]> git.proxmox.com Git - rustc.git/blame - src/libcore/iter/traits/iterator.rs
New upstream version 1.41.1+dfsg1
[rustc.git] / src / libcore / iter / traits / iterator.rs
CommitLineData
e1599b0c
XL
1use crate::cmp::{self, Ordering};
2use crate::ops::{Add, Try};
a7813a04 3
9fa01778
XL
4use super::super::LoopState;
5use super::super::{Chain, Cycle, Copied, Cloned, Enumerate, Filter, FilterMap, Fuse};
6use super::super::{Flatten, FlatMap};
7use super::super::{Inspect, Map, Peekable, Scan, Skip, SkipWhile, StepBy, Take, TakeWhile, Rev};
8use super::super::{Zip, Sum, Product, FromIterator};
a7813a04 9
8faf50e0 10fn _assert_is_object_safe(_: &dyn Iterator<Item=()>) {}
a7813a04
XL
11
12/// An interface for dealing with iterators.
13///
14/// This is the main iterator trait. For more about the concept of iterators
15/// generally, please see the [module-level documentation]. In particular, you
16/// may want to know how to [implement `Iterator`][impl].
17///
18/// [module-level documentation]: index.html
19/// [impl]: index.html#implementing-iterator
20#[stable(feature = "rust1", since = "1.0.0")]
2c00a5a8 21#[rustc_on_unimplemented(
0bf4aa26
XL
22 on(
23 _Self="[std::ops::Range<Idx>; 1]",
24 label="if you meant to iterate between two values, remove the square brackets",
25 note="`[start..end]` is an array of one `Range`; you might have meant to have a `Range` \
26 without the brackets: `start..end`"
27 ),
28 on(
29 _Self="[std::ops::RangeFrom<Idx>; 1]",
30 label="if you meant to iterate from a value onwards, remove the square brackets",
31 note="`[start..]` is an array of one `RangeFrom`; you might have meant to have a \
32 `RangeFrom` without the brackets: `start..`, keeping in mind that iterating over an \
33 unbounded iterator will run forever unless you `break` or `return` from within the \
34 loop"
35 ),
36 on(
37 _Self="[std::ops::RangeTo<Idx>; 1]",
38 label="if you meant to iterate until a value, remove the square brackets and add a \
39 starting value",
40 note="`[..end]` is an array of one `RangeTo`; you might have meant to have a bounded \
41 `Range` without the brackets: `0..end`"
42 ),
43 on(
44 _Self="[std::ops::RangeInclusive<Idx>; 1]",
45 label="if you meant to iterate between two values, remove the square brackets",
46 note="`[start..=end]` is an array of one `RangeInclusive`; you might have meant to have a \
47 `RangeInclusive` without the brackets: `start..=end`"
48 ),
49 on(
50 _Self="[std::ops::RangeToInclusive<Idx>; 1]",
51 label="if you meant to iterate until a value (including it), remove the square brackets \
52 and add a starting value",
53 note="`[..=end]` is an array of one `RangeToInclusive`; you might have meant to have a \
54 bounded `RangeInclusive` without the brackets: `0..=end`"
55 ),
56 on(
57 _Self="std::ops::RangeTo<Idx>",
58 label="if you meant to iterate until a value, add a starting value",
59 note="`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \
60 bounded `Range`: `0..end`"
61 ),
62 on(
63 _Self="std::ops::RangeToInclusive<Idx>",
64 label="if you meant to iterate until a value (including it), add a starting value",
65 note="`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \
66 to have a bounded `RangeInclusive`: `0..=end`"
67 ),
2c00a5a8
XL
68 on(
69 _Self="&str",
70 label="`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
71 ),
0bf4aa26
XL
72 on(
73 _Self="std::string::String",
74 label="`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
75 ),
76 on(
77 _Self="[]",
78 label="borrow the array with `&` or call `.iter()` on it to iterate over it",
0731742a 79 note="arrays are not iterators, but slices like the following are: `&[1, 2, 3]`"
0bf4aa26
XL
80 ),
81 on(
82 _Self="{integral}",
83 note="if you want to iterate between `start` until a value `end`, use the exclusive range \
84 syntax `start..end` or the inclusive range syntax `start..=end`"
85 ),
86 label="`{Self}` is not an iterator",
87 message="`{Self}` is not an iterator"
2c00a5a8 88)]
ff7c6d11 89#[doc(spotlight)]
0731742a 90#[must_use = "iterators are lazy and do nothing unless consumed"]
a7813a04
XL
91pub trait Iterator {
92 /// The type of the elements being iterated over.
93 #[stable(feature = "rust1", since = "1.0.0")]
94 type Item;
95
96 /// Advances the iterator and returns the next value.
97 ///
476ff2be 98 /// Returns [`None`] when iteration is finished. Individual iterator
a7813a04 99 /// implementations may choose to resume iteration, and so calling `next()`
476ff2be 100 /// again may or may not eventually start returning [`Some(Item)`] again at some
a7813a04
XL
101 /// point.
102 ///
476ff2be
SL
103 /// [`None`]: ../../std/option/enum.Option.html#variant.None
104 /// [`Some(Item)`]: ../../std/option/enum.Option.html#variant.Some
105 ///
a7813a04
XL
106 /// # Examples
107 ///
108 /// Basic usage:
109 ///
110 /// ```
111 /// let a = [1, 2, 3];
112 ///
113 /// let mut iter = a.iter();
114 ///
115 /// // A call to next() returns the next value...
116 /// assert_eq!(Some(&1), iter.next());
117 /// assert_eq!(Some(&2), iter.next());
118 /// assert_eq!(Some(&3), iter.next());
119 ///
120 /// // ... and then None once it's over.
121 /// assert_eq!(None, iter.next());
122 ///
9fa01778 123 /// // More calls may or may not return `None`. Here, they always will.
a7813a04
XL
124 /// assert_eq!(None, iter.next());
125 /// assert_eq!(None, iter.next());
126 /// ```
127 #[stable(feature = "rust1", since = "1.0.0")]
128 fn next(&mut self) -> Option<Self::Item>;
129
130 /// Returns the bounds on the remaining length of the iterator.
131 ///
132 /// Specifically, `size_hint()` returns a tuple where the first element
133 /// is the lower bound, and the second element is the upper bound.
134 ///
476ff2be
SL
135 /// The second half of the tuple that is returned is an [`Option`]`<`[`usize`]`>`.
136 /// A [`None`] here means that either there is no known upper bound, or the
137 /// upper bound is larger than [`usize`].
a7813a04
XL
138 ///
139 /// # Implementation notes
140 ///
141 /// It is not enforced that an iterator implementation yields the declared
142 /// number of elements. A buggy iterator may yield less than the lower bound
143 /// or more than the upper bound of elements.
144 ///
145 /// `size_hint()` is primarily intended to be used for optimizations such as
146 /// reserving space for the elements of the iterator, but must not be
0731742a 147 /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
a7813a04
XL
148 /// implementation of `size_hint()` should not lead to memory safety
149 /// violations.
150 ///
151 /// That said, the implementation should provide a correct estimation,
152 /// because otherwise it would be a violation of the trait's protocol.
153 ///
0731742a 154 /// The default implementation returns `(0, `[`None`]`)` which is correct for any
a7813a04
XL
155 /// iterator.
156 ///
476ff2be
SL
157 /// [`usize`]: ../../std/primitive.usize.html
158 /// [`Option`]: ../../std/option/enum.Option.html
159 /// [`None`]: ../../std/option/enum.Option.html#variant.None
160 ///
a7813a04
XL
161 /// # Examples
162 ///
163 /// Basic usage:
164 ///
165 /// ```
166 /// let a = [1, 2, 3];
167 /// let iter = a.iter();
168 ///
169 /// assert_eq!((3, Some(3)), iter.size_hint());
170 /// ```
171 ///
172 /// A more complex example:
173 ///
174 /// ```
175 /// // The even numbers from zero to ten.
176 /// let iter = (0..10).filter(|x| x % 2 == 0);
177 ///
178 /// // We might iterate from zero to ten times. Knowing that it's five
179 /// // exactly wouldn't be possible without executing filter().
180 /// assert_eq!((0, Some(10)), iter.size_hint());
181 ///
7cac9316 182 /// // Let's add five more numbers with chain()
a7813a04
XL
183 /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
184 ///
185 /// // now both bounds are increased by five
186 /// assert_eq!((5, Some(15)), iter.size_hint());
187 /// ```
188 ///
189 /// Returning `None` for an upper bound:
190 ///
191 /// ```
192 /// // an infinite iterator has no upper bound
7cac9316 193 /// // and the maximum possible lower bound
a7813a04
XL
194 /// let iter = 0..;
195 ///
7cac9316 196 /// assert_eq!((usize::max_value(), None), iter.size_hint());
a7813a04
XL
197 /// ```
198 #[inline]
199 #[stable(feature = "rust1", since = "1.0.0")]
200 fn size_hint(&self) -> (usize, Option<usize>) { (0, None) }
201
202 /// Consumes the iterator, counting the number of iterations and returning it.
203 ///
60c5eb7d
XL
204 /// This method will call [`next`] repeatedly until [`None`] is encountered,
205 /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
206 /// called at least once even if the iterator does not have any elements.
a7813a04 207 ///
cc61c64b 208 /// [`next`]: #tymethod.next
476ff2be 209 /// [`None`]: ../../std/option/enum.Option.html#variant.None
60c5eb7d 210 /// [`Some`]: ../../std/option/enum.Option.html#variant.Some
a7813a04
XL
211 ///
212 /// # Overflow Behavior
213 ///
214 /// The method does no guarding against overflows, so counting elements of
476ff2be 215 /// an iterator with more than [`usize::MAX`] elements either produces the
a7813a04
XL
216 /// wrong result or panics. If debug assertions are enabled, a panic is
217 /// guaranteed.
218 ///
219 /// # Panics
220 ///
476ff2be 221 /// This function might panic if the iterator has more than [`usize::MAX`]
a7813a04
XL
222 /// elements.
223 ///
0531ce1d 224 /// [`usize::MAX`]: ../../std/usize/constant.MAX.html
476ff2be 225 ///
a7813a04
XL
226 /// # Examples
227 ///
228 /// Basic usage:
229 ///
230 /// ```
231 /// let a = [1, 2, 3];
232 /// assert_eq!(a.iter().count(), 3);
233 ///
234 /// let a = [1, 2, 3, 4, 5];
235 /// assert_eq!(a.iter().count(), 5);
236 /// ```
237 #[inline]
238 #[stable(feature = "rust1", since = "1.0.0")]
239 fn count(self) -> usize where Self: Sized {
e1599b0c
XL
240 #[inline]
241 fn add1<T>(count: usize, _: T) -> usize {
242 // Might overflow.
243 Add::add(count, 1)
244 }
245
246 self.fold(0, add1)
a7813a04
XL
247 }
248
249 /// Consumes the iterator, returning the last element.
250 ///
476ff2be
SL
251 /// This method will evaluate the iterator until it returns [`None`]. While
252 /// doing so, it keeps track of the current element. After [`None`] is
a7813a04
XL
253 /// returned, `last()` will then return the last element it saw.
254 ///
476ff2be
SL
255 /// [`None`]: ../../std/option/enum.Option.html#variant.None
256 ///
a7813a04
XL
257 /// # Examples
258 ///
259 /// Basic usage:
260 ///
261 /// ```
262 /// let a = [1, 2, 3];
263 /// assert_eq!(a.iter().last(), Some(&3));
264 ///
265 /// let a = [1, 2, 3, 4, 5];
266 /// assert_eq!(a.iter().last(), Some(&5));
267 /// ```
268 #[inline]
269 #[stable(feature = "rust1", since = "1.0.0")]
270 fn last(self) -> Option<Self::Item> where Self: Sized {
e1599b0c
XL
271 #[inline]
272 fn some<T>(_: Option<T>, x: T) -> Option<T> {
273 Some(x)
274 }
275
276 self.fold(None, some)
a7813a04
XL
277 }
278
c30ab7b3 279 /// Returns the `n`th element of the iterator.
a7813a04 280 ///
a7813a04
XL
281 /// Like most indexing operations, the count starts from zero, so `nth(0)`
282 /// returns the first value, `nth(1)` the second, and so on.
283 ///
8bb4bdeb
XL
284 /// Note that all preceding elements, as well as the returned element, will be
285 /// consumed from the iterator. That means that the preceding elements will be
286 /// discarded, and also that calling `nth(0)` multiple times on the same iterator
287 /// will return different elements.
288 ///
476ff2be 289 /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
a7813a04
XL
290 /// iterator.
291 ///
476ff2be
SL
292 /// [`None`]: ../../std/option/enum.Option.html#variant.None
293 ///
a7813a04
XL
294 /// # Examples
295 ///
296 /// Basic usage:
297 ///
298 /// ```
299 /// let a = [1, 2, 3];
300 /// assert_eq!(a.iter().nth(1), Some(&2));
301 /// ```
302 ///
303 /// Calling `nth()` multiple times doesn't rewind the iterator:
304 ///
305 /// ```
306 /// let a = [1, 2, 3];
307 ///
308 /// let mut iter = a.iter();
309 ///
310 /// assert_eq!(iter.nth(1), Some(&2));
311 /// assert_eq!(iter.nth(1), None);
312 /// ```
313 ///
314 /// Returning `None` if there are less than `n + 1` elements:
315 ///
316 /// ```
317 /// let a = [1, 2, 3];
318 /// assert_eq!(a.iter().nth(10), None);
319 /// ```
320 #[inline]
321 #[stable(feature = "rust1", since = "1.0.0")]
476ff2be 322 fn nth(&mut self, mut n: usize) -> Option<Self::Item> {
a7813a04
XL
323 for x in self {
324 if n == 0 { return Some(x) }
325 n -= 1;
326 }
327 None
328 }
329
7cac9316
XL
330 /// Creates an iterator starting at the same point, but stepping by
331 /// the given amount at each iteration.
332 ///
94b46f34 333 /// Note 1: The first element of the iterator will always be returned,
7cac9316
XL
334 /// regardless of the step given.
335 ///
94b46f34
XL
336 /// Note 2: The time at which ignored elements are pulled is not fixed.
337 /// `StepBy` behaves like the sequence `next(), nth(step-1), nth(step-1), …`,
338 /// but is also free to behave like the sequence
339 /// `advance_n_and_return_first(step), advance_n_and_return_first(step), …`
340 /// Which way is used may change for some iterators for performance reasons.
341 /// The second way will advance the iterator earlier and may consume more items.
342 ///
343 /// `advance_n_and_return_first` is the equivalent of:
344 /// ```
345 /// fn advance_n_and_return_first<I>(iter: &mut I, total_step: usize) -> Option<I::Item>
346 /// where
347 /// I: Iterator,
348 /// {
349 /// let next = iter.next();
350 /// if total_step > 1 {
351 /// iter.nth(total_step-2);
352 /// }
353 /// next
354 /// }
355 /// ```
356 ///
7cac9316
XL
357 /// # Panics
358 ///
359 /// The method will panic if the given step is `0`.
360 ///
361 /// # Examples
362 ///
363 /// Basic usage:
364 ///
365 /// ```
7cac9316 366 /// let a = [0, 1, 2, 3, 4, 5];
48663c56 367 /// let mut iter = a.iter().step_by(2);
7cac9316
XL
368 ///
369 /// assert_eq!(iter.next(), Some(&0));
370 /// assert_eq!(iter.next(), Some(&2));
371 /// assert_eq!(iter.next(), Some(&4));
372 /// assert_eq!(iter.next(), None);
373 /// ```
374 #[inline]
94b46f34 375 #[stable(feature = "iterator_step_by", since = "1.28.0")]
7cac9316 376 fn step_by(self, step: usize) -> StepBy<Self> where Self: Sized {
9fa01778 377 StepBy::new(self, step)
7cac9316
XL
378 }
379
a7813a04
XL
380 /// Takes two iterators and creates a new iterator over both in sequence.
381 ///
382 /// `chain()` will return a new iterator which will first iterate over
383 /// values from the first iterator and then over values from the second
384 /// iterator.
385 ///
386 /// In other words, it links two iterators together, in a chain. 🔗
387 ///
e74abb32
XL
388 /// [`once`] is commonly used to adapt a single value into a chain of
389 /// other kinds of iteration.
390 ///
a7813a04
XL
391 /// # Examples
392 ///
393 /// Basic usage:
394 ///
395 /// ```
396 /// let a1 = [1, 2, 3];
397 /// let a2 = [4, 5, 6];
398 ///
399 /// let mut iter = a1.iter().chain(a2.iter());
400 ///
401 /// assert_eq!(iter.next(), Some(&1));
402 /// assert_eq!(iter.next(), Some(&2));
403 /// assert_eq!(iter.next(), Some(&3));
404 /// assert_eq!(iter.next(), Some(&4));
405 /// assert_eq!(iter.next(), Some(&5));
406 /// assert_eq!(iter.next(), Some(&6));
407 /// assert_eq!(iter.next(), None);
408 /// ```
409 ///
410 /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
411 /// anything that can be converted into an [`Iterator`], not just an
412 /// [`Iterator`] itself. For example, slices (`&[T]`) implement
413 /// [`IntoIterator`], and so can be passed to `chain()` directly:
414 ///
a7813a04
XL
415 /// ```
416 /// let s1 = &[1, 2, 3];
417 /// let s2 = &[4, 5, 6];
418 ///
419 /// let mut iter = s1.iter().chain(s2);
420 ///
421 /// assert_eq!(iter.next(), Some(&1));
422 /// assert_eq!(iter.next(), Some(&2));
423 /// assert_eq!(iter.next(), Some(&3));
424 /// assert_eq!(iter.next(), Some(&4));
425 /// assert_eq!(iter.next(), Some(&5));
426 /// assert_eq!(iter.next(), Some(&6));
427 /// assert_eq!(iter.next(), None);
428 /// ```
e74abb32
XL
429 ///
430 /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
431 ///
432 /// ```
433 /// #[cfg(windows)]
434 /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
435 /// use std::os::windows::ffi::OsStrExt;
436 /// s.encode_wide().chain(std::iter::once(0)).collect()
437 /// }
438 /// ```
439 ///
440 /// [`once`]: fn.once.html
441 /// [`Iterator`]: trait.Iterator.html
442 /// [`IntoIterator`]: trait.IntoIterator.html
443 /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
a7813a04
XL
444 #[inline]
445 #[stable(feature = "rust1", since = "1.0.0")]
446 fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter> where
447 Self: Sized, U: IntoIterator<Item=Self::Item>,
448 {
9fa01778 449 Chain::new(self, other.into_iter())
a7813a04
XL
450 }
451
452 /// 'Zips up' two iterators into a single iterator of pairs.
453 ///
454 /// `zip()` returns a new iterator that will iterate over two other
455 /// iterators, returning a tuple where the first element comes from the
456 /// first iterator, and the second element comes from the second iterator.
457 ///
458 /// In other words, it zips two iterators together, into a single one.
459 ///
8faf50e0
XL
460 /// If either iterator returns [`None`], [`next`] from the zipped iterator
461 /// will return [`None`]. If the first iterator returns [`None`], `zip` will
462 /// short-circuit and `next` will not be called on the second iterator.
a7813a04
XL
463 ///
464 /// # Examples
465 ///
466 /// Basic usage:
467 ///
468 /// ```
469 /// let a1 = [1, 2, 3];
470 /// let a2 = [4, 5, 6];
471 ///
472 /// let mut iter = a1.iter().zip(a2.iter());
473 ///
474 /// assert_eq!(iter.next(), Some((&1, &4)));
475 /// assert_eq!(iter.next(), Some((&2, &5)));
476 /// assert_eq!(iter.next(), Some((&3, &6)));
477 /// assert_eq!(iter.next(), None);
478 /// ```
479 ///
480 /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
481 /// anything that can be converted into an [`Iterator`], not just an
482 /// [`Iterator`] itself. For example, slices (`&[T]`) implement
483 /// [`IntoIterator`], and so can be passed to `zip()` directly:
484 ///
485 /// [`IntoIterator`]: trait.IntoIterator.html
486 /// [`Iterator`]: trait.Iterator.html
487 ///
488 /// ```
489 /// let s1 = &[1, 2, 3];
490 /// let s2 = &[4, 5, 6];
491 ///
492 /// let mut iter = s1.iter().zip(s2);
493 ///
494 /// assert_eq!(iter.next(), Some((&1, &4)));
495 /// assert_eq!(iter.next(), Some((&2, &5)));
496 /// assert_eq!(iter.next(), Some((&3, &6)));
497 /// assert_eq!(iter.next(), None);
498 /// ```
499 ///
500 /// `zip()` is often used to zip an infinite iterator to a finite one.
476ff2be 501 /// This works because the finite iterator will eventually return [`None`],
cc61c64b 502 /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
a7813a04
XL
503 ///
504 /// ```
505 /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
506 ///
507 /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
508 ///
509 /// assert_eq!((0, 'f'), enumerate[0]);
510 /// assert_eq!((0, 'f'), zipper[0]);
511 ///
512 /// assert_eq!((1, 'o'), enumerate[1]);
513 /// assert_eq!((1, 'o'), zipper[1]);
514 ///
515 /// assert_eq!((2, 'o'), enumerate[2]);
516 /// assert_eq!((2, 'o'), zipper[2]);
517 /// ```
518 ///
cc61c64b
XL
519 /// [`enumerate`]: trait.Iterator.html#method.enumerate
520 /// [`next`]: ../../std/iter/trait.Iterator.html#tymethod.next
476ff2be 521 /// [`None`]: ../../std/option/enum.Option.html#variant.None
a7813a04
XL
522 #[inline]
523 #[stable(feature = "rust1", since = "1.0.0")]
524 fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter> where
525 Self: Sized, U: IntoIterator
526 {
3157f602 527 Zip::new(self, other.into_iter())
a7813a04
XL
528 }
529
530 /// Takes a closure and creates an iterator which calls that closure on each
531 /// element.
532 ///
533 /// `map()` transforms one iterator into another, by means of its argument:
a1dfa0c6 534 /// something that implements [`FnMut`]. It produces a new iterator which
a7813a04
XL
535 /// calls this closure on each element of the original iterator.
536 ///
537 /// If you are good at thinking in types, you can think of `map()` like this:
538 /// If you have an iterator that gives you elements of some type `A`, and
539 /// you want an iterator of some other type `B`, you can use `map()`,
540 /// passing a closure that takes an `A` and returns a `B`.
541 ///
542 /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
543 /// lazy, it is best used when you're already working with other iterators.
544 /// If you're doing some sort of looping for a side effect, it's considered
545 /// more idiomatic to use [`for`] than `map()`.
546 ///
13cf67c4 547 /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
a1dfa0c6 548 /// [`FnMut`]: ../../std/ops/trait.FnMut.html
a7813a04
XL
549 ///
550 /// # Examples
551 ///
552 /// Basic usage:
553 ///
554 /// ```
555 /// let a = [1, 2, 3];
556 ///
48663c56 557 /// let mut iter = a.iter().map(|x| 2 * x);
a7813a04
XL
558 ///
559 /// assert_eq!(iter.next(), Some(2));
560 /// assert_eq!(iter.next(), Some(4));
561 /// assert_eq!(iter.next(), Some(6));
562 /// assert_eq!(iter.next(), None);
563 /// ```
564 ///
565 /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
566 ///
567 /// ```
568 /// # #![allow(unused_must_use)]
569 /// // don't do this:
570 /// (0..5).map(|x| println!("{}", x));
571 ///
572 /// // it won't even execute, as it is lazy. Rust will warn you about this.
573 ///
574 /// // Instead, use for:
575 /// for x in 0..5 {
576 /// println!("{}", x);
577 /// }
578 /// ```
579 #[inline]
580 #[stable(feature = "rust1", since = "1.0.0")]
581 fn map<B, F>(self, f: F) -> Map<Self, F> where
582 Self: Sized, F: FnMut(Self::Item) -> B,
583 {
9fa01778 584 Map::new(self, f)
a7813a04
XL
585 }
586
041b39d2
XL
587 /// Calls a closure on each element of an iterator.
588 ///
589 /// This is equivalent to using a [`for`] loop on the iterator, although
9fa01778 590 /// `break` and `continue` are not possible from a closure. It's generally
041b39d2 591 /// more idiomatic to use a `for` loop, but `for_each` may be more legible
9fa01778 592 /// when processing items at the end of longer iterator chains. In some
041b39d2
XL
593 /// cases `for_each` may also be faster than a loop, because it will use
594 /// internal iteration on adaptors like `Chain`.
595 ///
13cf67c4 596 /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
041b39d2
XL
597 ///
598 /// # Examples
599 ///
600 /// Basic usage:
601 ///
602 /// ```
041b39d2
XL
603 /// use std::sync::mpsc::channel;
604 ///
605 /// let (tx, rx) = channel();
606 /// (0..5).map(|x| x * 2 + 1)
607 /// .for_each(move |x| tx.send(x).unwrap());
608 ///
609 /// let v: Vec<_> = rx.iter().collect();
610 /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
611 /// ```
612 ///
613 /// For such a small example, a `for` loop may be cleaner, but `for_each`
614 /// might be preferable to keep a functional style with longer iterators:
615 ///
616 /// ```
041b39d2
XL
617 /// (0..5).flat_map(|x| x * 100 .. x * 110)
618 /// .enumerate()
619 /// .filter(|&(i, x)| (i + x) % 3 == 0)
620 /// .for_each(|(i, x)| println!("{}:{}", i, x));
621 /// ```
622 #[inline]
3b2f2976 623 #[stable(feature = "iterator_for_each", since = "1.21.0")]
e1599b0c 624 fn for_each<F>(self, f: F) where
041b39d2
XL
625 Self: Sized, F: FnMut(Self::Item),
626 {
e1599b0c
XL
627 #[inline]
628 fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
629 move |(), item| f(item)
630 }
631
632 self.fold((), call(f));
041b39d2
XL
633 }
634
a7813a04
XL
635 /// Creates an iterator which uses a closure to determine if an element
636 /// should be yielded.
637 ///
638 /// The closure must return `true` or `false`. `filter()` creates an
639 /// iterator which calls this closure on each element. If the closure
640 /// returns `true`, then the element is returned. If the closure returns
641 /// `false`, it will try again, and call the closure on the next element,
642 /// seeing if it passes the test.
643 ///
644 /// # Examples
645 ///
646 /// Basic usage:
647 ///
648 /// ```
649 /// let a = [0i32, 1, 2];
650 ///
48663c56 651 /// let mut iter = a.iter().filter(|x| x.is_positive());
a7813a04
XL
652 ///
653 /// assert_eq!(iter.next(), Some(&1));
654 /// assert_eq!(iter.next(), Some(&2));
655 /// assert_eq!(iter.next(), None);
656 /// ```
657 ///
658 /// Because the closure passed to `filter()` takes a reference, and many
659 /// iterators iterate over references, this leads to a possibly confusing
660 /// situation, where the type of the closure is a double reference:
661 ///
662 /// ```
663 /// let a = [0, 1, 2];
664 ///
48663c56 665 /// let mut iter = a.iter().filter(|x| **x > 1); // need two *s!
a7813a04
XL
666 ///
667 /// assert_eq!(iter.next(), Some(&2));
668 /// assert_eq!(iter.next(), None);
669 /// ```
670 ///
671 /// It's common to instead use destructuring on the argument to strip away
672 /// one:
673 ///
674 /// ```
675 /// let a = [0, 1, 2];
676 ///
48663c56 677 /// let mut iter = a.iter().filter(|&x| *x > 1); // both & and *
a7813a04
XL
678 ///
679 /// assert_eq!(iter.next(), Some(&2));
680 /// assert_eq!(iter.next(), None);
681 /// ```
682 ///
683 /// or both:
684 ///
685 /// ```
686 /// let a = [0, 1, 2];
687 ///
48663c56 688 /// let mut iter = a.iter().filter(|&&x| x > 1); // two &s
a7813a04
XL
689 ///
690 /// assert_eq!(iter.next(), Some(&2));
691 /// assert_eq!(iter.next(), None);
692 /// ```
693 ///
694 /// of these layers.
695 #[inline]
696 #[stable(feature = "rust1", since = "1.0.0")]
697 fn filter<P>(self, predicate: P) -> Filter<Self, P> where
698 Self: Sized, P: FnMut(&Self::Item) -> bool,
699 {
9fa01778 700 Filter::new(self, predicate)
a7813a04
XL
701 }
702
703 /// Creates an iterator that both filters and maps.
704 ///
cc61c64b 705 /// The closure must return an [`Option<T>`]. `filter_map` creates an
a7813a04 706 /// iterator which calls this closure on each element. If the closure
476ff2be
SL
707 /// returns [`Some(element)`][`Some`], then that element is returned. If the
708 /// closure returns [`None`], it will try again, and call the closure on the
709 /// next element, seeing if it will return [`Some`].
a7813a04 710 ///
3b2f2976 711 /// Why `filter_map` and not just [`filter`] and [`map`]? The key is in this
a7813a04
XL
712 /// part:
713 ///
cc61c64b
XL
714 /// [`filter`]: #method.filter
715 /// [`map`]: #method.map
a7813a04 716 ///
476ff2be 717 /// > If the closure returns [`Some(element)`][`Some`], then that element is returned.
a7813a04
XL
718 ///
719 /// In other words, it removes the [`Option<T>`] layer automatically. If your
720 /// mapping is already returning an [`Option<T>`] and you want to skip over
cc61c64b 721 /// [`None`]s, then `filter_map` is much, much nicer to use.
a7813a04
XL
722 ///
723 /// # Examples
724 ///
725 /// Basic usage:
726 ///
727 /// ```
ff7c6d11 728 /// let a = ["1", "lol", "3", "NaN", "5"];
a7813a04
XL
729 ///
730 /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
731 ///
732 /// assert_eq!(iter.next(), Some(1));
ff7c6d11
XL
733 /// assert_eq!(iter.next(), Some(3));
734 /// assert_eq!(iter.next(), Some(5));
a7813a04
XL
735 /// assert_eq!(iter.next(), None);
736 /// ```
737 ///
cc61c64b 738 /// Here's the same example, but with [`filter`] and [`map`]:
a7813a04
XL
739 ///
740 /// ```
ff7c6d11
XL
741 /// let a = ["1", "lol", "3", "NaN", "5"];
742 /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
3b2f2976 743 /// assert_eq!(iter.next(), Some(1));
ff7c6d11
XL
744 /// assert_eq!(iter.next(), Some(3));
745 /// assert_eq!(iter.next(), Some(5));
a7813a04
XL
746 /// assert_eq!(iter.next(), None);
747 /// ```
748 ///
476ff2be
SL
749 /// [`Option<T>`]: ../../std/option/enum.Option.html
750 /// [`Some`]: ../../std/option/enum.Option.html#variant.Some
751 /// [`None`]: ../../std/option/enum.Option.html#variant.None
a7813a04
XL
752 #[inline]
753 #[stable(feature = "rust1", since = "1.0.0")]
754 fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F> where
755 Self: Sized, F: FnMut(Self::Item) -> Option<B>,
756 {
9fa01778 757 FilterMap::new(self, f)
a7813a04
XL
758 }
759
760 /// Creates an iterator which gives the current iteration count as well as
761 /// the next value.
762 ///
763 /// The iterator returned yields pairs `(i, val)`, where `i` is the
764 /// current index of iteration and `val` is the value returned by the
765 /// iterator.
766 ///
767 /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
cc61c64b 768 /// different sized integer, the [`zip`] function provides similar
a7813a04
XL
769 /// functionality.
770 ///
a7813a04
XL
771 /// # Overflow Behavior
772 ///
773 /// The method does no guarding against overflows, so enumerating more than
774 /// [`usize::MAX`] elements either produces the wrong result or panics. If
775 /// debug assertions are enabled, a panic is guaranteed.
776 ///
a7813a04
XL
777 /// # Panics
778 ///
779 /// The returned iterator might panic if the to-be-returned index would
476ff2be
SL
780 /// overflow a [`usize`].
781 ///
782 /// [`usize::MAX`]: ../../std/usize/constant.MAX.html
783 /// [`usize`]: ../../std/primitive.usize.html
cc61c64b 784 /// [`zip`]: #method.zip
a7813a04
XL
785 ///
786 /// # Examples
787 ///
788 /// ```
789 /// let a = ['a', 'b', 'c'];
790 ///
791 /// let mut iter = a.iter().enumerate();
792 ///
793 /// assert_eq!(iter.next(), Some((0, &'a')));
794 /// assert_eq!(iter.next(), Some((1, &'b')));
795 /// assert_eq!(iter.next(), Some((2, &'c')));
796 /// assert_eq!(iter.next(), None);
797 /// ```
798 #[inline]
799 #[stable(feature = "rust1", since = "1.0.0")]
800 fn enumerate(self) -> Enumerate<Self> where Self: Sized {
9fa01778 801 Enumerate::new(self)
a7813a04
XL
802 }
803
804 /// Creates an iterator which can use `peek` to look at the next element of
805 /// the iterator without consuming it.
806 ///
cc61c64b 807 /// Adds a [`peek`] method to an iterator. See its documentation for
a7813a04
XL
808 /// more information.
809 ///
cc61c64b 810 /// Note that the underlying iterator is still advanced when [`peek`] is
a7813a04 811 /// called for the first time: In order to retrieve the next element,
7cac9316
XL
812 /// [`next`] is called on the underlying iterator, hence any side effects (i.e.
813 /// anything other than fetching the next value) of the [`next`] method
814 /// will occur.
a7813a04 815 ///
cc61c64b
XL
816 /// [`peek`]: struct.Peekable.html#method.peek
817 /// [`next`]: ../../std/iter/trait.Iterator.html#tymethod.next
a7813a04
XL
818 ///
819 /// # Examples
820 ///
821 /// Basic usage:
822 ///
823 /// ```
824 /// let xs = [1, 2, 3];
825 ///
826 /// let mut iter = xs.iter().peekable();
827 ///
828 /// // peek() lets us see into the future
829 /// assert_eq!(iter.peek(), Some(&&1));
830 /// assert_eq!(iter.next(), Some(&1));
831 ///
832 /// assert_eq!(iter.next(), Some(&2));
833 ///
834 /// // we can peek() multiple times, the iterator won't advance
835 /// assert_eq!(iter.peek(), Some(&&3));
836 /// assert_eq!(iter.peek(), Some(&&3));
837 ///
838 /// assert_eq!(iter.next(), Some(&3));
839 ///
840 /// // after the iterator is finished, so is peek()
841 /// assert_eq!(iter.peek(), None);
842 /// assert_eq!(iter.next(), None);
843 /// ```
844 #[inline]
845 #[stable(feature = "rust1", since = "1.0.0")]
846 fn peekable(self) -> Peekable<Self> where Self: Sized {
9fa01778 847 Peekable::new(self)
a7813a04
XL
848 }
849
cc61c64b 850 /// Creates an iterator that [`skip`]s elements based on a predicate.
a7813a04 851 ///
cc61c64b 852 /// [`skip`]: #method.skip
a7813a04
XL
853 ///
854 /// `skip_while()` takes a closure as an argument. It will call this
855 /// closure on each element of the iterator, and ignore elements
856 /// until it returns `false`.
857 ///
858 /// After `false` is returned, `skip_while()`'s job is over, and the
859 /// rest of the elements are yielded.
860 ///
861 /// # Examples
862 ///
863 /// Basic usage:
864 ///
865 /// ```
866 /// let a = [-1i32, 0, 1];
867 ///
48663c56 868 /// let mut iter = a.iter().skip_while(|x| x.is_negative());
a7813a04
XL
869 ///
870 /// assert_eq!(iter.next(), Some(&0));
871 /// assert_eq!(iter.next(), Some(&1));
872 /// assert_eq!(iter.next(), None);
873 /// ```
874 ///
875 /// Because the closure passed to `skip_while()` takes a reference, and many
876 /// iterators iterate over references, this leads to a possibly confusing
877 /// situation, where the type of the closure is a double reference:
878 ///
879 /// ```
880 /// let a = [-1, 0, 1];
881 ///
48663c56 882 /// let mut iter = a.iter().skip_while(|x| **x < 0); // need two *s!
a7813a04
XL
883 ///
884 /// assert_eq!(iter.next(), Some(&0));
885 /// assert_eq!(iter.next(), Some(&1));
886 /// assert_eq!(iter.next(), None);
887 /// ```
888 ///
889 /// Stopping after an initial `false`:
890 ///
891 /// ```
892 /// let a = [-1, 0, 1, -2];
893 ///
48663c56 894 /// let mut iter = a.iter().skip_while(|x| **x < 0);
a7813a04
XL
895 ///
896 /// assert_eq!(iter.next(), Some(&0));
897 /// assert_eq!(iter.next(), Some(&1));
898 ///
899 /// // while this would have been false, since we already got a false,
900 /// // skip_while() isn't used any more
901 /// assert_eq!(iter.next(), Some(&-2));
902 ///
903 /// assert_eq!(iter.next(), None);
904 /// ```
905 #[inline]
906 #[stable(feature = "rust1", since = "1.0.0")]
907 fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P> where
908 Self: Sized, P: FnMut(&Self::Item) -> bool,
909 {
9fa01778 910 SkipWhile::new(self, predicate)
a7813a04
XL
911 }
912
913 /// Creates an iterator that yields elements based on a predicate.
914 ///
915 /// `take_while()` takes a closure as an argument. It will call this
916 /// closure on each element of the iterator, and yield elements
917 /// while it returns `true`.
918 ///
919 /// After `false` is returned, `take_while()`'s job is over, and the
920 /// rest of the elements are ignored.
921 ///
922 /// # Examples
923 ///
924 /// Basic usage:
925 ///
926 /// ```
927 /// let a = [-1i32, 0, 1];
928 ///
48663c56 929 /// let mut iter = a.iter().take_while(|x| x.is_negative());
a7813a04
XL
930 ///
931 /// assert_eq!(iter.next(), Some(&-1));
932 /// assert_eq!(iter.next(), None);
933 /// ```
934 ///
935 /// Because the closure passed to `take_while()` takes a reference, and many
936 /// iterators iterate over references, this leads to a possibly confusing
937 /// situation, where the type of the closure is a double reference:
938 ///
939 /// ```
940 /// let a = [-1, 0, 1];
941 ///
48663c56 942 /// let mut iter = a.iter().take_while(|x| **x < 0); // need two *s!
a7813a04
XL
943 ///
944 /// assert_eq!(iter.next(), Some(&-1));
945 /// assert_eq!(iter.next(), None);
946 /// ```
947 ///
948 /// Stopping after an initial `false`:
949 ///
950 /// ```
951 /// let a = [-1, 0, 1, -2];
952 ///
48663c56 953 /// let mut iter = a.iter().take_while(|x| **x < 0);
a7813a04
XL
954 ///
955 /// assert_eq!(iter.next(), Some(&-1));
956 ///
957 /// // We have more elements that are less than zero, but since we already
958 /// // got a false, take_while() isn't used any more
959 /// assert_eq!(iter.next(), None);
960 /// ```
961 ///
962 /// Because `take_while()` needs to look at the value in order to see if it
963 /// should be included or not, consuming iterators will see that it is
964 /// removed:
965 ///
966 /// ```
967 /// let a = [1, 2, 3, 4];
48663c56 968 /// let mut iter = a.iter();
a7813a04
XL
969 ///
970 /// let result: Vec<i32> = iter.by_ref()
971 /// .take_while(|n| **n != 3)
972 /// .cloned()
973 /// .collect();
974 ///
975 /// assert_eq!(result, &[1, 2]);
976 ///
977 /// let result: Vec<i32> = iter.cloned().collect();
978 ///
979 /// assert_eq!(result, &[4]);
980 /// ```
981 ///
982 /// The `3` is no longer there, because it was consumed in order to see if
9fa01778 983 /// the iteration should stop, but wasn't placed back into the iterator.
a7813a04
XL
984 #[inline]
985 #[stable(feature = "rust1", since = "1.0.0")]
986 fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P> where
987 Self: Sized, P: FnMut(&Self::Item) -> bool,
988 {
9fa01778 989 TakeWhile::new(self, predicate)
a7813a04
XL
990 }
991
992 /// Creates an iterator that skips the first `n` elements.
993 ///
994 /// After they have been consumed, the rest of the elements are yielded.
dc9dc135 995 /// Rather than overriding this method directly, instead override the `nth` method.
a7813a04
XL
996 ///
997 /// # Examples
998 ///
999 /// Basic usage:
1000 ///
1001 /// ```
1002 /// let a = [1, 2, 3];
1003 ///
1004 /// let mut iter = a.iter().skip(2);
1005 ///
1006 /// assert_eq!(iter.next(), Some(&3));
1007 /// assert_eq!(iter.next(), None);
1008 /// ```
1009 #[inline]
1010 #[stable(feature = "rust1", since = "1.0.0")]
1011 fn skip(self, n: usize) -> Skip<Self> where Self: Sized {
9fa01778 1012 Skip::new(self, n)
a7813a04
XL
1013 }
1014
1015 /// Creates an iterator that yields its first `n` elements.
1016 ///
1017 /// # Examples
1018 ///
1019 /// Basic usage:
1020 ///
1021 /// ```
1022 /// let a = [1, 2, 3];
1023 ///
1024 /// let mut iter = a.iter().take(2);
1025 ///
1026 /// assert_eq!(iter.next(), Some(&1));
1027 /// assert_eq!(iter.next(), Some(&2));
1028 /// assert_eq!(iter.next(), None);
1029 /// ```
1030 ///
1031 /// `take()` is often used with an infinite iterator, to make it finite:
1032 ///
1033 /// ```
1034 /// let mut iter = (0..).take(3);
1035 ///
1036 /// assert_eq!(iter.next(), Some(0));
1037 /// assert_eq!(iter.next(), Some(1));
1038 /// assert_eq!(iter.next(), Some(2));
1039 /// assert_eq!(iter.next(), None);
1040 /// ```
1041 #[inline]
1042 #[stable(feature = "rust1", since = "1.0.0")]
1043 fn take(self, n: usize) -> Take<Self> where Self: Sized, {
9fa01778 1044 Take::new(self, n)
a7813a04
XL
1045 }
1046
cc61c64b 1047 /// An iterator adaptor similar to [`fold`] that holds internal state and
a7813a04
XL
1048 /// produces a new iterator.
1049 ///
cc61c64b 1050 /// [`fold`]: #method.fold
a7813a04
XL
1051 ///
1052 /// `scan()` takes two arguments: an initial value which seeds the internal
1053 /// state, and a closure with two arguments, the first being a mutable
1054 /// reference to the internal state and the second an iterator element.
1055 /// The closure can assign to the internal state to share state between
1056 /// iterations.
1057 ///
1058 /// On iteration, the closure will be applied to each element of the
1059 /// iterator and the return value from the closure, an [`Option`], is
1060 /// yielded by the iterator.
1061 ///
1062 /// [`Option`]: ../../std/option/enum.Option.html
1063 ///
1064 /// # Examples
1065 ///
1066 /// Basic usage:
1067 ///
1068 /// ```
1069 /// let a = [1, 2, 3];
1070 ///
1071 /// let mut iter = a.iter().scan(1, |state, &x| {
1072 /// // each iteration, we'll multiply the state by the element
1073 /// *state = *state * x;
1074 ///
0531ce1d
XL
1075 /// // then, we'll yield the negation of the state
1076 /// Some(-*state)
a7813a04
XL
1077 /// });
1078 ///
0531ce1d
XL
1079 /// assert_eq!(iter.next(), Some(-1));
1080 /// assert_eq!(iter.next(), Some(-2));
1081 /// assert_eq!(iter.next(), Some(-6));
a7813a04
XL
1082 /// assert_eq!(iter.next(), None);
1083 /// ```
1084 #[inline]
1085 #[stable(feature = "rust1", since = "1.0.0")]
1086 fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
1087 where Self: Sized, F: FnMut(&mut St, Self::Item) -> Option<B>,
1088 {
9fa01778 1089 Scan::new(self, initial_state, f)
a7813a04
XL
1090 }
1091
1092 /// Creates an iterator that works like map, but flattens nested structure.
1093 ///
cc61c64b 1094 /// The [`map`] adapter is very useful, but only when the closure
a7813a04
XL
1095 /// argument produces values. If it produces an iterator instead, there's
1096 /// an extra layer of indirection. `flat_map()` will remove this extra layer
1097 /// on its own.
1098 ///
83c7162d 1099 /// You can think of `flat_map(f)` as the semantic equivalent
0531ce1d
XL
1100 /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1101 ///
cc61c64b 1102 /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
a7813a04
XL
1103 /// one item for each element, and `flat_map()`'s closure returns an
1104 /// iterator for each element.
1105 ///
cc61c64b 1106 /// [`map`]: #method.map
0531ce1d 1107 /// [`flatten`]: #method.flatten
476ff2be 1108 ///
a7813a04
XL
1109 /// # Examples
1110 ///
1111 /// Basic usage:
1112 ///
1113 /// ```
1114 /// let words = ["alpha", "beta", "gamma"];
1115 ///
1116 /// // chars() returns an iterator
1117 /// let merged: String = words.iter()
1118 /// .flat_map(|s| s.chars())
1119 /// .collect();
1120 /// assert_eq!(merged, "alphabetagamma");
1121 /// ```
1122 #[inline]
1123 #[stable(feature = "rust1", since = "1.0.0")]
1124 fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1125 where Self: Sized, U: IntoIterator, F: FnMut(Self::Item) -> U,
1126 {
9fa01778 1127 FlatMap::new(self, f)
0531ce1d
XL
1128 }
1129
1130 /// Creates an iterator that flattens nested structure.
1131 ///
1132 /// This is useful when you have an iterator of iterators or an iterator of
1133 /// things that can be turned into iterators and you want to remove one
1134 /// level of indirection.
1135 ///
1136 /// # Examples
1137 ///
1138 /// Basic usage:
1139 ///
1140 /// ```
0531ce1d
XL
1141 /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1142 /// let flattened = data.into_iter().flatten().collect::<Vec<u8>>();
1143 /// assert_eq!(flattened, &[1, 2, 3, 4, 5, 6]);
1144 /// ```
1145 ///
1146 /// Mapping and then flattening:
1147 ///
1148 /// ```
0531ce1d
XL
1149 /// let words = ["alpha", "beta", "gamma"];
1150 ///
1151 /// // chars() returns an iterator
1152 /// let merged: String = words.iter()
1153 /// .map(|s| s.chars())
1154 /// .flatten()
1155 /// .collect();
1156 /// assert_eq!(merged, "alphabetagamma");
1157 /// ```
1158 ///
1159 /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1160 /// in this case since it conveys intent more clearly:
1161 ///
1162 /// ```
1163 /// let words = ["alpha", "beta", "gamma"];
1164 ///
1165 /// // chars() returns an iterator
1166 /// let merged: String = words.iter()
1167 /// .flat_map(|s| s.chars())
1168 /// .collect();
1169 /// assert_eq!(merged, "alphabetagamma");
1170 /// ```
1171 ///
1172 /// Flattening once only removes one level of nesting:
1173 ///
1174 /// ```
0531ce1d
XL
1175 /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1176 ///
1177 /// let d2 = d3.iter().flatten().collect::<Vec<_>>();
1178 /// assert_eq!(d2, [&[1, 2], &[3, 4], &[5, 6], &[7, 8]]);
1179 ///
1180 /// let d1 = d3.iter().flatten().flatten().collect::<Vec<_>>();
1181 /// assert_eq!(d1, [&1, &2, &3, &4, &5, &6, &7, &8]);
1182 /// ```
1183 ///
1184 /// Here we see that `flatten()` does not perform a "deep" flatten.
1185 /// Instead, only one level of nesting is removed. That is, if you
1186 /// `flatten()` a three-dimensional array the result will be
1187 /// two-dimensional and not one-dimensional. To get a one-dimensional
1188 /// structure, you have to `flatten()` again.
83c7162d
XL
1189 ///
1190 /// [`flat_map()`]: #method.flat_map
0531ce1d 1191 #[inline]
b7449926 1192 #[stable(feature = "iterator_flatten", since = "1.29.0")]
0531ce1d
XL
1193 fn flatten(self) -> Flatten<Self>
1194 where Self: Sized, Self::Item: IntoIterator {
9fa01778 1195 Flatten::new(self)
a7813a04
XL
1196 }
1197
476ff2be
SL
1198 /// Creates an iterator which ends after the first [`None`].
1199 ///
1200 /// After an iterator returns [`None`], future calls may or may not yield
1201 /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1202 /// [`None`] is given, it will always return [`None`] forever.
a7813a04 1203 ///
476ff2be
SL
1204 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1205 /// [`Some(T)`]: ../../std/option/enum.Option.html#variant.Some
a7813a04
XL
1206 ///
1207 /// # Examples
1208 ///
1209 /// Basic usage:
1210 ///
1211 /// ```
1212 /// // an iterator which alternates between Some and None
1213 /// struct Alternate {
1214 /// state: i32,
1215 /// }
1216 ///
1217 /// impl Iterator for Alternate {
1218 /// type Item = i32;
1219 ///
1220 /// fn next(&mut self) -> Option<i32> {
1221 /// let val = self.state;
1222 /// self.state = self.state + 1;
1223 ///
1224 /// // if it's even, Some(i32), else None
1225 /// if val % 2 == 0 {
1226 /// Some(val)
1227 /// } else {
1228 /// None
1229 /// }
1230 /// }
1231 /// }
1232 ///
1233 /// let mut iter = Alternate { state: 0 };
1234 ///
1235 /// // we can see our iterator going back and forth
1236 /// assert_eq!(iter.next(), Some(0));
1237 /// assert_eq!(iter.next(), None);
1238 /// assert_eq!(iter.next(), Some(2));
1239 /// assert_eq!(iter.next(), None);
1240 ///
1241 /// // however, once we fuse it...
1242 /// let mut iter = iter.fuse();
1243 ///
1244 /// assert_eq!(iter.next(), Some(4));
1245 /// assert_eq!(iter.next(), None);
1246 ///
9fa01778 1247 /// // it will always return `None` after the first time.
a7813a04
XL
1248 /// assert_eq!(iter.next(), None);
1249 /// assert_eq!(iter.next(), None);
1250 /// assert_eq!(iter.next(), None);
1251 /// ```
1252 #[inline]
1253 #[stable(feature = "rust1", since = "1.0.0")]
1254 fn fuse(self) -> Fuse<Self> where Self: Sized {
9fa01778 1255 Fuse::new(self)
a7813a04
XL
1256 }
1257
60c5eb7d 1258 /// Does something with each element of an iterator, passing the value on.
a7813a04
XL
1259 ///
1260 /// When using iterators, you'll often chain several of them together.
1261 /// While working on such code, you might want to check out what's
1262 /// happening at various parts in the pipeline. To do that, insert
1263 /// a call to `inspect()`.
1264 ///
94b46f34
XL
1265 /// It's more common for `inspect()` to be used as a debugging tool than to
1266 /// exist in your final code, but applications may find it useful in certain
1267 /// situations when errors need to be logged before being discarded.
a7813a04
XL
1268 ///
1269 /// # Examples
1270 ///
1271 /// Basic usage:
1272 ///
1273 /// ```
1274 /// let a = [1, 4, 2, 3];
1275 ///
1276 /// // this iterator sequence is complex.
1277 /// let sum = a.iter()
0531ce1d
XL
1278 /// .cloned()
1279 /// .filter(|x| x % 2 == 0)
1280 /// .fold(0, |sum, i| sum + i);
a7813a04
XL
1281 ///
1282 /// println!("{}", sum);
1283 ///
1284 /// // let's add some inspect() calls to investigate what's happening
1285 /// let sum = a.iter()
0531ce1d
XL
1286 /// .cloned()
1287 /// .inspect(|x| println!("about to filter: {}", x))
1288 /// .filter(|x| x % 2 == 0)
1289 /// .inspect(|x| println!("made it through filter: {}", x))
1290 /// .fold(0, |sum, i| sum + i);
a7813a04
XL
1291 ///
1292 /// println!("{}", sum);
1293 /// ```
1294 ///
1295 /// This will print:
1296 ///
1297 /// ```text
0531ce1d 1298 /// 6
a7813a04
XL
1299 /// about to filter: 1
1300 /// about to filter: 4
1301 /// made it through filter: 4
1302 /// about to filter: 2
1303 /// made it through filter: 2
1304 /// about to filter: 3
1305 /// 6
1306 /// ```
94b46f34
XL
1307 ///
1308 /// Logging errors before discarding them:
1309 ///
1310 /// ```
1311 /// let lines = ["1", "2", "a"];
1312 ///
1313 /// let sum: i32 = lines
1314 /// .iter()
1315 /// .map(|line| line.parse::<i32>())
1316 /// .inspect(|num| {
1317 /// if let Err(ref e) = *num {
1318 /// println!("Parsing error: {}", e);
1319 /// }
1320 /// })
1321 /// .filter_map(Result::ok)
1322 /// .sum();
1323 ///
1324 /// println!("Sum: {}", sum);
1325 /// ```
1326 ///
1327 /// This will print:
1328 ///
1329 /// ```text
1330 /// Parsing error: invalid digit found in string
1331 /// Sum: 3
1332 /// ```
a7813a04
XL
1333 #[inline]
1334 #[stable(feature = "rust1", since = "1.0.0")]
1335 fn inspect<F>(self, f: F) -> Inspect<Self, F> where
1336 Self: Sized, F: FnMut(&Self::Item),
1337 {
9fa01778 1338 Inspect::new(self, f)
a7813a04
XL
1339 }
1340
1341 /// Borrows an iterator, rather than consuming it.
1342 ///
1343 /// This is useful to allow applying iterator adaptors while still
1344 /// retaining ownership of the original iterator.
1345 ///
1346 /// # Examples
1347 ///
1348 /// Basic usage:
1349 ///
1350 /// ```
1351 /// let a = [1, 2, 3];
1352 ///
48663c56 1353 /// let iter = a.iter();
a7813a04 1354 ///
0531ce1d 1355 /// let sum: i32 = iter.take(5).fold(0, |acc, i| acc + i );
a7813a04
XL
1356 ///
1357 /// assert_eq!(sum, 6);
1358 ///
1359 /// // if we try to use iter again, it won't work. The following line
1360 /// // gives "error: use of moved value: `iter`
1361 /// // assert_eq!(iter.next(), None);
1362 ///
1363 /// // let's try that again
1364 /// let a = [1, 2, 3];
1365 ///
48663c56 1366 /// let mut iter = a.iter();
a7813a04
XL
1367 ///
1368 /// // instead, we add in a .by_ref()
0531ce1d 1369 /// let sum: i32 = iter.by_ref().take(2).fold(0, |acc, i| acc + i );
a7813a04
XL
1370 ///
1371 /// assert_eq!(sum, 3);
1372 ///
1373 /// // now this is just fine:
1374 /// assert_eq!(iter.next(), Some(&3));
1375 /// assert_eq!(iter.next(), None);
1376 /// ```
1377 #[stable(feature = "rust1", since = "1.0.0")]
1378 fn by_ref(&mut self) -> &mut Self where Self: Sized { self }
1379
1380 /// Transforms an iterator into a collection.
1381 ///
1382 /// `collect()` can take anything iterable, and turn it into a relevant
1383 /// collection. This is one of the more powerful methods in the standard
1384 /// library, used in a variety of contexts.
1385 ///
1386 /// The most basic pattern in which `collect()` is used is to turn one
cc61c64b 1387 /// collection into another. You take a collection, call [`iter`] on it,
a7813a04
XL
1388 /// do a bunch of transformations, and then `collect()` at the end.
1389 ///
1390 /// One of the keys to `collect()`'s power is that many things you might
1391 /// not think of as 'collections' actually are. For example, a [`String`]
32a655c1
SL
1392 /// is a collection of [`char`]s. And a collection of
1393 /// [`Result<T, E>`][`Result`] can be thought of as single
1394 /// [`Result`]`<Collection<T>, E>`. See the examples below for more.
a7813a04 1395 ///
a7813a04
XL
1396 /// Because `collect()` is so general, it can cause problems with type
1397 /// inference. As such, `collect()` is one of the few times you'll see
1398 /// the syntax affectionately known as the 'turbofish': `::<>`. This
1399 /// helps the inference algorithm understand specifically which collection
1400 /// you're trying to collect into.
1401 ///
1402 /// # Examples
1403 ///
1404 /// Basic usage:
1405 ///
1406 /// ```
1407 /// let a = [1, 2, 3];
1408 ///
1409 /// let doubled: Vec<i32> = a.iter()
1410 /// .map(|&x| x * 2)
1411 /// .collect();
1412 ///
1413 /// assert_eq!(vec![2, 4, 6], doubled);
1414 /// ```
1415 ///
1416 /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1417 /// we could collect into, for example, a [`VecDeque<T>`] instead:
1418 ///
1419 /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1420 ///
1421 /// ```
1422 /// use std::collections::VecDeque;
1423 ///
1424 /// let a = [1, 2, 3];
1425 ///
0531ce1d 1426 /// let doubled: VecDeque<i32> = a.iter().map(|&x| x * 2).collect();
a7813a04
XL
1427 ///
1428 /// assert_eq!(2, doubled[0]);
1429 /// assert_eq!(4, doubled[1]);
1430 /// assert_eq!(6, doubled[2]);
1431 /// ```
1432 ///
1433 /// Using the 'turbofish' instead of annotating `doubled`:
1434 ///
1435 /// ```
1436 /// let a = [1, 2, 3];
1437 ///
0531ce1d 1438 /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
a7813a04
XL
1439 ///
1440 /// assert_eq!(vec![2, 4, 6], doubled);
1441 /// ```
1442 ///
3b2f2976 1443 /// Because `collect()` only cares about what you're collecting into, you can
a7813a04
XL
1444 /// still use a partial type hint, `_`, with the turbofish:
1445 ///
1446 /// ```
1447 /// let a = [1, 2, 3];
1448 ///
0531ce1d 1449 /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
a7813a04
XL
1450 ///
1451 /// assert_eq!(vec![2, 4, 6], doubled);
1452 /// ```
1453 ///
1454 /// Using `collect()` to make a [`String`]:
1455 ///
1456 /// ```
1457 /// let chars = ['g', 'd', 'k', 'k', 'n'];
1458 ///
1459 /// let hello: String = chars.iter()
0531ce1d
XL
1460 /// .map(|&x| x as u8)
1461 /// .map(|x| (x + 1) as char)
1462 /// .collect();
a7813a04
XL
1463 ///
1464 /// assert_eq!("hello", hello);
1465 /// ```
1466 ///
476ff2be 1467 /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
a7813a04
XL
1468 /// see if any of them failed:
1469 ///
1470 /// ```
1471 /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
1472 ///
1473 /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect();
1474 ///
1475 /// // gives us the first error
1476 /// assert_eq!(Err("nope"), result);
1477 ///
1478 /// let results = [Ok(1), Ok(3)];
1479 ///
1480 /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect();
1481 ///
1482 /// // gives us the list of answers
1483 /// assert_eq!(Ok(vec![1, 3]), result);
1484 /// ```
476ff2be 1485 ///
cc61c64b 1486 /// [`iter`]: ../../std/iter/trait.Iterator.html#tymethod.next
476ff2be
SL
1487 /// [`String`]: ../../std/string/struct.String.html
1488 /// [`char`]: ../../std/primitive.char.html
1489 /// [`Result`]: ../../std/result/enum.Result.html
a7813a04
XL
1490 #[inline]
1491 #[stable(feature = "rust1", since = "1.0.0")]
83c7162d 1492 #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
a7813a04
XL
1493 fn collect<B: FromIterator<Self::Item>>(self) -> B where Self: Sized {
1494 FromIterator::from_iter(self)
1495 }
1496
1497 /// Consumes an iterator, creating two collections from it.
1498 ///
1499 /// The predicate passed to `partition()` can return `true`, or `false`.
1500 /// `partition()` returns a pair, all of the elements for which it returned
1501 /// `true`, and all of the elements for which it returned `false`.
1502 ///
416331ca
XL
1503 /// See also [`is_partitioned()`] and [`partition_in_place()`].
1504 ///
1505 /// [`is_partitioned()`]: #method.is_partitioned
1506 /// [`partition_in_place()`]: #method.partition_in_place
1507 ///
a7813a04
XL
1508 /// # Examples
1509 ///
1510 /// Basic usage:
1511 ///
1512 /// ```
1513 /// let a = [1, 2, 3];
1514 ///
0531ce1d 1515 /// let (even, odd): (Vec<i32>, Vec<i32>) = a
48663c56 1516 /// .iter()
0531ce1d 1517 /// .partition(|&n| n % 2 == 0);
a7813a04
XL
1518 ///
1519 /// assert_eq!(even, vec![2]);
1520 /// assert_eq!(odd, vec![1, 3]);
1521 /// ```
1522 #[stable(feature = "rust1", since = "1.0.0")]
e1599b0c 1523 fn partition<B, F>(self, f: F) -> (B, B) where
a7813a04
XL
1524 Self: Sized,
1525 B: Default + Extend<Self::Item>,
1526 F: FnMut(&Self::Item) -> bool
1527 {
e1599b0c
XL
1528 #[inline]
1529 fn extend<'a, T, B: Extend<T>>(
1530 mut f: impl FnMut(&T) -> bool + 'a,
1531 left: &'a mut B,
1532 right: &'a mut B,
1533 ) -> impl FnMut(T) + 'a {
1534 move |x| {
1535 if f(&x) {
1536 left.extend(Some(x));
1537 } else {
1538 right.extend(Some(x));
1539 }
1540 }
1541 }
1542
a7813a04
XL
1543 let mut left: B = Default::default();
1544 let mut right: B = Default::default();
1545
e1599b0c 1546 self.for_each(extend(f, &mut left, &mut right));
a7813a04
XL
1547
1548 (left, right)
1549 }
1550
60c5eb7d 1551 /// Reorders the elements of this iterator *in-place* according to the given predicate,
416331ca
XL
1552 /// such that all those that return `true` precede all those that return `false`.
1553 /// Returns the number of `true` elements found.
1554 ///
1555 /// The relative order of partitioned items is not maintained.
1556 ///
1557 /// See also [`is_partitioned()`] and [`partition()`].
1558 ///
1559 /// [`is_partitioned()`]: #method.is_partitioned
1560 /// [`partition()`]: #method.partition
1561 ///
1562 /// # Examples
1563 ///
1564 /// ```
1565 /// #![feature(iter_partition_in_place)]
1566 ///
1567 /// let mut a = [1, 2, 3, 4, 5, 6, 7];
1568 ///
1569 /// // Partition in-place between evens and odds
1570 /// let i = a.iter_mut().partition_in_place(|&n| n % 2 == 0);
1571 ///
1572 /// assert_eq!(i, 3);
1573 /// assert!(a[..i].iter().all(|&n| n % 2 == 0)); // evens
1574 /// assert!(a[i..].iter().all(|&n| n % 2 == 1)); // odds
1575 /// ```
1576 #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
1577 fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
1578 where
1579 Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
1580 P: FnMut(&T) -> bool,
1581 {
1582 // FIXME: should we worry about the count overflowing? The only way to have more than
1583 // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
1584
1585 // These closure "factory" functions exist to avoid genericity in `Self`.
1586
1587 #[inline]
1588 fn is_false<'a, T>(
1589 predicate: &'a mut impl FnMut(&T) -> bool,
1590 true_count: &'a mut usize,
1591 ) -> impl FnMut(&&mut T) -> bool + 'a {
1592 move |x| {
1593 let p = predicate(&**x);
1594 *true_count += p as usize;
1595 !p
1596 }
1597 }
1598
1599 #[inline]
1600 fn is_true<T>(
1601 predicate: &mut impl FnMut(&T) -> bool
1602 ) -> impl FnMut(&&mut T) -> bool + '_ {
1603 move |x| predicate(&**x)
1604 }
1605
1606 // Repeatedly find the first `false` and swap it with the last `true`.
1607 let mut true_count = 0;
1608 while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
1609 if let Some(tail) = self.rfind(is_true(predicate)) {
1610 crate::mem::swap(head, tail);
1611 true_count += 1;
1612 } else {
1613 break;
1614 }
1615 }
1616 true_count
1617 }
1618
1619 /// Checks if the elements of this iterator are partitioned according to the given predicate,
1620 /// such that all those that return `true` precede all those that return `false`.
1621 ///
1622 /// See also [`partition()`] and [`partition_in_place()`].
1623 ///
1624 /// [`partition()`]: #method.partition
1625 /// [`partition_in_place()`]: #method.partition_in_place
1626 ///
1627 /// # Examples
1628 ///
1629 /// ```
1630 /// #![feature(iter_is_partitioned)]
1631 ///
1632 /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
1633 /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
1634 /// ```
1635 #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
1636 fn is_partitioned<P>(mut self, mut predicate: P) -> bool
1637 where
1638 Self: Sized,
1639 P: FnMut(Self::Item) -> bool,
1640 {
1641 // Either all items test `true`, or the first clause stops at `false`
1642 // and we check that there are no more `true` items after that.
1643 self.all(&mut predicate) || !self.any(predicate)
1644 }
1645
abe05a73
XL
1646 /// An iterator method that applies a function as long as it returns
1647 /// successfully, producing a single, final value.
1648 ///
1649 /// `try_fold()` takes two arguments: an initial value, and a closure with
1650 /// two arguments: an 'accumulator', and an element. The closure either
1651 /// returns successfully, with the value that the accumulator should have
1652 /// for the next iteration, or it returns failure, with an error value that
1653 /// is propagated back to the caller immediately (short-circuiting).
1654 ///
1655 /// The initial value is the value the accumulator will have on the first
9fa01778 1656 /// call. If applying the closure succeeded against every element of the
abe05a73
XL
1657 /// iterator, `try_fold()` returns the final accumulator as success.
1658 ///
1659 /// Folding is useful whenever you have a collection of something, and want
1660 /// to produce a single value from it.
1661 ///
1662 /// # Note to Implementors
1663 ///
1664 /// Most of the other (forward) methods have default implementations in
1665 /// terms of this one, so try to implement this explicitly if it can
1666 /// do something better than the default `for` loop implementation.
1667 ///
1668 /// In particular, try to have this call `try_fold()` on the internal parts
9fa01778 1669 /// from which this iterator is composed. If multiple calls are needed,
0531ce1d
XL
1670 /// the `?` operator may be convenient for chaining the accumulator value
1671 /// along, but beware any invariants that need to be upheld before those
9fa01778 1672 /// early returns. This is a `&mut self` method, so iteration needs to be
abe05a73
XL
1673 /// resumable after hitting an error here.
1674 ///
1675 /// # Examples
1676 ///
1677 /// Basic usage:
1678 ///
1679 /// ```
abe05a73
XL
1680 /// let a = [1, 2, 3];
1681 ///
1682 /// // the checked sum of all of the elements of the array
0531ce1d 1683 /// let sum = a.iter().try_fold(0i8, |acc, &x| acc.checked_add(x));
abe05a73
XL
1684 ///
1685 /// assert_eq!(sum, Some(6));
1686 /// ```
1687 ///
1688 /// Short-circuiting:
1689 ///
1690 /// ```
abe05a73
XL
1691 /// let a = [10, 20, 30, 100, 40, 50];
1692 /// let mut it = a.iter();
1693 ///
1694 /// // This sum overflows when adding the 100 element
1695 /// let sum = it.try_fold(0i8, |acc, &x| acc.checked_add(x));
1696 /// assert_eq!(sum, None);
1697 ///
1698 /// // Because it short-circuited, the remaining elements are still
1699 /// // available through the iterator.
1700 /// assert_eq!(it.len(), 2);
1701 /// assert_eq!(it.next(), Some(&40));
1702 /// ```
1703 #[inline]
83c7162d 1704 #[stable(feature = "iterator_try_fold", since = "1.27.0")]
abe05a73
XL
1705 fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R where
1706 Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try<Ok=B>
1707 {
1708 let mut accum = init;
1709 while let Some(x) = self.next() {
1710 accum = f(accum, x)?;
1711 }
1712 Try::from_ok(accum)
1713 }
1714
0531ce1d
XL
1715 /// An iterator method that applies a fallible function to each item in the
1716 /// iterator, stopping at the first error and returning that error.
1717 ///
1718 /// This can also be thought of as the fallible form of [`for_each()`]
1719 /// or as the stateless version of [`try_fold()`].
1720 ///
1721 /// [`for_each()`]: #method.for_each
1722 /// [`try_fold()`]: #method.try_fold
1723 ///
1724 /// # Examples
1725 ///
1726 /// ```
0531ce1d
XL
1727 /// use std::fs::rename;
1728 /// use std::io::{stdout, Write};
1729 /// use std::path::Path;
1730 ///
1731 /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
1732 ///
1733 /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{}", x));
1734 /// assert!(res.is_ok());
1735 ///
1736 /// let mut it = data.iter().cloned();
1737 /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
1738 /// assert!(res.is_err());
1739 /// // It short-circuited, so the remaining items are still in the iterator:
1740 /// assert_eq!(it.next(), Some("stale_bread.json"));
1741 /// ```
1742 #[inline]
83c7162d 1743 #[stable(feature = "iterator_try_fold", since = "1.27.0")]
e1599b0c 1744 fn try_for_each<F, R>(&mut self, f: F) -> R where
0531ce1d
XL
1745 Self: Sized, F: FnMut(Self::Item) -> R, R: Try<Ok=()>
1746 {
e1599b0c
XL
1747 #[inline]
1748 fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
1749 move |(), x| f(x)
1750 }
1751
1752 self.try_fold((), call(f))
0531ce1d
XL
1753 }
1754
ea8adc8c 1755 /// An iterator method that applies a function, producing a single, final value.
a7813a04
XL
1756 ///
1757 /// `fold()` takes two arguments: an initial value, and a closure with two
1758 /// arguments: an 'accumulator', and an element. The closure returns the value that
1759 /// the accumulator should have for the next iteration.
1760 ///
1761 /// The initial value is the value the accumulator will have on the first
1762 /// call.
1763 ///
1764 /// After applying this closure to every element of the iterator, `fold()`
1765 /// returns the accumulator.
1766 ///
1767 /// This operation is sometimes called 'reduce' or 'inject'.
1768 ///
1769 /// Folding is useful whenever you have a collection of something, and want
1770 /// to produce a single value from it.
1771 ///
2c00a5a8
XL
1772 /// Note: `fold()`, and similar methods that traverse the entire iterator,
1773 /// may not terminate for infinite iterators, even on traits for which a
1774 /// result is determinable in finite time.
1775 ///
a7813a04
XL
1776 /// # Examples
1777 ///
1778 /// Basic usage:
1779 ///
1780 /// ```
1781 /// let a = [1, 2, 3];
1782 ///
abe05a73 1783 /// // the sum of all of the elements of the array
0531ce1d 1784 /// let sum = a.iter().fold(0, |acc, x| acc + x);
a7813a04
XL
1785 ///
1786 /// assert_eq!(sum, 6);
1787 /// ```
1788 ///
1789 /// Let's walk through each step of the iteration here:
1790 ///
1791 /// | element | acc | x | result |
1792 /// |---------|-----|---|--------|
1793 /// | | 0 | | |
1794 /// | 1 | 0 | 1 | 1 |
1795 /// | 2 | 1 | 2 | 3 |
1796 /// | 3 | 3 | 3 | 6 |
1797 ///
1798 /// And so, our final result, `6`.
1799 ///
1800 /// It's common for people who haven't used iterators a lot to
1801 /// use a `for` loop with a list of things to build up a result. Those
1802 /// can be turned into `fold()`s:
1803 ///
13cf67c4 1804 /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
476ff2be 1805 ///
a7813a04
XL
1806 /// ```
1807 /// let numbers = [1, 2, 3, 4, 5];
1808 ///
1809 /// let mut result = 0;
1810 ///
1811 /// // for loop:
1812 /// for i in &numbers {
1813 /// result = result + i;
1814 /// }
1815 ///
1816 /// // fold:
1817 /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
1818 ///
1819 /// // they're the same
1820 /// assert_eq!(result, result2);
1821 /// ```
1822 #[inline]
1823 #[stable(feature = "rust1", since = "1.0.0")]
e1599b0c 1824 fn fold<B, F>(mut self, init: B, f: F) -> B where
a7813a04
XL
1825 Self: Sized, F: FnMut(B, Self::Item) -> B,
1826 {
e1599b0c
XL
1827 #[inline]
1828 fn ok<B, T>(mut f: impl FnMut(B, T) -> B) -> impl FnMut(B, T) -> Result<B, !> {
1829 move |acc, x| Ok(f(acc, x))
1830 }
1831
1832 self.try_fold(init, ok(f)).unwrap()
a7813a04
XL
1833 }
1834
1835 /// Tests if every element of the iterator matches a predicate.
1836 ///
1837 /// `all()` takes a closure that returns `true` or `false`. It applies
1838 /// this closure to each element of the iterator, and if they all return
1839 /// `true`, then so does `all()`. If any of them return `false`, it
1840 /// returns `false`.
1841 ///
1842 /// `all()` is short-circuiting; in other words, it will stop processing
1843 /// as soon as it finds a `false`, given that no matter what else happens,
1844 /// the result will also be `false`.
1845 ///
1846 /// An empty iterator returns `true`.
1847 ///
1848 /// # Examples
1849 ///
1850 /// Basic usage:
1851 ///
1852 /// ```
1853 /// let a = [1, 2, 3];
1854 ///
1855 /// assert!(a.iter().all(|&x| x > 0));
1856 ///
1857 /// assert!(!a.iter().all(|&x| x > 2));
1858 /// ```
1859 ///
1860 /// Stopping at the first `false`:
1861 ///
1862 /// ```
1863 /// let a = [1, 2, 3];
1864 ///
1865 /// let mut iter = a.iter();
1866 ///
1867 /// assert!(!iter.all(|&x| x != 2));
1868 ///
1869 /// // we can still use `iter`, as there are more elements.
1870 /// assert_eq!(iter.next(), Some(&3));
1871 /// ```
1872 #[inline]
1873 #[stable(feature = "rust1", since = "1.0.0")]
e1599b0c 1874 fn all<F>(&mut self, f: F) -> bool where
a7813a04
XL
1875 Self: Sized, F: FnMut(Self::Item) -> bool
1876 {
e1599b0c 1877 #[inline]
e74abb32
XL
1878 fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> LoopState<(), ()> {
1879 move |(), x| {
e1599b0c
XL
1880 if f(x) { LoopState::Continue(()) }
1881 else { LoopState::Break(()) }
1882 }
1883 }
e74abb32 1884 self.try_fold((), check(f)) == LoopState::Continue(())
a7813a04
XL
1885 }
1886
1887 /// Tests if any element of the iterator matches a predicate.
1888 ///
1889 /// `any()` takes a closure that returns `true` or `false`. It applies
1890 /// this closure to each element of the iterator, and if any of them return
1891 /// `true`, then so does `any()`. If they all return `false`, it
1892 /// returns `false`.
1893 ///
1894 /// `any()` is short-circuiting; in other words, it will stop processing
1895 /// as soon as it finds a `true`, given that no matter what else happens,
1896 /// the result will also be `true`.
1897 ///
1898 /// An empty iterator returns `false`.
1899 ///
1900 /// # Examples
1901 ///
1902 /// Basic usage:
1903 ///
1904 /// ```
1905 /// let a = [1, 2, 3];
1906 ///
1907 /// assert!(a.iter().any(|&x| x > 0));
1908 ///
1909 /// assert!(!a.iter().any(|&x| x > 5));
1910 /// ```
1911 ///
1912 /// Stopping at the first `true`:
1913 ///
1914 /// ```
1915 /// let a = [1, 2, 3];
1916 ///
1917 /// let mut iter = a.iter();
1918 ///
1919 /// assert!(iter.any(|&x| x != 2));
1920 ///
1921 /// // we can still use `iter`, as there are more elements.
1922 /// assert_eq!(iter.next(), Some(&2));
1923 /// ```
1924 #[inline]
1925 #[stable(feature = "rust1", since = "1.0.0")]
e1599b0c 1926 fn any<F>(&mut self, f: F) -> bool where
a7813a04
XL
1927 Self: Sized,
1928 F: FnMut(Self::Item) -> bool
1929 {
e1599b0c 1930 #[inline]
e74abb32
XL
1931 fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> LoopState<(), ()> {
1932 move |(), x| {
e1599b0c
XL
1933 if f(x) { LoopState::Break(()) }
1934 else { LoopState::Continue(()) }
1935 }
1936 }
1937
e74abb32 1938 self.try_fold((), check(f)) == LoopState::Break(())
a7813a04
XL
1939 }
1940
1941 /// Searches for an element of an iterator that satisfies a predicate.
1942 ///
1943 /// `find()` takes a closure that returns `true` or `false`. It applies
1944 /// this closure to each element of the iterator, and if any of them return
476ff2be
SL
1945 /// `true`, then `find()` returns [`Some(element)`]. If they all return
1946 /// `false`, it returns [`None`].
a7813a04
XL
1947 ///
1948 /// `find()` is short-circuiting; in other words, it will stop processing
1949 /// as soon as the closure returns `true`.
1950 ///
1951 /// Because `find()` takes a reference, and many iterators iterate over
1952 /// references, this leads to a possibly confusing situation where the
1953 /// argument is a double reference. You can see this effect in the
1954 /// examples below, with `&&x`.
1955 ///
476ff2be
SL
1956 /// [`Some(element)`]: ../../std/option/enum.Option.html#variant.Some
1957 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1958 ///
a7813a04
XL
1959 /// # Examples
1960 ///
1961 /// Basic usage:
1962 ///
1963 /// ```
1964 /// let a = [1, 2, 3];
1965 ///
1966 /// assert_eq!(a.iter().find(|&&x| x == 2), Some(&2));
1967 ///
1968 /// assert_eq!(a.iter().find(|&&x| x == 5), None);
1969 /// ```
1970 ///
1971 /// Stopping at the first `true`:
1972 ///
1973 /// ```
1974 /// let a = [1, 2, 3];
1975 ///
1976 /// let mut iter = a.iter();
1977 ///
1978 /// assert_eq!(iter.find(|&&x| x == 2), Some(&2));
1979 ///
1980 /// // we can still use `iter`, as there are more elements.
1981 /// assert_eq!(iter.next(), Some(&3));
1982 /// ```
1983 #[inline]
1984 #[stable(feature = "rust1", since = "1.0.0")]
e1599b0c 1985 fn find<P>(&mut self, predicate: P) -> Option<Self::Item> where
a7813a04
XL
1986 Self: Sized,
1987 P: FnMut(&Self::Item) -> bool,
1988 {
e1599b0c 1989 #[inline]
e74abb32
XL
1990 fn check<T>(
1991 mut predicate: impl FnMut(&T) -> bool
1992 ) -> impl FnMut((), T) -> LoopState<(), T> {
1993 move |(), x| {
e1599b0c
XL
1994 if predicate(&x) { LoopState::Break(x) }
1995 else { LoopState::Continue(()) }
1996 }
1997 }
1998
e74abb32 1999 self.try_fold((), check(predicate)).break_value()
a7813a04
XL
2000 }
2001
83c7162d
XL
2002 /// Applies function to the elements of iterator and returns
2003 /// the first non-none result.
2004 ///
2005 /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2006 ///
2007 ///
2008 /// # Examples
2009 ///
2010 /// ```
83c7162d
XL
2011 /// let a = ["lol", "NaN", "2", "5"];
2012 ///
a1dfa0c6 2013 /// let first_number = a.iter().find_map(|s| s.parse().ok());
83c7162d
XL
2014 ///
2015 /// assert_eq!(first_number, Some(2));
2016 /// ```
2017 #[inline]
b7449926 2018 #[stable(feature = "iterator_find_map", since = "1.30.0")]
e1599b0c 2019 fn find_map<B, F>(&mut self, f: F) -> Option<B> where
83c7162d
XL
2020 Self: Sized,
2021 F: FnMut(Self::Item) -> Option<B>,
2022 {
e1599b0c 2023 #[inline]
e74abb32
XL
2024 fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> LoopState<(), B> {
2025 move |(), x| match f(x) {
83c7162d
XL
2026 Some(x) => LoopState::Break(x),
2027 None => LoopState::Continue(()),
2028 }
e1599b0c
XL
2029 }
2030
e74abb32 2031 self.try_fold((), check(f)).break_value()
83c7162d
XL
2032 }
2033
a7813a04
XL
2034 /// Searches for an element in an iterator, returning its index.
2035 ///
2036 /// `position()` takes a closure that returns `true` or `false`. It applies
2037 /// this closure to each element of the iterator, and if one of them
476ff2be
SL
2038 /// returns `true`, then `position()` returns [`Some(index)`]. If all of
2039 /// them return `false`, it returns [`None`].
a7813a04
XL
2040 ///
2041 /// `position()` is short-circuiting; in other words, it will stop
2042 /// processing as soon as it finds a `true`.
2043 ///
2044 /// # Overflow Behavior
2045 ///
2046 /// The method does no guarding against overflows, so if there are more
476ff2be 2047 /// than [`usize::MAX`] non-matching elements, it either produces the wrong
a7813a04
XL
2048 /// result or panics. If debug assertions are enabled, a panic is
2049 /// guaranteed.
2050 ///
2051 /// # Panics
2052 ///
2053 /// This function might panic if the iterator has more than `usize::MAX`
2054 /// non-matching elements.
2055 ///
476ff2be
SL
2056 /// [`Some(index)`]: ../../std/option/enum.Option.html#variant.Some
2057 /// [`None`]: ../../std/option/enum.Option.html#variant.None
2058 /// [`usize::MAX`]: ../../std/usize/constant.MAX.html
2059 ///
a7813a04
XL
2060 /// # Examples
2061 ///
2062 /// Basic usage:
2063 ///
2064 /// ```
2065 /// let a = [1, 2, 3];
2066 ///
2067 /// assert_eq!(a.iter().position(|&x| x == 2), Some(1));
2068 ///
2069 /// assert_eq!(a.iter().position(|&x| x == 5), None);
2070 /// ```
2071 ///
2072 /// Stopping at the first `true`:
2073 ///
2074 /// ```
cc61c64b 2075 /// let a = [1, 2, 3, 4];
a7813a04
XL
2076 ///
2077 /// let mut iter = a.iter();
2078 ///
cc61c64b 2079 /// assert_eq!(iter.position(|&x| x >= 2), Some(1));
a7813a04
XL
2080 ///
2081 /// // we can still use `iter`, as there are more elements.
2082 /// assert_eq!(iter.next(), Some(&3));
cc61c64b
XL
2083 ///
2084 /// // The returned index depends on iterator state
2085 /// assert_eq!(iter.position(|&x| x == 4), Some(0));
2086 ///
a7813a04
XL
2087 /// ```
2088 #[inline]
2089 #[stable(feature = "rust1", since = "1.0.0")]
e1599b0c 2090 fn position<P>(&mut self, predicate: P) -> Option<usize> where
a7813a04
XL
2091 Self: Sized,
2092 P: FnMut(Self::Item) -> bool,
2093 {
e1599b0c
XL
2094 #[inline]
2095 fn check<T>(
2096 mut predicate: impl FnMut(T) -> bool,
2097 ) -> impl FnMut(usize, T) -> LoopState<usize, usize> {
2098 // The addition might panic on overflow
2099 move |i, x| {
2100 if predicate(x) { LoopState::Break(i) }
2101 else { LoopState::Continue(Add::add(i, 1)) }
2102 }
2103 }
2104
2105 self.try_fold(0, check(predicate)).break_value()
a7813a04
XL
2106 }
2107
2108 /// Searches for an element in an iterator from the right, returning its
2109 /// index.
2110 ///
2111 /// `rposition()` takes a closure that returns `true` or `false`. It applies
2112 /// this closure to each element of the iterator, starting from the end,
2113 /// and if one of them returns `true`, then `rposition()` returns
476ff2be 2114 /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
a7813a04
XL
2115 ///
2116 /// `rposition()` is short-circuiting; in other words, it will stop
2117 /// processing as soon as it finds a `true`.
2118 ///
476ff2be
SL
2119 /// [`Some(index)`]: ../../std/option/enum.Option.html#variant.Some
2120 /// [`None`]: ../../std/option/enum.Option.html#variant.None
2121 ///
a7813a04
XL
2122 /// # Examples
2123 ///
2124 /// Basic usage:
2125 ///
2126 /// ```
2127 /// let a = [1, 2, 3];
2128 ///
2129 /// assert_eq!(a.iter().rposition(|&x| x == 3), Some(2));
2130 ///
2131 /// assert_eq!(a.iter().rposition(|&x| x == 5), None);
2132 /// ```
2133 ///
2134 /// Stopping at the first `true`:
2135 ///
2136 /// ```
2137 /// let a = [1, 2, 3];
2138 ///
2139 /// let mut iter = a.iter();
2140 ///
2141 /// assert_eq!(iter.rposition(|&x| x == 2), Some(1));
2142 ///
2143 /// // we can still use `iter`, as there are more elements.
2144 /// assert_eq!(iter.next(), Some(&1));
2145 /// ```
2146 #[inline]
2147 #[stable(feature = "rust1", since = "1.0.0")]
e1599b0c 2148 fn rposition<P>(&mut self, predicate: P) -> Option<usize> where
a7813a04
XL
2149 P: FnMut(Self::Item) -> bool,
2150 Self: Sized + ExactSizeIterator + DoubleEndedIterator
2151 {
abe05a73
XL
2152 // No need for an overflow check here, because `ExactSizeIterator`
2153 // implies that the number of elements fits into a `usize`.
e1599b0c
XL
2154 #[inline]
2155 fn check<T>(
2156 mut predicate: impl FnMut(T) -> bool,
2157 ) -> impl FnMut(usize, T) -> LoopState<usize, usize> {
2158 move |i, x| {
2159 let i = i - 1;
2160 if predicate(x) { LoopState::Break(i) }
2161 else { LoopState::Continue(i) }
2162 }
2163 }
2164
abe05a73 2165 let n = self.len();
e1599b0c 2166 self.try_rfold(n, check(predicate)).break_value()
a7813a04
XL
2167 }
2168
2169 /// Returns the maximum element of an iterator.
2170 ///
32a655c1 2171 /// If several elements are equally maximum, the last element is
8bb4bdeb
XL
2172 /// returned. If the iterator is empty, [`None`] is returned.
2173 ///
2174 /// [`None`]: ../../std/option/enum.Option.html#variant.None
a7813a04
XL
2175 ///
2176 /// # Examples
2177 ///
2178 /// Basic usage:
2179 ///
2180 /// ```
2181 /// let a = [1, 2, 3];
8bb4bdeb 2182 /// let b: Vec<u32> = Vec::new();
a7813a04
XL
2183 ///
2184 /// assert_eq!(a.iter().max(), Some(&3));
8bb4bdeb 2185 /// assert_eq!(b.iter().max(), None);
a7813a04
XL
2186 /// ```
2187 #[inline]
2188 #[stable(feature = "rust1", since = "1.0.0")]
2189 fn max(self) -> Option<Self::Item> where Self: Sized, Self::Item: Ord
2190 {
532ac7d7 2191 self.max_by(Ord::cmp)
a7813a04
XL
2192 }
2193
2194 /// Returns the minimum element of an iterator.
2195 ///
32a655c1 2196 /// If several elements are equally minimum, the first element is
8bb4bdeb
XL
2197 /// returned. If the iterator is empty, [`None`] is returned.
2198 ///
2199 /// [`None`]: ../../std/option/enum.Option.html#variant.None
a7813a04
XL
2200 ///
2201 /// # Examples
2202 ///
2203 /// Basic usage:
2204 ///
2205 /// ```
2206 /// let a = [1, 2, 3];
8bb4bdeb 2207 /// let b: Vec<u32> = Vec::new();
a7813a04
XL
2208 ///
2209 /// assert_eq!(a.iter().min(), Some(&1));
8bb4bdeb 2210 /// assert_eq!(b.iter().min(), None);
a7813a04
XL
2211 /// ```
2212 #[inline]
2213 #[stable(feature = "rust1", since = "1.0.0")]
2214 fn min(self) -> Option<Self::Item> where Self: Sized, Self::Item: Ord
2215 {
532ac7d7 2216 self.min_by(Ord::cmp)
a7813a04
XL
2217 }
2218
2219 /// Returns the element that gives the maximum value from the
2220 /// specified function.
2221 ///
32a655c1 2222 /// If several elements are equally maximum, the last element is
8bb4bdeb
XL
2223 /// returned. If the iterator is empty, [`None`] is returned.
2224 ///
2225 /// [`None`]: ../../std/option/enum.Option.html#variant.None
a7813a04
XL
2226 ///
2227 /// # Examples
2228 ///
2229 /// ```
2230 /// let a = [-3_i32, 0, 1, 5, -10];
2231 /// assert_eq!(*a.iter().max_by_key(|x| x.abs()).unwrap(), -10);
2232 /// ```
2233 #[inline]
2234 #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
e1599b0c 2235 fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
a7813a04
XL
2236 where Self: Sized, F: FnMut(&Self::Item) -> B,
2237 {
e1599b0c
XL
2238 #[inline]
2239 fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
2240 move |x| (f(&x), x)
2241 }
2242
2243 #[inline]
2244 fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
2245 x_p.cmp(y_p)
2246 }
2247
2248 let (_, x) = self.map(key(f)).max_by(compare)?;
2249 Some(x)
a7813a04
XL
2250 }
2251
9e0c209e
SL
2252 /// Returns the element that gives the maximum value with respect to the
2253 /// specified comparison function.
2254 ///
32a655c1 2255 /// If several elements are equally maximum, the last element is
8bb4bdeb
XL
2256 /// returned. If the iterator is empty, [`None`] is returned.
2257 ///
2258 /// [`None`]: ../../std/option/enum.Option.html#variant.None
9e0c209e
SL
2259 ///
2260 /// # Examples
2261 ///
2262 /// ```
9e0c209e
SL
2263 /// let a = [-3_i32, 0, 1, 5, -10];
2264 /// assert_eq!(*a.iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
2265 /// ```
2266 #[inline]
476ff2be 2267 #[stable(feature = "iter_max_by", since = "1.15.0")]
e1599b0c 2268 fn max_by<F>(self, compare: F) -> Option<Self::Item>
9e0c209e
SL
2269 where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,
2270 {
e1599b0c
XL
2271 #[inline]
2272 fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
2273 move |x, y| cmp::max_by(x, y, &mut compare)
2274 }
2275
2276 fold1(self, fold(compare))
9e0c209e
SL
2277 }
2278
a7813a04
XL
2279 /// Returns the element that gives the minimum value from the
2280 /// specified function.
2281 ///
32a655c1 2282 /// If several elements are equally minimum, the first element is
8bb4bdeb
XL
2283 /// returned. If the iterator is empty, [`None`] is returned.
2284 ///
2285 /// [`None`]: ../../std/option/enum.Option.html#variant.None
a7813a04
XL
2286 ///
2287 /// # Examples
2288 ///
2289 /// ```
2290 /// let a = [-3_i32, 0, 1, 5, -10];
2291 /// assert_eq!(*a.iter().min_by_key(|x| x.abs()).unwrap(), 0);
2292 /// ```
e1599b0c 2293 #[inline]
a7813a04 2294 #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
e1599b0c 2295 fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
a7813a04
XL
2296 where Self: Sized, F: FnMut(&Self::Item) -> B,
2297 {
e1599b0c
XL
2298 #[inline]
2299 fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
2300 move |x| (f(&x), x)
2301 }
2302
2303 #[inline]
2304 fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
2305 x_p.cmp(y_p)
2306 }
2307
2308 let (_, x) = self.map(key(f)).min_by(compare)?;
2309 Some(x)
a7813a04
XL
2310 }
2311
9e0c209e
SL
2312 /// Returns the element that gives the minimum value with respect to the
2313 /// specified comparison function.
2314 ///
32a655c1 2315 /// If several elements are equally minimum, the first element is
8bb4bdeb
XL
2316 /// returned. If the iterator is empty, [`None`] is returned.
2317 ///
2318 /// [`None`]: ../../std/option/enum.Option.html#variant.None
9e0c209e
SL
2319 ///
2320 /// # Examples
2321 ///
2322 /// ```
9e0c209e
SL
2323 /// let a = [-3_i32, 0, 1, 5, -10];
2324 /// assert_eq!(*a.iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
2325 /// ```
2326 #[inline]
476ff2be 2327 #[stable(feature = "iter_min_by", since = "1.15.0")]
e1599b0c 2328 fn min_by<F>(self, compare: F) -> Option<Self::Item>
9e0c209e
SL
2329 where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,
2330 {
e1599b0c
XL
2331 #[inline]
2332 fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
2333 move |x, y| cmp::min_by(x, y, &mut compare)
2334 }
2335
2336 fold1(self, fold(compare))
9e0c209e
SL
2337 }
2338
2339
a7813a04
XL
2340 /// Reverses an iterator's direction.
2341 ///
2342 /// Usually, iterators iterate from left to right. After using `rev()`,
2343 /// an iterator will instead iterate from right to left.
2344 ///
2345 /// This is only possible if the iterator has an end, so `rev()` only
2346 /// works on [`DoubleEndedIterator`]s.
2347 ///
2348 /// [`DoubleEndedIterator`]: trait.DoubleEndedIterator.html
2349 ///
2350 /// # Examples
2351 ///
2352 /// ```
2353 /// let a = [1, 2, 3];
2354 ///
2355 /// let mut iter = a.iter().rev();
2356 ///
2357 /// assert_eq!(iter.next(), Some(&3));
2358 /// assert_eq!(iter.next(), Some(&2));
2359 /// assert_eq!(iter.next(), Some(&1));
2360 ///
2361 /// assert_eq!(iter.next(), None);
2362 /// ```
2363 #[inline]
2364 #[stable(feature = "rust1", since = "1.0.0")]
2365 fn rev(self) -> Rev<Self> where Self: Sized + DoubleEndedIterator {
9fa01778 2366 Rev::new(self)
a7813a04
XL
2367 }
2368
2369 /// Converts an iterator of pairs into a pair of containers.
2370 ///
2371 /// `unzip()` consumes an entire iterator of pairs, producing two
2372 /// collections: one from the left elements of the pairs, and one
2373 /// from the right elements.
2374 ///
cc61c64b 2375 /// This function is, in some sense, the opposite of [`zip`].
a7813a04 2376 ///
cc61c64b 2377 /// [`zip`]: #method.zip
a7813a04
XL
2378 ///
2379 /// # Examples
2380 ///
2381 /// Basic usage:
2382 ///
2383 /// ```
2384 /// let a = [(1, 2), (3, 4)];
2385 ///
2386 /// let (left, right): (Vec<_>, Vec<_>) = a.iter().cloned().unzip();
2387 ///
2388 /// assert_eq!(left, [1, 3]);
2389 /// assert_eq!(right, [2, 4]);
2390 /// ```
2391 #[stable(feature = "rust1", since = "1.0.0")]
2392 fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) where
2393 FromA: Default + Extend<A>,
2394 FromB: Default + Extend<B>,
2395 Self: Sized + Iterator<Item=(A, B)>,
2396 {
e1599b0c
XL
2397 fn extend<'a, A, B>(
2398 ts: &'a mut impl Extend<A>,
2399 us: &'a mut impl Extend<B>,
2400 ) -> impl FnMut((A, B)) + 'a {
2401 move |(t, u)| {
2402 ts.extend(Some(t));
2403 us.extend(Some(u));
2404 }
2405 }
2406
a7813a04
XL
2407 let mut ts: FromA = Default::default();
2408 let mut us: FromB = Default::default();
2409
e1599b0c 2410 self.for_each(extend(&mut ts, &mut us));
a7813a04
XL
2411
2412 (ts, us)
2413 }
2414
0731742a
XL
2415 /// Creates an iterator which copies all of its elements.
2416 ///
2417 /// This is useful when you have an iterator over `&T`, but you need an
2418 /// iterator over `T`.
2419 ///
2420 /// # Examples
2421 ///
2422 /// Basic usage:
2423 ///
2424 /// ```
0731742a
XL
2425 /// let a = [1, 2, 3];
2426 ///
2427 /// let v_cloned: Vec<_> = a.iter().copied().collect();
2428 ///
2429 /// // copied is the same as .map(|&x| x)
2430 /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
2431 ///
2432 /// assert_eq!(v_cloned, vec![1, 2, 3]);
2433 /// assert_eq!(v_map, vec![1, 2, 3]);
2434 /// ```
48663c56 2435 #[stable(feature = "iter_copied", since = "1.36.0")]
0731742a
XL
2436 fn copied<'a, T: 'a>(self) -> Copied<Self>
2437 where Self: Sized + Iterator<Item=&'a T>, T: Copy
2438 {
9fa01778 2439 Copied::new(self)
0731742a
XL
2440 }
2441
cc61c64b 2442 /// Creates an iterator which [`clone`]s all of its elements.
a7813a04
XL
2443 ///
2444 /// This is useful when you have an iterator over `&T`, but you need an
2445 /// iterator over `T`.
2446 ///
cc61c64b 2447 /// [`clone`]: ../../std/clone/trait.Clone.html#tymethod.clone
476ff2be 2448 ///
a7813a04
XL
2449 /// # Examples
2450 ///
2451 /// Basic usage:
2452 ///
2453 /// ```
2454 /// let a = [1, 2, 3];
2455 ///
2456 /// let v_cloned: Vec<_> = a.iter().cloned().collect();
2457 ///
2458 /// // cloned is the same as .map(|&x| x), for integers
2459 /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
2460 ///
2461 /// assert_eq!(v_cloned, vec![1, 2, 3]);
2462 /// assert_eq!(v_map, vec![1, 2, 3]);
2463 /// ```
2464 #[stable(feature = "rust1", since = "1.0.0")]
2465 fn cloned<'a, T: 'a>(self) -> Cloned<Self>
2466 where Self: Sized + Iterator<Item=&'a T>, T: Clone
2467 {
9fa01778 2468 Cloned::new(self)
a7813a04
XL
2469 }
2470
2471 /// Repeats an iterator endlessly.
2472 ///
476ff2be 2473 /// Instead of stopping at [`None`], the iterator will instead start again,
a7813a04
XL
2474 /// from the beginning. After iterating again, it will start at the
2475 /// beginning again. And again. And again. Forever.
2476 ///
476ff2be
SL
2477 /// [`None`]: ../../std/option/enum.Option.html#variant.None
2478 ///
a7813a04
XL
2479 /// # Examples
2480 ///
2481 /// Basic usage:
2482 ///
2483 /// ```
2484 /// let a = [1, 2, 3];
2485 ///
2486 /// let mut it = a.iter().cycle();
2487 ///
2488 /// assert_eq!(it.next(), Some(&1));
2489 /// assert_eq!(it.next(), Some(&2));
2490 /// assert_eq!(it.next(), Some(&3));
2491 /// assert_eq!(it.next(), Some(&1));
2492 /// assert_eq!(it.next(), Some(&2));
2493 /// assert_eq!(it.next(), Some(&3));
2494 /// assert_eq!(it.next(), Some(&1));
2495 /// ```
2496 #[stable(feature = "rust1", since = "1.0.0")]
2497 #[inline]
2498 fn cycle(self) -> Cycle<Self> where Self: Sized + Clone {
9fa01778 2499 Cycle::new(self)
a7813a04
XL
2500 }
2501
2502 /// Sums the elements of an iterator.
2503 ///
2504 /// Takes each element, adds them together, and returns the result.
2505 ///
2506 /// An empty iterator returns the zero value of the type.
2507 ///
3157f602
XL
2508 /// # Panics
2509 ///
476ff2be 2510 /// When calling `sum()` and a primitive integer type is being returned, this
9e0c209e
SL
2511 /// method will panic if the computation overflows and debug assertions are
2512 /// enabled.
3157f602 2513 ///
a7813a04
XL
2514 /// # Examples
2515 ///
2516 /// Basic usage:
2517 ///
2518 /// ```
a7813a04
XL
2519 /// let a = [1, 2, 3];
2520 /// let sum: i32 = a.iter().sum();
2521 ///
2522 /// assert_eq!(sum, 6);
2523 /// ```
3157f602
XL
2524 #[stable(feature = "iter_arith", since = "1.11.0")]
2525 fn sum<S>(self) -> S
2526 where Self: Sized,
2527 S: Sum<Self::Item>,
a7813a04 2528 {
3157f602 2529 Sum::sum(self)
a7813a04
XL
2530 }
2531
2532 /// Iterates over the entire iterator, multiplying all the elements
2533 ///
2534 /// An empty iterator returns the one value of the type.
2535 ///
3157f602
XL
2536 /// # Panics
2537 ///
476ff2be 2538 /// When calling `product()` and a primitive integer type is being returned,
9e0c209e
SL
2539 /// method will panic if the computation overflows and debug assertions are
2540 /// enabled.
3157f602 2541 ///
a7813a04
XL
2542 /// # Examples
2543 ///
2544 /// ```
a7813a04 2545 /// fn factorial(n: u32) -> u32 {
0731742a 2546 /// (1..=n).product()
a7813a04
XL
2547 /// }
2548 /// assert_eq!(factorial(0), 1);
2549 /// assert_eq!(factorial(1), 1);
2550 /// assert_eq!(factorial(5), 120);
2551 /// ```
3157f602
XL
2552 #[stable(feature = "iter_arith", since = "1.11.0")]
2553 fn product<P>(self) -> P
2554 where Self: Sized,
2555 P: Product<Self::Item>,
a7813a04 2556 {
3157f602 2557 Product::product(self)
a7813a04
XL
2558 }
2559
2560 /// Lexicographically compares the elements of this `Iterator` with those
2561 /// of another.
e1599b0c
XL
2562 ///
2563 /// # Examples
2564 ///
2565 /// ```
2566 /// use std::cmp::Ordering;
2567 ///
2568 /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
2569 /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
2570 /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
2571 /// ```
a7813a04 2572 #[stable(feature = "iter_order", since = "1.5.0")]
e1599b0c
XL
2573 fn cmp<I>(self, other: I) -> Ordering
2574 where
a7813a04
XL
2575 I: IntoIterator<Item = Self::Item>,
2576 Self::Item: Ord,
2577 Self: Sized,
e1599b0c
XL
2578 {
2579 self.cmp_by(other, |x, y| x.cmp(&y))
2580 }
2581
2582 /// Lexicographically compares the elements of this `Iterator` with those
2583 /// of another with respect to the specified comparison function.
2584 ///
2585 /// # Examples
2586 ///
2587 /// Basic usage:
2588 ///
2589 /// ```
2590 /// #![feature(iter_order_by)]
2591 ///
2592 /// use std::cmp::Ordering;
2593 ///
2594 /// let xs = [1, 2, 3, 4];
2595 /// let ys = [1, 4, 9, 16];
2596 ///
2597 /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| x.cmp(&y)), Ordering::Less);
2598 /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| (x * x).cmp(&y)), Ordering::Equal);
2599 /// assert_eq!(xs.iter().cmp_by(&ys, |&x, &y| (2 * x).cmp(&y)), Ordering::Greater);
2600 /// ```
e74abb32 2601 #[unstable(feature = "iter_order_by", issue = "64295")]
e1599b0c
XL
2602 fn cmp_by<I, F>(mut self, other: I, mut cmp: F) -> Ordering
2603 where
2604 Self: Sized,
2605 I: IntoIterator,
2606 F: FnMut(Self::Item, I::Item) -> Ordering,
a7813a04
XL
2607 {
2608 let mut other = other.into_iter();
2609
2610 loop {
abe05a73
XL
2611 let x = match self.next() {
2612 None => if other.next().is_none() {
2613 return Ordering::Equal
2614 } else {
2615 return Ordering::Less
a7813a04 2616 },
abe05a73
XL
2617 Some(val) => val,
2618 };
2619
2620 let y = match other.next() {
2621 None => return Ordering::Greater,
2622 Some(val) => val,
2623 };
2624
e1599b0c 2625 match cmp(x, y) {
abe05a73
XL
2626 Ordering::Equal => (),
2627 non_eq => return non_eq,
a7813a04
XL
2628 }
2629 }
2630 }
2631
2632 /// Lexicographically compares the elements of this `Iterator` with those
2633 /// of another.
e1599b0c
XL
2634 ///
2635 /// # Examples
2636 ///
2637 /// ```
2638 /// use std::cmp::Ordering;
2639 ///
2640 /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
2641 /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
2642 /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
2643 ///
2644 /// assert_eq!([std::f64::NAN].iter().partial_cmp([1.].iter()), None);
2645 /// ```
a7813a04 2646 #[stable(feature = "iter_order", since = "1.5.0")]
e1599b0c
XL
2647 fn partial_cmp<I>(self, other: I) -> Option<Ordering>
2648 where
a7813a04
XL
2649 I: IntoIterator,
2650 Self::Item: PartialOrd<I::Item>,
2651 Self: Sized,
e1599b0c
XL
2652 {
2653 self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
2654 }
2655
2656 /// Lexicographically compares the elements of this `Iterator` with those
2657 /// of another with respect to the specified comparison function.
2658 ///
2659 /// # Examples
2660 ///
2661 /// Basic usage:
2662 ///
2663 /// ```
2664 /// #![feature(iter_order_by)]
2665 ///
2666 /// use std::cmp::Ordering;
2667 ///
2668 /// let xs = [1.0, 2.0, 3.0, 4.0];
2669 /// let ys = [1.0, 4.0, 9.0, 16.0];
2670 ///
2671 /// assert_eq!(
2672 /// xs.iter().partial_cmp_by(&ys, |&x, &y| x.partial_cmp(&y)),
2673 /// Some(Ordering::Less)
2674 /// );
2675 /// assert_eq!(
2676 /// xs.iter().partial_cmp_by(&ys, |&x, &y| (x * x).partial_cmp(&y)),
2677 /// Some(Ordering::Equal)
2678 /// );
2679 /// assert_eq!(
2680 /// xs.iter().partial_cmp_by(&ys, |&x, &y| (2.0 * x).partial_cmp(&y)),
2681 /// Some(Ordering::Greater)
2682 /// );
2683 /// ```
e74abb32 2684 #[unstable(feature = "iter_order_by", issue = "64295")]
e1599b0c
XL
2685 fn partial_cmp_by<I, F>(mut self, other: I, mut partial_cmp: F) -> Option<Ordering>
2686 where
2687 Self: Sized,
2688 I: IntoIterator,
2689 F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
a7813a04
XL
2690 {
2691 let mut other = other.into_iter();
2692
2693 loop {
abe05a73
XL
2694 let x = match self.next() {
2695 None => if other.next().is_none() {
2696 return Some(Ordering::Equal)
2697 } else {
2698 return Some(Ordering::Less)
a7813a04 2699 },
abe05a73
XL
2700 Some(val) => val,
2701 };
2702
2703 let y = match other.next() {
2704 None => return Some(Ordering::Greater),
2705 Some(val) => val,
2706 };
2707
e1599b0c 2708 match partial_cmp(x, y) {
abe05a73
XL
2709 Some(Ordering::Equal) => (),
2710 non_eq => return non_eq,
a7813a04
XL
2711 }
2712 }
2713 }
2714
2715 /// Determines if the elements of this `Iterator` are equal to those of
2716 /// another.
e1599b0c
XL
2717 ///
2718 /// # Examples
2719 ///
2720 /// ```
2721 /// assert_eq!([1].iter().eq([1].iter()), true);
2722 /// assert_eq!([1].iter().eq([1, 2].iter()), false);
2723 /// ```
a7813a04 2724 #[stable(feature = "iter_order", since = "1.5.0")]
e1599b0c
XL
2725 fn eq<I>(self, other: I) -> bool
2726 where
a7813a04
XL
2727 I: IntoIterator,
2728 Self::Item: PartialEq<I::Item>,
2729 Self: Sized,
e1599b0c
XL
2730 {
2731 self.eq_by(other, |x, y| x == y)
2732 }
2733
2734 /// Determines if the elements of this `Iterator` are equal to those of
2735 /// another with respect to the specified equality function.
2736 ///
2737 /// # Examples
2738 ///
2739 /// Basic usage:
2740 ///
2741 /// ```
2742 /// #![feature(iter_order_by)]
2743 ///
2744 /// let xs = [1, 2, 3, 4];
2745 /// let ys = [1, 4, 9, 16];
2746 ///
2747 /// assert!(xs.iter().eq_by(&ys, |&x, &y| x * x == y));
2748 /// ```
e74abb32 2749 #[unstable(feature = "iter_order_by", issue = "64295")]
e1599b0c
XL
2750 fn eq_by<I, F>(mut self, other: I, mut eq: F) -> bool
2751 where
2752 Self: Sized,
2753 I: IntoIterator,
2754 F: FnMut(Self::Item, I::Item) -> bool,
a7813a04
XL
2755 {
2756 let mut other = other.into_iter();
2757
2758 loop {
abe05a73
XL
2759 let x = match self.next() {
2760 None => return other.next().is_none(),
2761 Some(val) => val,
2762 };
2763
2764 let y = match other.next() {
2765 None => return false,
2766 Some(val) => val,
2767 };
2768
e1599b0c
XL
2769 if !eq(x, y) {
2770 return false;
2771 }
a7813a04
XL
2772 }
2773 }
2774
2775 /// Determines if the elements of this `Iterator` are unequal to those of
2776 /// another.
e1599b0c
XL
2777 ///
2778 /// # Examples
2779 ///
2780 /// ```
2781 /// assert_eq!([1].iter().ne([1].iter()), false);
2782 /// assert_eq!([1].iter().ne([1, 2].iter()), true);
2783 /// ```
a7813a04 2784 #[stable(feature = "iter_order", since = "1.5.0")]
532ac7d7 2785 fn ne<I>(self, other: I) -> bool where
a7813a04
XL
2786 I: IntoIterator,
2787 Self::Item: PartialEq<I::Item>,
2788 Self: Sized,
2789 {
532ac7d7 2790 !self.eq(other)
a7813a04
XL
2791 }
2792
2793 /// Determines if the elements of this `Iterator` are lexicographically
2794 /// less than those of another.
e1599b0c
XL
2795 ///
2796 /// # Examples
2797 ///
2798 /// ```
2799 /// assert_eq!([1].iter().lt([1].iter()), false);
2800 /// assert_eq!([1].iter().lt([1, 2].iter()), true);
2801 /// assert_eq!([1, 2].iter().lt([1].iter()), false);
2802 /// ```
a7813a04 2803 #[stable(feature = "iter_order", since = "1.5.0")]
532ac7d7 2804 fn lt<I>(self, other: I) -> bool where
a7813a04
XL
2805 I: IntoIterator,
2806 Self::Item: PartialOrd<I::Item>,
2807 Self: Sized,
2808 {
532ac7d7 2809 self.partial_cmp(other) == Some(Ordering::Less)
a7813a04
XL
2810 }
2811
2812 /// Determines if the elements of this `Iterator` are lexicographically
2813 /// less or equal to those of another.
e1599b0c
XL
2814 ///
2815 /// # Examples
2816 ///
2817 /// ```
2818 /// assert_eq!([1].iter().le([1].iter()), true);
2819 /// assert_eq!([1].iter().le([1, 2].iter()), true);
2820 /// assert_eq!([1, 2].iter().le([1].iter()), false);
2821 /// ```
a7813a04 2822 #[stable(feature = "iter_order", since = "1.5.0")]
532ac7d7 2823 fn le<I>(self, other: I) -> bool where
a7813a04
XL
2824 I: IntoIterator,
2825 Self::Item: PartialOrd<I::Item>,
2826 Self: Sized,
2827 {
532ac7d7
XL
2828 match self.partial_cmp(other) {
2829 Some(Ordering::Less) | Some(Ordering::Equal) => true,
2830 _ => false,
a7813a04
XL
2831 }
2832 }
2833
2834 /// Determines if the elements of this `Iterator` are lexicographically
2835 /// greater than those of another.
e1599b0c
XL
2836 ///
2837 /// # Examples
2838 ///
2839 /// ```
2840 /// assert_eq!([1].iter().gt([1].iter()), false);
2841 /// assert_eq!([1].iter().gt([1, 2].iter()), false);
2842 /// assert_eq!([1, 2].iter().gt([1].iter()), true);
2843 /// ```
a7813a04 2844 #[stable(feature = "iter_order", since = "1.5.0")]
532ac7d7 2845 fn gt<I>(self, other: I) -> bool where
a7813a04
XL
2846 I: IntoIterator,
2847 Self::Item: PartialOrd<I::Item>,
2848 Self: Sized,
2849 {
532ac7d7 2850 self.partial_cmp(other) == Some(Ordering::Greater)
a7813a04
XL
2851 }
2852
2853 /// Determines if the elements of this `Iterator` are lexicographically
2854 /// greater than or equal to those of another.
e1599b0c
XL
2855 ///
2856 /// # Examples
2857 ///
2858 /// ```
2859 /// assert_eq!([1].iter().ge([1].iter()), true);
2860 /// assert_eq!([1].iter().ge([1, 2].iter()), false);
2861 /// assert_eq!([1, 2].iter().ge([1].iter()), true);
2862 /// ```
a7813a04 2863 #[stable(feature = "iter_order", since = "1.5.0")]
532ac7d7 2864 fn ge<I>(self, other: I) -> bool where
a7813a04
XL
2865 I: IntoIterator,
2866 Self::Item: PartialOrd<I::Item>,
2867 Self: Sized,
2868 {
532ac7d7
XL
2869 match self.partial_cmp(other) {
2870 Some(Ordering::Greater) | Some(Ordering::Equal) => true,
2871 _ => false,
a7813a04
XL
2872 }
2873 }
9fa01778
XL
2874
2875 /// Checks if the elements of this iterator are sorted.
2876 ///
2877 /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
2878 /// iterator yields exactly zero or one element, `true` is returned.
2879 ///
2880 /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
2881 /// implies that this function returns `false` if any two consecutive items are not
2882 /// comparable.
2883 ///
2884 /// # Examples
2885 ///
2886 /// ```
2887 /// #![feature(is_sorted)]
2888 ///
2889 /// assert!([1, 2, 2, 9].iter().is_sorted());
2890 /// assert!(![1, 3, 2, 4].iter().is_sorted());
2891 /// assert!([0].iter().is_sorted());
2892 /// assert!(std::iter::empty::<i32>().is_sorted());
2893 /// assert!(![0.0, 1.0, std::f32::NAN].iter().is_sorted());
2894 /// ```
2895 #[inline]
2896 #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
2897 fn is_sorted(self) -> bool
2898 where
2899 Self: Sized,
2900 Self::Item: PartialOrd,
2901 {
e1599b0c 2902 self.is_sorted_by(PartialOrd::partial_cmp)
9fa01778
XL
2903 }
2904
2905 /// Checks if the elements of this iterator are sorted using the given comparator function.
2906 ///
2907 /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
2908 /// function to determine the ordering of two elements. Apart from that, it's equivalent to
2909 /// [`is_sorted`]; see its documentation for more information.
2910 ///
e1599b0c
XL
2911 /// # Examples
2912 ///
2913 /// ```
2914 /// #![feature(is_sorted)]
2915 ///
2916 /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
2917 /// assert!(![1, 3, 2, 4].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
2918 /// assert!([0].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
2919 /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| a.partial_cmp(b)));
2920 /// assert!(![0.0, 1.0, std::f32::NAN].iter().is_sorted_by(|a, b| a.partial_cmp(b)));
2921 /// ```
2922 ///
9fa01778
XL
2923 /// [`is_sorted`]: trait.Iterator.html#method.is_sorted
2924 #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
2925 fn is_sorted_by<F>(mut self, mut compare: F) -> bool
2926 where
2927 Self: Sized,
2928 F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>
2929 {
2930 let mut last = match self.next() {
2931 Some(e) => e,
2932 None => return true,
2933 };
2934
2935 while let Some(curr) = self.next() {
e1599b0c 2936 if let Some(Ordering::Greater) | None = compare(&last, &curr) {
9fa01778
XL
2937 return false;
2938 }
2939 last = curr;
2940 }
2941
2942 true
2943 }
2944
2945 /// Checks if the elements of this iterator are sorted using the given key extraction
2946 /// function.
2947 ///
2948 /// Instead of comparing the iterator's elements directly, this function compares the keys of
2949 /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
2950 /// its documentation for more information.
2951 ///
2952 /// [`is_sorted`]: trait.Iterator.html#method.is_sorted
2953 ///
2954 /// # Examples
2955 ///
2956 /// ```
2957 /// #![feature(is_sorted)]
2958 ///
2959 /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
2960 /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
2961 /// ```
2962 #[inline]
2963 #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
416331ca 2964 fn is_sorted_by_key<F, K>(self, f: F) -> bool
9fa01778
XL
2965 where
2966 Self: Sized,
416331ca 2967 F: FnMut(Self::Item) -> K,
9fa01778
XL
2968 K: PartialOrd
2969 {
416331ca 2970 self.map(f).is_sorted()
9fa01778 2971 }
a7813a04
XL
2972}
2973
e1599b0c 2974/// Fold an iterator without having to provide an initial value.
a7813a04 2975#[inline]
e1599b0c 2976fn fold1<I, F>(mut it: I, f: F) -> Option<I::Item>
532ac7d7
XL
2977 where
2978 I: Iterator,
e1599b0c 2979 F: FnMut(I::Item, I::Item) -> I::Item,
a7813a04
XL
2980{
2981 // start with the first element as our selection. This avoids
2982 // having to use `Option`s inside the loop, translating to a
2983 // sizeable performance gain (6x in one case).
e1599b0c
XL
2984 let first = it.next()?;
2985 Some(it.fold(first, f))
a7813a04
XL
2986}
2987
2988#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 2989impl<I: Iterator + ?Sized> Iterator for &mut I {
a7813a04
XL
2990 type Item = I::Item;
2991 fn next(&mut self) -> Option<I::Item> { (**self).next() }
2992 fn size_hint(&self) -> (usize, Option<usize>) { (**self).size_hint() }
476ff2be
SL
2993 fn nth(&mut self, n: usize) -> Option<Self::Item> {
2994 (**self).nth(n)
2995 }
a7813a04 2996}