]> git.proxmox.com Git - rustc.git/blame - src/libcore/marker.rs
New upstream version 1.21.0+dfsg1
[rustc.git] / src / libcore / marker.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
9e0c209e 11//! Primitive traits and types representing basic properties of types.
1a4d82fc
JJ
12//!
13//! Rust types can be classified in various useful ways according to
9e0c209e
SL
14//! their intrinsic properties. These classifications are represented
15//! as traits.
1a4d82fc 16
85aaf69f 17#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 18
cc61c64b 19use cell::UnsafeCell;
85aaf69f 20use cmp;
85aaf69f
SL
21use hash::Hash;
22use hash::Hasher;
1a4d82fc 23
92a42be0 24/// Types that can be transferred across thread boundaries.
9cc50fc6 25///
9e0c209e
SL
26/// This trait is automatically implemented when the compiler determines it's
27/// appropriate.
28///
29/// An example of a non-`Send` type is the reference-counting pointer
476ff2be 30/// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same
9e0c209e 31/// reference-counted value, they might try to update the reference count at the
476ff2be 32/// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic
9e0c209e
SL
33/// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring
34/// some overhead) and thus is `Send`.
35///
36/// See [the Nomicon](../../nomicon/send-and-sync.html) for more details.
37///
476ff2be 38/// [`Rc`]: ../../std/rc/struct.Rc.html
9e0c209e 39/// [arc]: ../../std/sync/struct.Arc.html
8bb4bdeb 40/// [ub]: ../../reference/behavior-considered-undefined.html
85aaf69f 41#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 42#[lang = "send"]
85aaf69f 43#[rustc_on_unimplemented = "`{Self}` cannot be sent between threads safely"]
9346a6ac
AL
44pub unsafe trait Send {
45 // empty.
46}
47
92a42be0 48#[stable(feature = "rust1", since = "1.0.0")]
c34b1796
AL
49unsafe impl Send for .. { }
50
92a42be0
SL
51#[stable(feature = "rust1", since = "1.0.0")]
52impl<T: ?Sized> !Send for *const T { }
53#[stable(feature = "rust1", since = "1.0.0")]
54impl<T: ?Sized> !Send for *mut T { }
c34b1796 55
9e0c209e 56/// Types with a constant size known at compile time.
b039eaaf 57///
9e0c209e
SL
58/// All type parameters have an implicit bound of `Sized`. The special syntax
59/// `?Sized` can be used to remove this bound if it's not appropriate.
b039eaaf
SL
60///
61/// ```
92a42be0 62/// # #![allow(dead_code)]
b039eaaf
SL
63/// struct Foo<T>(T);
64/// struct Bar<T: ?Sized>(T);
65///
66/// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32]
67/// struct BarUse(Bar<[i32]>); // OK
68/// ```
9e0c209e
SL
69///
70/// The one exception is the implicit `Self` type of a trait, which does not
71/// get an implicit `Sized` bound. This is because a `Sized` bound prevents
72/// the trait from being used to form a [trait object]:
73///
74/// ```
75/// # #![allow(unused_variables)]
76/// trait Foo { }
77/// trait Bar: Sized { }
78///
79/// struct Impl;
80/// impl Foo for Impl { }
81/// impl Bar for Impl { }
82///
83/// let x: &Foo = &Impl; // OK
84/// // let y: &Bar = &Impl; // error: the trait `Bar` cannot
85/// // be made into an object
86/// ```
87///
041b39d2 88/// [trait object]: ../../book/first-edition/trait-objects.html
85aaf69f 89#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 90#[lang = "sized"]
85aaf69f 91#[rustc_on_unimplemented = "`{Self}` does not have a constant size known at compile-time"]
c34b1796 92#[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable
9346a6ac
AL
93pub trait Sized {
94 // Empty.
95}
96
9e0c209e
SL
97/// Types that can be "unsized" to a dynamically-sized type.
98///
99/// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and
100/// `Unsize<fmt::Debug>`.
101///
102/// All implementations of `Unsize` are provided automatically by the compiler.
103///
32a655c1
SL
104/// `Unsize` is implemented for:
105///
106/// - `[T; N]` is `Unsize<[T]>`
107/// - `T` is `Unsize<Trait>` when `T: Trait`
108/// - `Foo<..., T, ...>` is `Unsize<Foo<..., U, ...>>` if:
109/// - `T: Unsize<U>`
110/// - Foo is a struct
111/// - Only the last field of `Foo` has a type involving `T`
112/// - `T` is not part of the type of any other fields
113/// - `Bar<T>: Unsize<Bar<U>>`, if the last field of `Foo` has type `Bar<T>`
114///
9e0c209e
SL
115/// `Unsize` is used along with [`ops::CoerceUnsized`][coerceunsized] to allow
116/// "user-defined" containers such as [`rc::Rc`][rc] to contain dynamically-sized
32a655c1
SL
117/// types. See the [DST coercion RFC][RFC982] and [the nomicon entry on coercion][nomicon-coerce]
118/// for more details.
9e0c209e
SL
119///
120/// [coerceunsized]: ../ops/trait.CoerceUnsized.html
121/// [rc]: ../../std/rc/struct.Rc.html
122/// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md
7cac9316 123/// [nomicon-coerce]: ../../nomicon/coercions.html
e9174d1e 124#[unstable(feature = "unsize", issue = "27732")]
d9579d0f 125#[lang="unsize"]
e9174d1e 126pub trait Unsize<T: ?Sized> {
1a4d82fc
JJ
127 // Empty.
128}
129
9e0c209e 130/// Types whose values can be duplicated simply by copying bits.
85aaf69f
SL
131///
132/// By default, variable bindings have 'move semantics.' In other
133/// words:
134///
135/// ```
136/// #[derive(Debug)]
137/// struct Foo;
138///
139/// let x = Foo;
140///
141/// let y = x;
142///
143/// // `x` has moved into `y`, and so cannot be used
144///
145/// // println!("{:?}", x); // error: use of moved value
146/// ```
147///
148/// However, if a type implements `Copy`, it instead has 'copy semantics':
149///
150/// ```
9e0c209e
SL
151/// // We can derive a `Copy` implementation. `Clone` is also required, as it's
152/// // a supertrait of `Copy`.
c34b1796 153/// #[derive(Debug, Copy, Clone)]
85aaf69f
SL
154/// struct Foo;
155///
156/// let x = Foo;
157///
158/// let y = x;
159///
160/// // `y` is a copy of `x`
161///
162/// println!("{:?}", x); // A-OK!
163/// ```
164///
9e0c209e
SL
165/// It's important to note that in these two examples, the only difference is whether you
166/// are allowed to access `x` after the assignment. Under the hood, both a copy and a move
167/// can result in bits being copied in memory, although this is sometimes optimized away.
168///
169/// ## How can I implement `Copy`?
170///
171/// There are two ways to implement `Copy` on your type. The simplest is to use `derive`:
172///
173/// ```
174/// #[derive(Copy, Clone)]
175/// struct MyStruct;
176/// ```
177///
178/// You can also implement `Copy` and `Clone` manually:
179///
180/// ```
181/// struct MyStruct;
182///
183/// impl Copy for MyStruct { }
184///
185/// impl Clone for MyStruct {
186/// fn clone(&self) -> MyStruct {
187/// *self
188/// }
189/// }
190/// ```
191///
192/// There is a small difference between the two: the `derive` strategy will also place a `Copy`
193/// bound on type parameters, which isn't always desired.
194///
195/// ## What's the difference between `Copy` and `Clone`?
196///
197/// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of
198/// `Copy` is not overloadable; it is always a simple bit-wise copy.
199///
476ff2be 200/// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can
9e0c209e 201/// provide any type-specific behavior necessary to duplicate values safely. For example,
476ff2be
SL
202/// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string
203/// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the
204/// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`]
9e0c209e
SL
205/// but not `Copy`.
206///
476ff2be 207/// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement
041b39d2 208/// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation only needs to return `*self`
9e0c209e
SL
209/// (see the example above).
210///
85aaf69f
SL
211/// ## When can my type be `Copy`?
212///
213/// A type can implement `Copy` if all of its components implement `Copy`. For example, this
9e0c209e 214/// struct can be `Copy`:
85aaf69f
SL
215///
216/// ```
92a42be0 217/// # #[allow(dead_code)]
85aaf69f
SL
218/// struct Point {
219/// x: i32,
220/// y: i32,
221/// }
222/// ```
223///
476ff2be 224/// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`.
9e0c209e 225/// By contrast, consider
85aaf69f
SL
226///
227/// ```
92a42be0 228/// # #![allow(dead_code)]
85aaf69f
SL
229/// # struct Point;
230/// struct PointList {
231/// points: Vec<Point>,
232/// }
233/// ```
234///
9e0c209e 235/// The struct `PointList` cannot implement `Copy`, because [`Vec<T>`] is not `Copy`. If we
62682a34 236/// attempt to derive a `Copy` implementation, we'll get an error:
85aaf69f
SL
237///
238/// ```text
62682a34 239/// the trait `Copy` may not be implemented for this type; field `points` does not implement `Copy`
85aaf69f
SL
240/// ```
241///
9e0c209e 242/// ## When *can't* my type be `Copy`?
3157f602
XL
243///
244/// Some types can't be copied safely. For example, copying `&mut T` would create an aliased
476ff2be
SL
245/// mutable reference. Copying [`String`] would duplicate responsibility for managing the
246/// [`String`]'s buffer, leading to a double free.
3157f602 247///
9e0c209e 248/// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's
cc61c64b 249/// managing some resource besides its own [`size_of::<T>`] bytes.
3157f602 250///
32a655c1
SL
251/// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get
252/// the error [E0204].
85aaf69f 253///
c30ab7b3 254/// [E0204]: ../../error-index.html#E0204
85aaf69f 255///
9e0c209e 256/// ## When *should* my type be `Copy`?
85aaf69f 257///
9e0c209e
SL
258/// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though,
259/// that implementing `Copy` is part of the public API of your type. If the type might become
260/// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to
261/// avoid a breaking API change.
85aaf69f 262///
9e0c209e
SL
263/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
264/// [`String`]: ../../std/string/struct.String.html
265/// [`Drop`]: ../../std/ops/trait.Drop.html
cc61c64b 266/// [`size_of::<T>`]: ../../std/mem/fn.size_of.html
476ff2be
SL
267/// [`Clone`]: ../clone/trait.Clone.html
268/// [`String`]: ../../std/string/struct.String.html
269/// [`i32`]: ../../std/primitive.i32.html
85aaf69f 270#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 271#[lang = "copy"]
c34b1796 272pub trait Copy : Clone {
1a4d82fc
JJ
273 // Empty.
274}
275
9e0c209e
SL
276/// Types for which it is safe to share references between threads.
277///
278/// This trait is automatically implemented when the compiler determines
279/// it's appropriate.
1a4d82fc
JJ
280///
281/// The precise definition is: a type `T` is `Sync` if `&T` is
9e0c209e
SL
282/// [`Send`][send]. In other words, if there is no possibility of
283/// [undefined behavior][ub] (including data races) when passing
284/// `&T` references between threads.
285///
286/// As one would expect, primitive types like [`u8`][u8] and [`f64`][f64]
287/// are all `Sync`, and so are simple aggregate types containing them,
288/// like tuples, structs and enums. More examples of basic `Sync`
289/// types include "immutable" types like `&T`, and those with simple
290/// inherited mutability, such as [`Box<T>`][box], [`Vec<T>`][vec] and
291/// most other collection types. (Generic parameters need to be `Sync`
292/// for their container to be `Sync`.)
293///
294/// A somewhat surprising consequence of the definition is that `&mut T`
295/// is `Sync` (if `T` is `Sync`) even though it seems like that might
296/// provide unsynchronized mutation. The trick is that a mutable
297/// reference behind a shared reference (that is, `& &mut T`)
298/// becomes read-only, as if it were a `& &T`. Hence there is no risk
299/// of a data race.
1a4d82fc
JJ
300///
301/// Types that are not `Sync` are those that have "interior
9e0c209e
SL
302/// mutability" in a non-thread-safe form, such as [`cell::Cell`][cell]
303/// and [`cell::RefCell`][refcell]. These types allow for mutation of
304/// their contents even through an immutable, shared reference. For
476ff2be
SL
305/// example the `set` method on [`Cell<T>`][cell] takes `&self`, so it requires
306/// only a shared reference [`&Cell<T>`][cell]. The method performs no
307/// synchronization, thus [`Cell`][cell] cannot be `Sync`.
1a4d82fc 308///
9e0c209e 309/// Another example of a non-`Sync` type is the reference-counting
476ff2be
SL
310/// pointer [`rc::Rc`][rc]. Given any reference [`&Rc<T>`][rc], you can clone
311/// a new [`Rc<T>`][rc], modifying the reference counts in a non-atomic way.
9cc50fc6 312///
9e0c209e
SL
313/// For cases when one does need thread-safe interior mutability,
314/// Rust provides [atomic data types], as well as explicit locking via
315/// [`sync::Mutex`][mutex] and [`sync::RWLock`][rwlock]. These types
316/// ensure that any mutation cannot cause data races, hence the types
317/// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe
476ff2be 318/// analogue of [`Rc`][rc].
9e0c209e
SL
319///
320/// Any types with interior mutability must also use the
321/// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which
322/// can be mutated through a shared reference. Failing to doing this is
323/// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing
324/// from `&T` to `&mut T` is invalid.
325///
326/// See [the Nomicon](../../nomicon/send-and-sync.html) for more
327/// details about `Sync`.
328///
329/// [send]: trait.Send.html
330/// [u8]: ../../std/primitive.u8.html
331/// [f64]: ../../std/primitive.f64.html
332/// [box]: ../../std/boxed/struct.Box.html
333/// [vec]: ../../std/vec/struct.Vec.html
334/// [cell]: ../cell/struct.Cell.html
335/// [refcell]: ../cell/struct.RefCell.html
336/// [rc]: ../../std/rc/struct.Rc.html
337/// [arc]: ../../std/sync/struct.Arc.html
338/// [atomic data types]: ../sync/atomic/index.html
339/// [mutex]: ../../std/sync/struct.Mutex.html
340/// [rwlock]: ../../std/sync/struct.RwLock.html
341/// [unsafecell]: ../cell/struct.UnsafeCell.html
8bb4bdeb 342/// [ub]: ../../reference/behavior-considered-undefined.html
9e0c209e 343/// [transmute]: ../../std/mem/fn.transmute.html
9346a6ac 344#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 345#[lang = "sync"]
9346a6ac
AL
346#[rustc_on_unimplemented = "`{Self}` cannot be shared between threads safely"]
347pub unsafe trait Sync {
348 // Empty
349}
350
92a42be0 351#[stable(feature = "rust1", since = "1.0.0")]
c34b1796
AL
352unsafe impl Sync for .. { }
353
92a42be0
SL
354#[stable(feature = "rust1", since = "1.0.0")]
355impl<T: ?Sized> !Sync for *const T { }
356#[stable(feature = "rust1", since = "1.0.0")]
357impl<T: ?Sized> !Sync for *mut T { }
c34b1796 358
85aaf69f
SL
359macro_rules! impls{
360 ($t: ident) => (
92a42be0 361 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
362 impl<T:?Sized> Hash for $t<T> {
363 #[inline]
364 fn hash<H: Hasher>(&self, _: &mut H) {
365 }
366 }
367
92a42be0 368 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
369 impl<T:?Sized> cmp::PartialEq for $t<T> {
370 fn eq(&self, _other: &$t<T>) -> bool {
371 true
372 }
373 }
374
92a42be0 375 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
376 impl<T:?Sized> cmp::Eq for $t<T> {
377 }
378
92a42be0 379 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
380 impl<T:?Sized> cmp::PartialOrd for $t<T> {
381 fn partial_cmp(&self, _other: &$t<T>) -> Option<cmp::Ordering> {
382 Option::Some(cmp::Ordering::Equal)
383 }
384 }
385
92a42be0 386 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
387 impl<T:?Sized> cmp::Ord for $t<T> {
388 fn cmp(&self, _other: &$t<T>) -> cmp::Ordering {
389 cmp::Ordering::Equal
390 }
391 }
392
92a42be0 393 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
394 impl<T:?Sized> Copy for $t<T> { }
395
92a42be0 396 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
397 impl<T:?Sized> Clone for $t<T> {
398 fn clone(&self) -> $t<T> {
399 $t
400 }
401 }
92a42be0
SL
402
403 #[stable(feature = "rust1", since = "1.0.0")]
404 impl<T:?Sized> Default for $t<T> {
405 fn default() -> $t<T> {
406 $t
407 }
408 }
85aaf69f
SL
409 )
410}
411
9e0c209e 412/// Zero-sized type used to mark things that "act like" they own a `T`.
9346a6ac 413///
9e0c209e
SL
414/// Adding a `PhantomData<T>` field to your type tells the compiler that your
415/// type acts as though it stores a value of type `T`, even though it doesn't
416/// really. This information is used when computing certain safety properties.
9cc50fc6 417///
9e0c209e
SL
418/// For a more in-depth explanation of how to use `PhantomData<T>`, please see
419/// [the Nomicon](../../nomicon/phantom-data.html).
9cc50fc6 420///
e9174d1e
SL
421/// # A ghastly note 👻👻👻
422///
9e0c209e
SL
423/// Though they both have scary names, `PhantomData` and 'phantom types' are
424/// related, but not identical. A phantom type parameter is simply a type
425/// parameter which is never used. In Rust, this often causes the compiler to
426/// complain, and the solution is to add a "dummy" use by way of `PhantomData`.
1a4d82fc 427///
c34b1796 428/// # Examples
1a4d82fc 429///
9e0c209e 430/// ## Unused lifetime parameters
1a4d82fc 431///
9e0c209e
SL
432/// Perhaps the most common use case for `PhantomData` is a struct that has an
433/// unused lifetime parameter, typically as part of some unsafe code. For
434/// example, here is a struct `Slice` that has two pointers of type `*const T`,
435/// presumably pointing into an array somewhere:
85aaf69f 436///
041b39d2 437/// ```compile_fail,E0392
9346a6ac
AL
438/// struct Slice<'a, T> {
439/// start: *const T,
440/// end: *const T,
1a4d82fc
JJ
441/// }
442/// ```
443///
9346a6ac
AL
444/// The intention is that the underlying data is only valid for the
445/// lifetime `'a`, so `Slice` should not outlive `'a`. However, this
446/// intent is not expressed in the code, since there are no uses of
447/// the lifetime `'a` and hence it is not clear what data it applies
448/// to. We can correct this by telling the compiler to act *as if* the
9e0c209e 449/// `Slice` struct contained a reference `&'a T`:
1a4d82fc 450///
c34b1796 451/// ```
9346a6ac 452/// use std::marker::PhantomData;
1a4d82fc 453///
92a42be0 454/// # #[allow(dead_code)]
9cc50fc6 455/// struct Slice<'a, T: 'a> {
9346a6ac
AL
456/// start: *const T,
457/// end: *const T,
9e0c209e 458/// phantom: PhantomData<&'a T>,
9346a6ac 459/// }
c34b1796 460/// ```
1a4d82fc 461///
9e0c209e
SL
462/// This also in turn requires the annotation `T: 'a`, indicating
463/// that any references in `T` are valid over the lifetime `'a`.
464///
465/// When initializing a `Slice` you simply provide the value
466/// `PhantomData` for the field `phantom`:
467///
468/// ```
469/// # #![allow(dead_code)]
470/// # use std::marker::PhantomData;
471/// # struct Slice<'a, T: 'a> {
472/// # start: *const T,
473/// # end: *const T,
474/// # phantom: PhantomData<&'a T>,
475/// # }
476/// fn borrow_vec<'a, T>(vec: &'a Vec<T>) -> Slice<'a, T> {
477/// let ptr = vec.as_ptr();
478/// Slice {
479/// start: ptr,
480/// end: unsafe { ptr.offset(vec.len() as isize) },
481/// phantom: PhantomData,
482/// }
483/// }
484/// ```
1a4d82fc 485///
9346a6ac 486/// ## Unused type parameters
1a4d82fc 487///
9e0c209e 488/// It sometimes happens that you have unused type parameters which
9346a6ac
AL
489/// indicate what type of data a struct is "tied" to, even though that
490/// data is not actually found in the struct itself. Here is an
9e0c209e
SL
491/// example where this arises with [FFI]. The foreign interface uses
492/// handles of type `*mut ()` to refer to Rust values of different
493/// types. We track the Rust type using a phantom type parameter on
494/// the struct `ExternalResource` which wraps a handle.
495///
041b39d2 496/// [FFI]: ../../book/first-edition/ffi.html
c34b1796
AL
497///
498/// ```
92a42be0 499/// # #![allow(dead_code)]
9e0c209e 500/// # trait ResType { }
c34b1796
AL
501/// # struct ParamType;
502/// # mod foreign_lib {
9e0c209e
SL
503/// # pub fn new(_: usize) -> *mut () { 42 as *mut () }
504/// # pub fn do_stuff(_: *mut (), _: usize) {}
c34b1796
AL
505/// # }
506/// # fn convert_params(_: ParamType) -> usize { 42 }
507/// use std::marker::PhantomData;
508/// use std::mem;
509///
510/// struct ExternalResource<R> {
511/// resource_handle: *mut (),
512/// resource_type: PhantomData<R>,
513/// }
514///
515/// impl<R: ResType> ExternalResource<R> {
516/// fn new() -> ExternalResource<R> {
517/// let size_of_res = mem::size_of::<R>();
518/// ExternalResource {
519/// resource_handle: foreign_lib::new(size_of_res),
520/// resource_type: PhantomData,
521/// }
522/// }
523///
524/// fn do_stuff(&self, param: ParamType) {
525/// let foreign_params = convert_params(param);
526/// foreign_lib::do_stuff(self.resource_handle, foreign_params);
527/// }
528/// }
529/// ```
530///
9e0c209e 531/// ## Ownership and the drop check
9346a6ac 532///
9e0c209e
SL
533/// Adding a field of type `PhantomData<T>` indicates that your
534/// type owns data of type `T`. This in turn implies that when your
535/// type is dropped, it may drop one or more instances of the type
536/// `T`. This has bearing on the Rust compiler's [drop check]
537/// analysis.
9346a6ac
AL
538///
539/// If your struct does not in fact *own* the data of type `T`, it is
540/// better to use a reference type, like `PhantomData<&'a T>`
541/// (ideally) or `PhantomData<*const T>` (if no lifetime applies), so
542/// as not to indicate ownership.
9e0c209e
SL
543///
544/// [drop check]: ../../nomicon/dropck.html
d9579d0f 545#[lang = "phantom_data"]
85aaf69f
SL
546#[stable(feature = "rust1", since = "1.0.0")]
547pub struct PhantomData<T:?Sized>;
1a4d82fc 548
85aaf69f 549impls! { PhantomData }
1a4d82fc 550
85aaf69f 551mod impls {
92a42be0 552 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 553 unsafe impl<'a, T: Sync + ?Sized> Send for &'a T {}
92a42be0 554 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
555 unsafe impl<'a, T: Send + ?Sized> Send for &'a mut T {}
556}
cc61c64b
XL
557
558/// Compiler-internal trait used to determine whether a type contains
559/// any `UnsafeCell` internally, but not through an indirection.
560/// This affects, for example, whether a `static` of that type is
561/// placed in read-only static memory or writable static memory.
7cac9316 562#[lang = "freeze"]
cc61c64b
XL
563unsafe trait Freeze {}
564
565unsafe impl Freeze for .. {}
566
567impl<T: ?Sized> !Freeze for UnsafeCell<T> {}
568unsafe impl<T: ?Sized> Freeze for PhantomData<T> {}
569unsafe impl<T: ?Sized> Freeze for *const T {}
570unsafe impl<T: ?Sized> Freeze for *mut T {}
571unsafe impl<'a, T: ?Sized> Freeze for &'a T {}
572unsafe impl<'a, T: ?Sized> Freeze for &'a mut T {}