]> git.proxmox.com Git - rustc.git/blame - src/libcore/marker.rs
New upstream version 1.15.0+dfsg1
[rustc.git] / src / libcore / marker.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
9e0c209e 11//! Primitive traits and types representing basic properties of types.
1a4d82fc
JJ
12//!
13//! Rust types can be classified in various useful ways according to
9e0c209e
SL
14//! their intrinsic properties. These classifications are represented
15//! as traits.
1a4d82fc 16
85aaf69f 17#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 18
85aaf69f 19use cmp;
85aaf69f
SL
20use hash::Hash;
21use hash::Hasher;
1a4d82fc 22
92a42be0 23/// Types that can be transferred across thread boundaries.
9cc50fc6 24///
9e0c209e
SL
25/// This trait is automatically implemented when the compiler determines it's
26/// appropriate.
27///
28/// An example of a non-`Send` type is the reference-counting pointer
476ff2be 29/// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same
9e0c209e 30/// reference-counted value, they might try to update the reference count at the
476ff2be 31/// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic
9e0c209e
SL
32/// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring
33/// some overhead) and thus is `Send`.
34///
35/// See [the Nomicon](../../nomicon/send-and-sync.html) for more details.
36///
476ff2be 37/// [`Rc`]: ../../std/rc/struct.Rc.html
9e0c209e
SL
38/// [arc]: ../../std/sync/struct.Arc.html
39/// [ub]: ../../reference.html#behavior-considered-undefined
85aaf69f 40#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 41#[lang = "send"]
85aaf69f 42#[rustc_on_unimplemented = "`{Self}` cannot be sent between threads safely"]
9346a6ac
AL
43pub unsafe trait Send {
44 // empty.
45}
46
92a42be0 47#[stable(feature = "rust1", since = "1.0.0")]
c34b1796
AL
48unsafe impl Send for .. { }
49
92a42be0
SL
50#[stable(feature = "rust1", since = "1.0.0")]
51impl<T: ?Sized> !Send for *const T { }
52#[stable(feature = "rust1", since = "1.0.0")]
53impl<T: ?Sized> !Send for *mut T { }
c34b1796 54
9e0c209e 55/// Types with a constant size known at compile time.
b039eaaf 56///
9e0c209e
SL
57/// All type parameters have an implicit bound of `Sized`. The special syntax
58/// `?Sized` can be used to remove this bound if it's not appropriate.
b039eaaf
SL
59///
60/// ```
92a42be0 61/// # #![allow(dead_code)]
b039eaaf
SL
62/// struct Foo<T>(T);
63/// struct Bar<T: ?Sized>(T);
64///
65/// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32]
66/// struct BarUse(Bar<[i32]>); // OK
67/// ```
9e0c209e
SL
68///
69/// The one exception is the implicit `Self` type of a trait, which does not
70/// get an implicit `Sized` bound. This is because a `Sized` bound prevents
71/// the trait from being used to form a [trait object]:
72///
73/// ```
74/// # #![allow(unused_variables)]
75/// trait Foo { }
76/// trait Bar: Sized { }
77///
78/// struct Impl;
79/// impl Foo for Impl { }
80/// impl Bar for Impl { }
81///
82/// let x: &Foo = &Impl; // OK
83/// // let y: &Bar = &Impl; // error: the trait `Bar` cannot
84/// // be made into an object
85/// ```
86///
87/// [trait object]: ../../book/trait-objects.html
85aaf69f 88#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 89#[lang = "sized"]
85aaf69f 90#[rustc_on_unimplemented = "`{Self}` does not have a constant size known at compile-time"]
c34b1796 91#[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable
9346a6ac
AL
92pub trait Sized {
93 // Empty.
94}
95
9e0c209e
SL
96/// Types that can be "unsized" to a dynamically-sized type.
97///
98/// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and
99/// `Unsize<fmt::Debug>`.
100///
101/// All implementations of `Unsize` are provided automatically by the compiler.
102///
103/// `Unsize` is used along with [`ops::CoerceUnsized`][coerceunsized] to allow
104/// "user-defined" containers such as [`rc::Rc`][rc] to contain dynamically-sized
105/// types. See the [DST coercion RFC][RFC982] for more details.
106///
107/// [coerceunsized]: ../ops/trait.CoerceUnsized.html
108/// [rc]: ../../std/rc/struct.Rc.html
109/// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md
e9174d1e 110#[unstable(feature = "unsize", issue = "27732")]
d9579d0f 111#[lang="unsize"]
e9174d1e 112pub trait Unsize<T: ?Sized> {
1a4d82fc
JJ
113 // Empty.
114}
115
9e0c209e 116/// Types whose values can be duplicated simply by copying bits.
85aaf69f
SL
117///
118/// By default, variable bindings have 'move semantics.' In other
119/// words:
120///
121/// ```
122/// #[derive(Debug)]
123/// struct Foo;
124///
125/// let x = Foo;
126///
127/// let y = x;
128///
129/// // `x` has moved into `y`, and so cannot be used
130///
131/// // println!("{:?}", x); // error: use of moved value
132/// ```
133///
134/// However, if a type implements `Copy`, it instead has 'copy semantics':
135///
136/// ```
9e0c209e
SL
137/// // We can derive a `Copy` implementation. `Clone` is also required, as it's
138/// // a supertrait of `Copy`.
c34b1796 139/// #[derive(Debug, Copy, Clone)]
85aaf69f
SL
140/// struct Foo;
141///
142/// let x = Foo;
143///
144/// let y = x;
145///
146/// // `y` is a copy of `x`
147///
148/// println!("{:?}", x); // A-OK!
149/// ```
150///
9e0c209e
SL
151/// It's important to note that in these two examples, the only difference is whether you
152/// are allowed to access `x` after the assignment. Under the hood, both a copy and a move
153/// can result in bits being copied in memory, although this is sometimes optimized away.
154///
155/// ## How can I implement `Copy`?
156///
157/// There are two ways to implement `Copy` on your type. The simplest is to use `derive`:
158///
159/// ```
160/// #[derive(Copy, Clone)]
161/// struct MyStruct;
162/// ```
163///
164/// You can also implement `Copy` and `Clone` manually:
165///
166/// ```
167/// struct MyStruct;
168///
169/// impl Copy for MyStruct { }
170///
171/// impl Clone for MyStruct {
172/// fn clone(&self) -> MyStruct {
173/// *self
174/// }
175/// }
176/// ```
177///
178/// There is a small difference between the two: the `derive` strategy will also place a `Copy`
179/// bound on type parameters, which isn't always desired.
180///
181/// ## What's the difference between `Copy` and `Clone`?
182///
183/// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of
184/// `Copy` is not overloadable; it is always a simple bit-wise copy.
185///
476ff2be 186/// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can
9e0c209e 187/// provide any type-specific behavior necessary to duplicate values safely. For example,
476ff2be
SL
188/// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string
189/// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the
190/// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`]
9e0c209e
SL
191/// but not `Copy`.
192///
476ff2be
SL
193/// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement
194/// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation need only return `*self`
9e0c209e
SL
195/// (see the example above).
196///
85aaf69f
SL
197/// ## When can my type be `Copy`?
198///
199/// A type can implement `Copy` if all of its components implement `Copy`. For example, this
9e0c209e 200/// struct can be `Copy`:
85aaf69f
SL
201///
202/// ```
92a42be0 203/// # #[allow(dead_code)]
85aaf69f
SL
204/// struct Point {
205/// x: i32,
206/// y: i32,
207/// }
208/// ```
209///
476ff2be 210/// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`.
9e0c209e 211/// By contrast, consider
85aaf69f
SL
212///
213/// ```
92a42be0 214/// # #![allow(dead_code)]
85aaf69f
SL
215/// # struct Point;
216/// struct PointList {
217/// points: Vec<Point>,
218/// }
219/// ```
220///
9e0c209e 221/// The struct `PointList` cannot implement `Copy`, because [`Vec<T>`] is not `Copy`. If we
62682a34 222/// attempt to derive a `Copy` implementation, we'll get an error:
85aaf69f
SL
223///
224/// ```text
62682a34 225/// the trait `Copy` may not be implemented for this type; field `points` does not implement `Copy`
85aaf69f
SL
226/// ```
227///
9e0c209e 228/// ## When *can't* my type be `Copy`?
3157f602
XL
229///
230/// Some types can't be copied safely. For example, copying `&mut T` would create an aliased
476ff2be
SL
231/// mutable reference. Copying [`String`] would duplicate responsibility for managing the
232/// [`String`]'s buffer, leading to a double free.
3157f602 233///
9e0c209e
SL
234/// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's
235/// managing some resource besides its own [`size_of::<T>()`] bytes.
3157f602 236///
9e0c209e
SL
237/// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get a
238/// compile-time error. Specifically, with structs you'll get [E0204] and with enums you'll get
239/// [E0205].
85aaf69f 240///
c30ab7b3
SL
241/// [E0204]: ../../error-index.html#E0204
242/// [E0205]: ../../error-index.html#E0205
85aaf69f 243///
9e0c209e 244/// ## When *should* my type be `Copy`?
85aaf69f 245///
9e0c209e
SL
246/// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though,
247/// that implementing `Copy` is part of the public API of your type. If the type might become
248/// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to
249/// avoid a breaking API change.
85aaf69f 250///
9e0c209e
SL
251/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
252/// [`String`]: ../../std/string/struct.String.html
253/// [`Drop`]: ../../std/ops/trait.Drop.html
254/// [`size_of::<T>()`]: ../../std/mem/fn.size_of.html
476ff2be
SL
255/// [`Clone`]: ../clone/trait.Clone.html
256/// [`String`]: ../../std/string/struct.String.html
257/// [`i32`]: ../../std/primitive.i32.html
85aaf69f 258#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 259#[lang = "copy"]
c34b1796 260pub trait Copy : Clone {
1a4d82fc
JJ
261 // Empty.
262}
263
9e0c209e
SL
264/// Types for which it is safe to share references between threads.
265///
266/// This trait is automatically implemented when the compiler determines
267/// it's appropriate.
1a4d82fc
JJ
268///
269/// The precise definition is: a type `T` is `Sync` if `&T` is
9e0c209e
SL
270/// [`Send`][send]. In other words, if there is no possibility of
271/// [undefined behavior][ub] (including data races) when passing
272/// `&T` references between threads.
273///
274/// As one would expect, primitive types like [`u8`][u8] and [`f64`][f64]
275/// are all `Sync`, and so are simple aggregate types containing them,
276/// like tuples, structs and enums. More examples of basic `Sync`
277/// types include "immutable" types like `&T`, and those with simple
278/// inherited mutability, such as [`Box<T>`][box], [`Vec<T>`][vec] and
279/// most other collection types. (Generic parameters need to be `Sync`
280/// for their container to be `Sync`.)
281///
282/// A somewhat surprising consequence of the definition is that `&mut T`
283/// is `Sync` (if `T` is `Sync`) even though it seems like that might
284/// provide unsynchronized mutation. The trick is that a mutable
285/// reference behind a shared reference (that is, `& &mut T`)
286/// becomes read-only, as if it were a `& &T`. Hence there is no risk
287/// of a data race.
1a4d82fc
JJ
288///
289/// Types that are not `Sync` are those that have "interior
9e0c209e
SL
290/// mutability" in a non-thread-safe form, such as [`cell::Cell`][cell]
291/// and [`cell::RefCell`][refcell]. These types allow for mutation of
292/// their contents even through an immutable, shared reference. For
476ff2be
SL
293/// example the `set` method on [`Cell<T>`][cell] takes `&self`, so it requires
294/// only a shared reference [`&Cell<T>`][cell]. The method performs no
295/// synchronization, thus [`Cell`][cell] cannot be `Sync`.
1a4d82fc 296///
9e0c209e 297/// Another example of a non-`Sync` type is the reference-counting
476ff2be
SL
298/// pointer [`rc::Rc`][rc]. Given any reference [`&Rc<T>`][rc], you can clone
299/// a new [`Rc<T>`][rc], modifying the reference counts in a non-atomic way.
9cc50fc6 300///
9e0c209e
SL
301/// For cases when one does need thread-safe interior mutability,
302/// Rust provides [atomic data types], as well as explicit locking via
303/// [`sync::Mutex`][mutex] and [`sync::RWLock`][rwlock]. These types
304/// ensure that any mutation cannot cause data races, hence the types
305/// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe
476ff2be 306/// analogue of [`Rc`][rc].
9e0c209e
SL
307///
308/// Any types with interior mutability must also use the
309/// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which
310/// can be mutated through a shared reference. Failing to doing this is
311/// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing
312/// from `&T` to `&mut T` is invalid.
313///
314/// See [the Nomicon](../../nomicon/send-and-sync.html) for more
315/// details about `Sync`.
316///
317/// [send]: trait.Send.html
318/// [u8]: ../../std/primitive.u8.html
319/// [f64]: ../../std/primitive.f64.html
320/// [box]: ../../std/boxed/struct.Box.html
321/// [vec]: ../../std/vec/struct.Vec.html
322/// [cell]: ../cell/struct.Cell.html
323/// [refcell]: ../cell/struct.RefCell.html
324/// [rc]: ../../std/rc/struct.Rc.html
325/// [arc]: ../../std/sync/struct.Arc.html
326/// [atomic data types]: ../sync/atomic/index.html
327/// [mutex]: ../../std/sync/struct.Mutex.html
328/// [rwlock]: ../../std/sync/struct.RwLock.html
329/// [unsafecell]: ../cell/struct.UnsafeCell.html
330/// [ub]: ../../reference.html#behavior-considered-undefined
331/// [transmute]: ../../std/mem/fn.transmute.html
9346a6ac 332#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 333#[lang = "sync"]
9346a6ac
AL
334#[rustc_on_unimplemented = "`{Self}` cannot be shared between threads safely"]
335pub unsafe trait Sync {
336 // Empty
337}
338
92a42be0 339#[stable(feature = "rust1", since = "1.0.0")]
c34b1796
AL
340unsafe impl Sync for .. { }
341
92a42be0
SL
342#[stable(feature = "rust1", since = "1.0.0")]
343impl<T: ?Sized> !Sync for *const T { }
344#[stable(feature = "rust1", since = "1.0.0")]
345impl<T: ?Sized> !Sync for *mut T { }
c34b1796 346
85aaf69f
SL
347macro_rules! impls{
348 ($t: ident) => (
92a42be0 349 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
350 impl<T:?Sized> Hash for $t<T> {
351 #[inline]
352 fn hash<H: Hasher>(&self, _: &mut H) {
353 }
354 }
355
92a42be0 356 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
357 impl<T:?Sized> cmp::PartialEq for $t<T> {
358 fn eq(&self, _other: &$t<T>) -> bool {
359 true
360 }
361 }
362
92a42be0 363 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
364 impl<T:?Sized> cmp::Eq for $t<T> {
365 }
366
92a42be0 367 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
368 impl<T:?Sized> cmp::PartialOrd for $t<T> {
369 fn partial_cmp(&self, _other: &$t<T>) -> Option<cmp::Ordering> {
370 Option::Some(cmp::Ordering::Equal)
371 }
372 }
373
92a42be0 374 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
375 impl<T:?Sized> cmp::Ord for $t<T> {
376 fn cmp(&self, _other: &$t<T>) -> cmp::Ordering {
377 cmp::Ordering::Equal
378 }
379 }
380
92a42be0 381 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
382 impl<T:?Sized> Copy for $t<T> { }
383
92a42be0 384 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
385 impl<T:?Sized> Clone for $t<T> {
386 fn clone(&self) -> $t<T> {
387 $t
388 }
389 }
92a42be0
SL
390
391 #[stable(feature = "rust1", since = "1.0.0")]
392 impl<T:?Sized> Default for $t<T> {
393 fn default() -> $t<T> {
394 $t
395 }
396 }
85aaf69f
SL
397 )
398}
399
9e0c209e 400/// Zero-sized type used to mark things that "act like" they own a `T`.
9346a6ac 401///
9e0c209e
SL
402/// Adding a `PhantomData<T>` field to your type tells the compiler that your
403/// type acts as though it stores a value of type `T`, even though it doesn't
404/// really. This information is used when computing certain safety properties.
9cc50fc6 405///
9e0c209e
SL
406/// For a more in-depth explanation of how to use `PhantomData<T>`, please see
407/// [the Nomicon](../../nomicon/phantom-data.html).
9cc50fc6 408///
e9174d1e
SL
409/// # A ghastly note 👻👻👻
410///
9e0c209e
SL
411/// Though they both have scary names, `PhantomData` and 'phantom types' are
412/// related, but not identical. A phantom type parameter is simply a type
413/// parameter which is never used. In Rust, this often causes the compiler to
414/// complain, and the solution is to add a "dummy" use by way of `PhantomData`.
1a4d82fc 415///
c34b1796 416/// # Examples
1a4d82fc 417///
9e0c209e 418/// ## Unused lifetime parameters
1a4d82fc 419///
9e0c209e
SL
420/// Perhaps the most common use case for `PhantomData` is a struct that has an
421/// unused lifetime parameter, typically as part of some unsafe code. For
422/// example, here is a struct `Slice` that has two pointers of type `*const T`,
423/// presumably pointing into an array somewhere:
85aaf69f 424///
9346a6ac
AL
425/// ```ignore
426/// struct Slice<'a, T> {
427/// start: *const T,
428/// end: *const T,
1a4d82fc
JJ
429/// }
430/// ```
431///
9346a6ac
AL
432/// The intention is that the underlying data is only valid for the
433/// lifetime `'a`, so `Slice` should not outlive `'a`. However, this
434/// intent is not expressed in the code, since there are no uses of
435/// the lifetime `'a` and hence it is not clear what data it applies
436/// to. We can correct this by telling the compiler to act *as if* the
9e0c209e 437/// `Slice` struct contained a reference `&'a T`:
1a4d82fc 438///
c34b1796 439/// ```
9346a6ac 440/// use std::marker::PhantomData;
1a4d82fc 441///
92a42be0 442/// # #[allow(dead_code)]
9cc50fc6 443/// struct Slice<'a, T: 'a> {
9346a6ac
AL
444/// start: *const T,
445/// end: *const T,
9e0c209e 446/// phantom: PhantomData<&'a T>,
9346a6ac 447/// }
c34b1796 448/// ```
1a4d82fc 449///
9e0c209e
SL
450/// This also in turn requires the annotation `T: 'a`, indicating
451/// that any references in `T` are valid over the lifetime `'a`.
452///
453/// When initializing a `Slice` you simply provide the value
454/// `PhantomData` for the field `phantom`:
455///
456/// ```
457/// # #![allow(dead_code)]
458/// # use std::marker::PhantomData;
459/// # struct Slice<'a, T: 'a> {
460/// # start: *const T,
461/// # end: *const T,
462/// # phantom: PhantomData<&'a T>,
463/// # }
464/// fn borrow_vec<'a, T>(vec: &'a Vec<T>) -> Slice<'a, T> {
465/// let ptr = vec.as_ptr();
466/// Slice {
467/// start: ptr,
468/// end: unsafe { ptr.offset(vec.len() as isize) },
469/// phantom: PhantomData,
470/// }
471/// }
472/// ```
1a4d82fc 473///
9346a6ac 474/// ## Unused type parameters
1a4d82fc 475///
9e0c209e 476/// It sometimes happens that you have unused type parameters which
9346a6ac
AL
477/// indicate what type of data a struct is "tied" to, even though that
478/// data is not actually found in the struct itself. Here is an
9e0c209e
SL
479/// example where this arises with [FFI]. The foreign interface uses
480/// handles of type `*mut ()` to refer to Rust values of different
481/// types. We track the Rust type using a phantom type parameter on
482/// the struct `ExternalResource` which wraps a handle.
483///
484/// [FFI]: ../../book/ffi.html
c34b1796
AL
485///
486/// ```
92a42be0 487/// # #![allow(dead_code)]
9e0c209e 488/// # trait ResType { }
c34b1796
AL
489/// # struct ParamType;
490/// # mod foreign_lib {
9e0c209e
SL
491/// # pub fn new(_: usize) -> *mut () { 42 as *mut () }
492/// # pub fn do_stuff(_: *mut (), _: usize) {}
c34b1796
AL
493/// # }
494/// # fn convert_params(_: ParamType) -> usize { 42 }
495/// use std::marker::PhantomData;
496/// use std::mem;
497///
498/// struct ExternalResource<R> {
499/// resource_handle: *mut (),
500/// resource_type: PhantomData<R>,
501/// }
502///
503/// impl<R: ResType> ExternalResource<R> {
504/// fn new() -> ExternalResource<R> {
505/// let size_of_res = mem::size_of::<R>();
506/// ExternalResource {
507/// resource_handle: foreign_lib::new(size_of_res),
508/// resource_type: PhantomData,
509/// }
510/// }
511///
512/// fn do_stuff(&self, param: ParamType) {
513/// let foreign_params = convert_params(param);
514/// foreign_lib::do_stuff(self.resource_handle, foreign_params);
515/// }
516/// }
517/// ```
518///
9e0c209e 519/// ## Ownership and the drop check
9346a6ac 520///
9e0c209e
SL
521/// Adding a field of type `PhantomData<T>` indicates that your
522/// type owns data of type `T`. This in turn implies that when your
523/// type is dropped, it may drop one or more instances of the type
524/// `T`. This has bearing on the Rust compiler's [drop check]
525/// analysis.
9346a6ac
AL
526///
527/// If your struct does not in fact *own* the data of type `T`, it is
528/// better to use a reference type, like `PhantomData<&'a T>`
529/// (ideally) or `PhantomData<*const T>` (if no lifetime applies), so
530/// as not to indicate ownership.
9e0c209e
SL
531///
532/// [drop check]: ../../nomicon/dropck.html
d9579d0f 533#[lang = "phantom_data"]
85aaf69f
SL
534#[stable(feature = "rust1", since = "1.0.0")]
535pub struct PhantomData<T:?Sized>;
1a4d82fc 536
85aaf69f 537impls! { PhantomData }
1a4d82fc 538
85aaf69f 539mod impls {
92a42be0 540 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 541 unsafe impl<'a, T: Sync + ?Sized> Send for &'a T {}
92a42be0 542 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
543 unsafe impl<'a, T: Send + ?Sized> Send for &'a mut T {}
544}
1a4d82fc 545
92a42be0
SL
546/// Types that can be reflected over.
547///
9e0c209e
SL
548/// By "reflection" we mean use of the [`Any`][any] trait, or related
549/// machinery such as [`TypeId`][typeid].
550///
551/// `Reflect` is implemented for all types. Its purpose is to ensure
552/// that when you write a generic function that will employ reflection,
553/// that must be reflected (no pun intended) in the generic bounds of
554/// that function.
c34b1796
AL
555///
556/// ```
62682a34 557/// #![feature(reflect_marker)]
c34b1796
AL
558/// use std::marker::Reflect;
559/// use std::any::Any;
92a42be0
SL
560///
561/// # #[allow(dead_code)]
9cc50fc6 562/// fn foo<T: Reflect + 'static>(x: &T) {
c34b1796
AL
563/// let any: &Any = x;
564/// if any.is::<u32>() { println!("u32"); }
565/// }
566/// ```
567///
9e0c209e
SL
568/// Without the bound `T: Reflect`, `foo` would not typecheck. (As
569/// a matter of style, it would be preferable to write `T: Any`,
570/// because `T: Any` implies `T: Reflect` and `T: 'static`, but we
571/// use `Reflect` here for illustrative purposes.)
572///
573/// The `Reflect` bound serves to alert `foo`'s caller to the
574/// fact that `foo` may behave differently depending on whether
575/// `T` is `u32` or not. The ability for a caller to reason about what
576/// a function may do based solely on what generic bounds are declared
577/// is often called the "[parametricity property][param]". Despite the
578/// use of `Reflect`, Rust lacks true parametricity because a generic
579/// function can, at the very least, call [`mem::size_of`][size_of]
580/// without employing any trait bounds whatsoever.
581///
582/// [any]: ../any/trait.Any.html
583/// [typeid]: ../any/struct.TypeId.html
584/// [param]: http://en.wikipedia.org/wiki/Parametricity
585/// [size_of]: ../mem/fn.size_of.html
c34b1796 586#[rustc_reflect_like]
62682a34 587#[unstable(feature = "reflect_marker",
e9174d1e
SL
588 reason = "requires RFC and more experience",
589 issue = "27749")]
9e0c209e 590#[rustc_deprecated(since = "1.14.0", reason = "Specialization makes parametricity impossible")]
bd371182
AL
591#[rustc_on_unimplemented = "`{Self}` does not implement `Any`; \
592 ensure all type parameters are bounded by `Any`"]
9346a6ac
AL
593pub trait Reflect {}
594
92a42be0
SL
595#[unstable(feature = "reflect_marker",
596 reason = "requires RFC and more experience",
597 issue = "27749")]
9e0c209e
SL
598#[rustc_deprecated(since = "1.14.0", reason = "Specialization makes parametricity impossible")]
599#[allow(deprecated)]
c34b1796 600impl Reflect for .. { }