = T;
2021
2022 #[inline]
2023 fn next(&mut self) -> Option<T> {
92a42be0 2024 self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) })
1a4d82fc
JJ
2025 }
2026
85aaf69f 2027 fn size_hint(&self) -> (usize, Option<usize>) {
d9579d0f 2028 self.iter.size_hint()
1a4d82fc
JJ
2029 }
2030}
2031
c30ab7b3 2032#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
2033impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
2034 #[inline]
2035 fn next_back(&mut self) -> Option<T> {
92a42be0 2036 self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) })
1a4d82fc
JJ
2037 }
2038}
2039
c30ab7b3 2040#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
2041impl<'a, T> Drop for Drain<'a, T> {
2042 fn drop(&mut self) {
d9579d0f 2043 // exhaust self first
92a42be0 2044 while let Some(_) = self.next() {}
1a4d82fc 2045
d9579d0f
AL
2046 if self.tail_len > 0 {
2047 unsafe {
5bcae85e 2048 let source_vec = &mut **self.vec;
d9579d0f
AL
2049 // memmove back untouched tail, update to new length
2050 let start = source_vec.len();
2051 let tail = self.tail_start;
2052 let src = source_vec.as_ptr().offset(tail as isize);
2053 let dst = source_vec.as_mut_ptr().offset(start as isize);
2054 ptr::copy(src, dst, self.tail_len);
2055 source_vec.set_len(start + self.tail_len);
2056 }
2057 }
1a4d82fc
JJ
2058 }
2059}
2060
d9579d0f 2061
c30ab7b3 2062#[stable(feature = "drain", since = "1.6.0")]
d9579d0f 2063impl<'a, T> ExactSizeIterator for Drain<'a, T> {}
9e0c209e
SL
2064
2065#[unstable(feature = "fused", issue = "35602")]
2066impl<'a, T> FusedIterator for Drain<'a, T> {}