]> git.proxmox.com Git - rustc.git/blame - src/libcompiler_builtins/compiler-rt/lib/builtins/fp_mul_impl.inc
New upstream version 1.25.0+dfsg1
[rustc.git] / src / libcompiler_builtins / compiler-rt / lib / builtins / fp_mul_impl.inc
CommitLineData
92a42be0
SL
1//===---- lib/fp_mul_impl.inc - floating point multiplication -----*- C -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is dual licensed under the MIT and the University of Illinois Open
6// Source Licenses. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements soft-float multiplication with the IEEE-754 default
11// rounding (to nearest, ties to even).
12//
13//===----------------------------------------------------------------------===//
14
15#include "fp_lib.h"
16
17static __inline fp_t __mulXf3__(fp_t a, fp_t b) {
18 const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
19 const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
20 const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit;
21
22 rep_t aSignificand = toRep(a) & significandMask;
23 rep_t bSignificand = toRep(b) & significandMask;
24 int scale = 0;
25
26 // Detect if a or b is zero, denormal, infinity, or NaN.
27 if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
28
29 const rep_t aAbs = toRep(a) & absMask;
30 const rep_t bAbs = toRep(b) & absMask;
31
32 // NaN * anything = qNaN
33 if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
34 // anything * NaN = qNaN
35 if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
36
37 if (aAbs == infRep) {
38 // infinity * non-zero = +/- infinity
39 if (bAbs) return fromRep(aAbs | productSign);
40 // infinity * zero = NaN
41 else return fromRep(qnanRep);
42 }
43
44 if (bAbs == infRep) {
45 //? non-zero * infinity = +/- infinity
46 if (aAbs) return fromRep(bAbs | productSign);
47 // zero * infinity = NaN
48 else return fromRep(qnanRep);
49 }
50
51 // zero * anything = +/- zero
52 if (!aAbs) return fromRep(productSign);
53 // anything * zero = +/- zero
54 if (!bAbs) return fromRep(productSign);
55
56 // one or both of a or b is denormal, the other (if applicable) is a
57 // normal number. Renormalize one or both of a and b, and set scale to
58 // include the necessary exponent adjustment.
59 if (aAbs < implicitBit) scale += normalize(&aSignificand);
60 if (bAbs < implicitBit) scale += normalize(&bSignificand);
61 }
62
63 // Or in the implicit significand bit. (If we fell through from the
64 // denormal path it was already set by normalize( ), but setting it twice
65 // won't hurt anything.)
66 aSignificand |= implicitBit;
67 bSignificand |= implicitBit;
68
69 // Get the significand of a*b. Before multiplying the significands, shift
70 // one of them left to left-align it in the field. Thus, the product will
71 // have (exponentBits + 2) integral digits, all but two of which must be
72 // zero. Normalizing this result is just a conditional left-shift by one
73 // and bumping the exponent accordingly.
74 rep_t productHi, productLo;
75 wideMultiply(aSignificand, bSignificand << exponentBits,
76 &productHi, &productLo);
77
78 int productExponent = aExponent + bExponent - exponentBias + scale;
79
80 // Normalize the significand, adjust exponent if needed.
81 if (productHi & implicitBit) productExponent++;
82 else wideLeftShift(&productHi, &productLo, 1);
83
84 // If we have overflowed the type, return +/- infinity.
85 if (productExponent >= maxExponent) return fromRep(infRep | productSign);
86
87 if (productExponent <= 0) {
88 // Result is denormal before rounding
89 //
90 // If the result is so small that it just underflows to zero, return
91 // a zero of the appropriate sign. Mathematically there is no need to
92 // handle this case separately, but we make it a special case to
93 // simplify the shift logic.
94 const unsigned int shift = REP_C(1) - (unsigned int)productExponent;
95 if (shift >= typeWidth) return fromRep(productSign);
96
97 // Otherwise, shift the significand of the result so that the round
98 // bit is the high bit of productLo.
99 wideRightShiftWithSticky(&productHi, &productLo, shift);
100 }
101 else {
102 // Result is normal before rounding; insert the exponent.
103 productHi &= significandMask;
104 productHi |= (rep_t)productExponent << significandBits;
105 }
106
107 // Insert the sign of the result:
108 productHi |= productSign;
109
110 // Final rounding. The final result may overflow to infinity, or underflow
111 // to zero, but those are the correct results in those cases. We use the
112 // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
113 if (productLo > signBit) productHi++;
114 if (productLo == signBit) productHi += productHi & 1;
115 return fromRep(productHi);
116}