]> git.proxmox.com Git - rustc.git/blame - src/libcore/marker.rs
New upstream version 1.27.1+dfsg1
[rustc.git] / src / libcore / marker.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
9e0c209e 11//! Primitive traits and types representing basic properties of types.
1a4d82fc
JJ
12//!
13//! Rust types can be classified in various useful ways according to
9e0c209e
SL
14//! their intrinsic properties. These classifications are represented
15//! as traits.
1a4d82fc 16
85aaf69f 17#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 18
cc61c64b 19use cell::UnsafeCell;
85aaf69f 20use cmp;
85aaf69f
SL
21use hash::Hash;
22use hash::Hasher;
1a4d82fc 23
92a42be0 24/// Types that can be transferred across thread boundaries.
9cc50fc6 25///
9e0c209e
SL
26/// This trait is automatically implemented when the compiler determines it's
27/// appropriate.
28///
29/// An example of a non-`Send` type is the reference-counting pointer
476ff2be 30/// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same
9e0c209e 31/// reference-counted value, they might try to update the reference count at the
476ff2be 32/// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic
9e0c209e
SL
33/// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring
34/// some overhead) and thus is `Send`.
35///
36/// See [the Nomicon](../../nomicon/send-and-sync.html) for more details.
37///
476ff2be 38/// [`Rc`]: ../../std/rc/struct.Rc.html
9e0c209e 39/// [arc]: ../../std/sync/struct.Arc.html
8bb4bdeb 40/// [ub]: ../../reference/behavior-considered-undefined.html
85aaf69f 41#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 42#[rustc_on_unimplemented = "`{Self}` cannot be sent between threads safely"]
2c00a5a8 43pub unsafe auto trait Send {
9346a6ac
AL
44 // empty.
45}
46
92a42be0
SL
47#[stable(feature = "rust1", since = "1.0.0")]
48impl<T: ?Sized> !Send for *const T { }
49#[stable(feature = "rust1", since = "1.0.0")]
50impl<T: ?Sized> !Send for *mut T { }
c34b1796 51
9e0c209e 52/// Types with a constant size known at compile time.
b039eaaf 53///
9e0c209e
SL
54/// All type parameters have an implicit bound of `Sized`. The special syntax
55/// `?Sized` can be used to remove this bound if it's not appropriate.
b039eaaf
SL
56///
57/// ```
92a42be0 58/// # #![allow(dead_code)]
b039eaaf
SL
59/// struct Foo<T>(T);
60/// struct Bar<T: ?Sized>(T);
61///
62/// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32]
63/// struct BarUse(Bar<[i32]>); // OK
64/// ```
9e0c209e 65///
0531ce1d
XL
66/// The one exception is the implicit `Self` type of a trait. A trait does not
67/// have an implicit `Sized` bound as this is incompatible with [trait object]s
68/// where, by definition, the trait needs to work with all possible implementors,
69/// and thus could be any size.
70///
71/// Although Rust will let you bind `Sized` to a trait, you won't
72/// be able to use it to form a trait object later:
9e0c209e
SL
73///
74/// ```
75/// # #![allow(unused_variables)]
76/// trait Foo { }
77/// trait Bar: Sized { }
78///
79/// struct Impl;
80/// impl Foo for Impl { }
81/// impl Bar for Impl { }
82///
83/// let x: &Foo = &Impl; // OK
84/// // let y: &Bar = &Impl; // error: the trait `Bar` cannot
85/// // be made into an object
86/// ```
87///
041b39d2 88/// [trait object]: ../../book/first-edition/trait-objects.html
85aaf69f 89#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 90#[lang = "sized"]
85aaf69f 91#[rustc_on_unimplemented = "`{Self}` does not have a constant size known at compile-time"]
c34b1796 92#[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable
9346a6ac
AL
93pub trait Sized {
94 // Empty.
95}
96
9e0c209e
SL
97/// Types that can be "unsized" to a dynamically-sized type.
98///
99/// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and
100/// `Unsize<fmt::Debug>`.
101///
102/// All implementations of `Unsize` are provided automatically by the compiler.
103///
32a655c1
SL
104/// `Unsize` is implemented for:
105///
106/// - `[T; N]` is `Unsize<[T]>`
107/// - `T` is `Unsize<Trait>` when `T: Trait`
108/// - `Foo<..., T, ...>` is `Unsize<Foo<..., U, ...>>` if:
109/// - `T: Unsize<U>`
110/// - Foo is a struct
111/// - Only the last field of `Foo` has a type involving `T`
112/// - `T` is not part of the type of any other fields
113/// - `Bar<T>: Unsize<Bar<U>>`, if the last field of `Foo` has type `Bar<T>`
114///
9e0c209e
SL
115/// `Unsize` is used along with [`ops::CoerceUnsized`][coerceunsized] to allow
116/// "user-defined" containers such as [`rc::Rc`][rc] to contain dynamically-sized
32a655c1
SL
117/// types. See the [DST coercion RFC][RFC982] and [the nomicon entry on coercion][nomicon-coerce]
118/// for more details.
9e0c209e
SL
119///
120/// [coerceunsized]: ../ops/trait.CoerceUnsized.html
121/// [rc]: ../../std/rc/struct.Rc.html
122/// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md
7cac9316 123/// [nomicon-coerce]: ../../nomicon/coercions.html
e9174d1e 124#[unstable(feature = "unsize", issue = "27732")]
ea8adc8c 125#[lang = "unsize"]
e9174d1e 126pub trait Unsize<T: ?Sized> {
1a4d82fc
JJ
127 // Empty.
128}
129
9e0c209e 130/// Types whose values can be duplicated simply by copying bits.
85aaf69f
SL
131///
132/// By default, variable bindings have 'move semantics.' In other
133/// words:
134///
135/// ```
136/// #[derive(Debug)]
137/// struct Foo;
138///
139/// let x = Foo;
140///
141/// let y = x;
142///
143/// // `x` has moved into `y`, and so cannot be used
144///
145/// // println!("{:?}", x); // error: use of moved value
146/// ```
147///
148/// However, if a type implements `Copy`, it instead has 'copy semantics':
149///
150/// ```
9e0c209e
SL
151/// // We can derive a `Copy` implementation. `Clone` is also required, as it's
152/// // a supertrait of `Copy`.
c34b1796 153/// #[derive(Debug, Copy, Clone)]
85aaf69f
SL
154/// struct Foo;
155///
156/// let x = Foo;
157///
158/// let y = x;
159///
160/// // `y` is a copy of `x`
161///
162/// println!("{:?}", x); // A-OK!
163/// ```
164///
9e0c209e
SL
165/// It's important to note that in these two examples, the only difference is whether you
166/// are allowed to access `x` after the assignment. Under the hood, both a copy and a move
167/// can result in bits being copied in memory, although this is sometimes optimized away.
168///
169/// ## How can I implement `Copy`?
170///
171/// There are two ways to implement `Copy` on your type. The simplest is to use `derive`:
172///
173/// ```
174/// #[derive(Copy, Clone)]
175/// struct MyStruct;
176/// ```
177///
178/// You can also implement `Copy` and `Clone` manually:
179///
180/// ```
181/// struct MyStruct;
182///
183/// impl Copy for MyStruct { }
184///
185/// impl Clone for MyStruct {
186/// fn clone(&self) -> MyStruct {
187/// *self
188/// }
189/// }
190/// ```
191///
192/// There is a small difference between the two: the `derive` strategy will also place a `Copy`
193/// bound on type parameters, which isn't always desired.
194///
195/// ## What's the difference between `Copy` and `Clone`?
196///
197/// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of
198/// `Copy` is not overloadable; it is always a simple bit-wise copy.
199///
476ff2be 200/// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can
9e0c209e 201/// provide any type-specific behavior necessary to duplicate values safely. For example,
476ff2be
SL
202/// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string
203/// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the
204/// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`]
9e0c209e
SL
205/// but not `Copy`.
206///
476ff2be 207/// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement
041b39d2 208/// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation only needs to return `*self`
9e0c209e
SL
209/// (see the example above).
210///
85aaf69f
SL
211/// ## When can my type be `Copy`?
212///
213/// A type can implement `Copy` if all of its components implement `Copy`. For example, this
9e0c209e 214/// struct can be `Copy`:
85aaf69f
SL
215///
216/// ```
92a42be0 217/// # #[allow(dead_code)]
85aaf69f
SL
218/// struct Point {
219/// x: i32,
220/// y: i32,
221/// }
222/// ```
223///
476ff2be 224/// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`.
9e0c209e 225/// By contrast, consider
85aaf69f
SL
226///
227/// ```
92a42be0 228/// # #![allow(dead_code)]
85aaf69f
SL
229/// # struct Point;
230/// struct PointList {
231/// points: Vec<Point>,
232/// }
233/// ```
234///
9e0c209e 235/// The struct `PointList` cannot implement `Copy`, because [`Vec<T>`] is not `Copy`. If we
62682a34 236/// attempt to derive a `Copy` implementation, we'll get an error:
85aaf69f
SL
237///
238/// ```text
62682a34 239/// the trait `Copy` may not be implemented for this type; field `points` does not implement `Copy`
85aaf69f
SL
240/// ```
241///
9e0c209e 242/// ## When *can't* my type be `Copy`?
3157f602
XL
243///
244/// Some types can't be copied safely. For example, copying `&mut T` would create an aliased
476ff2be
SL
245/// mutable reference. Copying [`String`] would duplicate responsibility for managing the
246/// [`String`]'s buffer, leading to a double free.
3157f602 247///
9e0c209e 248/// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's
cc61c64b 249/// managing some resource besides its own [`size_of::<T>`] bytes.
3157f602 250///
32a655c1
SL
251/// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get
252/// the error [E0204].
85aaf69f 253///
c30ab7b3 254/// [E0204]: ../../error-index.html#E0204
85aaf69f 255///
9e0c209e 256/// ## When *should* my type be `Copy`?
85aaf69f 257///
9e0c209e
SL
258/// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though,
259/// that implementing `Copy` is part of the public API of your type. If the type might become
260/// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to
261/// avoid a breaking API change.
85aaf69f 262///
83c7162d
XL
263/// ## Additional implementors
264///
265/// In addition to the [implementors listed below][impls],
266/// the following types also implement `Copy`:
267///
268/// * Function item types (i.e. the distinct types defined for each function)
269/// * Function pointer types (e.g. `fn() -> i32`)
270/// * Array types, for all sizes, if the item type also implements `Copy` (e.g. `[i32; 123456]`)
271/// * Tuple types, if each component also implements `Copy` (e.g. `()`, `(i32, bool)`)
272/// * Closure types, if they capture no value from the environment
273/// or if all such captured values implement `Copy` themselves.
274/// Note that variables captured by shared reference always implement `Copy`
275/// (even if the referent doesn't),
276/// while variables captured by mutable reference never implement `Copy`.
277///
9e0c209e
SL
278/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
279/// [`String`]: ../../std/string/struct.String.html
280/// [`Drop`]: ../../std/ops/trait.Drop.html
cc61c64b 281/// [`size_of::<T>`]: ../../std/mem/fn.size_of.html
476ff2be
SL
282/// [`Clone`]: ../clone/trait.Clone.html
283/// [`String`]: ../../std/string/struct.String.html
284/// [`i32`]: ../../std/primitive.i32.html
83c7162d 285/// [impls]: #implementors
85aaf69f 286#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 287#[lang = "copy"]
c34b1796 288pub trait Copy : Clone {
1a4d82fc
JJ
289 // Empty.
290}
291
9e0c209e
SL
292/// Types for which it is safe to share references between threads.
293///
294/// This trait is automatically implemented when the compiler determines
295/// it's appropriate.
1a4d82fc
JJ
296///
297/// The precise definition is: a type `T` is `Sync` if `&T` is
9e0c209e
SL
298/// [`Send`][send]. In other words, if there is no possibility of
299/// [undefined behavior][ub] (including data races) when passing
300/// `&T` references between threads.
301///
302/// As one would expect, primitive types like [`u8`][u8] and [`f64`][f64]
303/// are all `Sync`, and so are simple aggregate types containing them,
304/// like tuples, structs and enums. More examples of basic `Sync`
305/// types include "immutable" types like `&T`, and those with simple
306/// inherited mutability, such as [`Box<T>`][box], [`Vec<T>`][vec] and
307/// most other collection types. (Generic parameters need to be `Sync`
308/// for their container to be `Sync`.)
309///
310/// A somewhat surprising consequence of the definition is that `&mut T`
311/// is `Sync` (if `T` is `Sync`) even though it seems like that might
312/// provide unsynchronized mutation. The trick is that a mutable
313/// reference behind a shared reference (that is, `& &mut T`)
314/// becomes read-only, as if it were a `& &T`. Hence there is no risk
315/// of a data race.
1a4d82fc
JJ
316///
317/// Types that are not `Sync` are those that have "interior
9e0c209e
SL
318/// mutability" in a non-thread-safe form, such as [`cell::Cell`][cell]
319/// and [`cell::RefCell`][refcell]. These types allow for mutation of
320/// their contents even through an immutable, shared reference. For
476ff2be
SL
321/// example the `set` method on [`Cell<T>`][cell] takes `&self`, so it requires
322/// only a shared reference [`&Cell<T>`][cell]. The method performs no
323/// synchronization, thus [`Cell`][cell] cannot be `Sync`.
1a4d82fc 324///
9e0c209e 325/// Another example of a non-`Sync` type is the reference-counting
476ff2be
SL
326/// pointer [`rc::Rc`][rc]. Given any reference [`&Rc<T>`][rc], you can clone
327/// a new [`Rc<T>`][rc], modifying the reference counts in a non-atomic way.
9cc50fc6 328///
9e0c209e
SL
329/// For cases when one does need thread-safe interior mutability,
330/// Rust provides [atomic data types], as well as explicit locking via
ff7c6d11 331/// [`sync::Mutex`][mutex] and [`sync::RwLock`][rwlock]. These types
9e0c209e
SL
332/// ensure that any mutation cannot cause data races, hence the types
333/// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe
476ff2be 334/// analogue of [`Rc`][rc].
9e0c209e
SL
335///
336/// Any types with interior mutability must also use the
337/// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which
338/// can be mutated through a shared reference. Failing to doing this is
339/// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing
340/// from `&T` to `&mut T` is invalid.
341///
342/// See [the Nomicon](../../nomicon/send-and-sync.html) for more
343/// details about `Sync`.
344///
345/// [send]: trait.Send.html
346/// [u8]: ../../std/primitive.u8.html
347/// [f64]: ../../std/primitive.f64.html
348/// [box]: ../../std/boxed/struct.Box.html
349/// [vec]: ../../std/vec/struct.Vec.html
350/// [cell]: ../cell/struct.Cell.html
351/// [refcell]: ../cell/struct.RefCell.html
352/// [rc]: ../../std/rc/struct.Rc.html
353/// [arc]: ../../std/sync/struct.Arc.html
354/// [atomic data types]: ../sync/atomic/index.html
355/// [mutex]: ../../std/sync/struct.Mutex.html
356/// [rwlock]: ../../std/sync/struct.RwLock.html
357/// [unsafecell]: ../cell/struct.UnsafeCell.html
8bb4bdeb 358/// [ub]: ../../reference/behavior-considered-undefined.html
9e0c209e 359/// [transmute]: ../../std/mem/fn.transmute.html
9346a6ac 360#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 361#[lang = "sync"]
0531ce1d
XL
362#[rustc_on_unimplemented(
363 message="`{Self}` cannot be shared between threads safely",
364 label="`{Self}` cannot be shared between threads safely"
365)]
2c00a5a8 366pub unsafe auto trait Sync {
0531ce1d
XL
367 // FIXME(estebank): once support to add notes in `rustc_on_unimplemented`
368 // lands in beta, and it has been extended to check whether a closure is
369 // anywhere in the requirement chain, extend it as such (#48534):
370 // ```
371 // on(
372 // closure,
373 // note="`{Self}` cannot be shared safely, consider marking the closure `move`"
374 // ),
375 // ```
376
9346a6ac
AL
377 // Empty
378}
379
92a42be0
SL
380#[stable(feature = "rust1", since = "1.0.0")]
381impl<T: ?Sized> !Sync for *const T { }
382#[stable(feature = "rust1", since = "1.0.0")]
383impl<T: ?Sized> !Sync for *mut T { }
c34b1796 384
85aaf69f
SL
385macro_rules! impls{
386 ($t: ident) => (
92a42be0 387 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
388 impl<T:?Sized> Hash for $t<T> {
389 #[inline]
390 fn hash<H: Hasher>(&self, _: &mut H) {
391 }
392 }
393
92a42be0 394 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
395 impl<T:?Sized> cmp::PartialEq for $t<T> {
396 fn eq(&self, _other: &$t<T>) -> bool {
397 true
398 }
399 }
400
92a42be0 401 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
402 impl<T:?Sized> cmp::Eq for $t<T> {
403 }
404
92a42be0 405 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
406 impl<T:?Sized> cmp::PartialOrd for $t<T> {
407 fn partial_cmp(&self, _other: &$t<T>) -> Option<cmp::Ordering> {
408 Option::Some(cmp::Ordering::Equal)
409 }
410 }
411
92a42be0 412 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
413 impl<T:?Sized> cmp::Ord for $t<T> {
414 fn cmp(&self, _other: &$t<T>) -> cmp::Ordering {
415 cmp::Ordering::Equal
416 }
417 }
418
92a42be0 419 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
420 impl<T:?Sized> Copy for $t<T> { }
421
92a42be0 422 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
423 impl<T:?Sized> Clone for $t<T> {
424 fn clone(&self) -> $t<T> {
425 $t
426 }
427 }
92a42be0
SL
428
429 #[stable(feature = "rust1", since = "1.0.0")]
430 impl<T:?Sized> Default for $t<T> {
431 fn default() -> $t<T> {
432 $t
433 }
434 }
85aaf69f
SL
435 )
436}
437
9e0c209e 438/// Zero-sized type used to mark things that "act like" they own a `T`.
9346a6ac 439///
9e0c209e
SL
440/// Adding a `PhantomData<T>` field to your type tells the compiler that your
441/// type acts as though it stores a value of type `T`, even though it doesn't
442/// really. This information is used when computing certain safety properties.
9cc50fc6 443///
9e0c209e
SL
444/// For a more in-depth explanation of how to use `PhantomData<T>`, please see
445/// [the Nomicon](../../nomicon/phantom-data.html).
9cc50fc6 446///
e9174d1e
SL
447/// # A ghastly note 👻👻👻
448///
9e0c209e
SL
449/// Though they both have scary names, `PhantomData` and 'phantom types' are
450/// related, but not identical. A phantom type parameter is simply a type
451/// parameter which is never used. In Rust, this often causes the compiler to
452/// complain, and the solution is to add a "dummy" use by way of `PhantomData`.
1a4d82fc 453///
c34b1796 454/// # Examples
1a4d82fc 455///
9e0c209e 456/// ## Unused lifetime parameters
1a4d82fc 457///
9e0c209e
SL
458/// Perhaps the most common use case for `PhantomData` is a struct that has an
459/// unused lifetime parameter, typically as part of some unsafe code. For
460/// example, here is a struct `Slice` that has two pointers of type `*const T`,
461/// presumably pointing into an array somewhere:
85aaf69f 462///
041b39d2 463/// ```compile_fail,E0392
9346a6ac
AL
464/// struct Slice<'a, T> {
465/// start: *const T,
466/// end: *const T,
1a4d82fc
JJ
467/// }
468/// ```
469///
9346a6ac
AL
470/// The intention is that the underlying data is only valid for the
471/// lifetime `'a`, so `Slice` should not outlive `'a`. However, this
472/// intent is not expressed in the code, since there are no uses of
473/// the lifetime `'a` and hence it is not clear what data it applies
474/// to. We can correct this by telling the compiler to act *as if* the
9e0c209e 475/// `Slice` struct contained a reference `&'a T`:
1a4d82fc 476///
c34b1796 477/// ```
9346a6ac 478/// use std::marker::PhantomData;
1a4d82fc 479///
92a42be0 480/// # #[allow(dead_code)]
9cc50fc6 481/// struct Slice<'a, T: 'a> {
9346a6ac
AL
482/// start: *const T,
483/// end: *const T,
9e0c209e 484/// phantom: PhantomData<&'a T>,
9346a6ac 485/// }
c34b1796 486/// ```
1a4d82fc 487///
9e0c209e
SL
488/// This also in turn requires the annotation `T: 'a`, indicating
489/// that any references in `T` are valid over the lifetime `'a`.
490///
491/// When initializing a `Slice` you simply provide the value
492/// `PhantomData` for the field `phantom`:
493///
494/// ```
495/// # #![allow(dead_code)]
496/// # use std::marker::PhantomData;
497/// # struct Slice<'a, T: 'a> {
498/// # start: *const T,
499/// # end: *const T,
500/// # phantom: PhantomData<&'a T>,
501/// # }
502/// fn borrow_vec<'a, T>(vec: &'a Vec<T>) -> Slice<'a, T> {
503/// let ptr = vec.as_ptr();
504/// Slice {
505/// start: ptr,
506/// end: unsafe { ptr.offset(vec.len() as isize) },
507/// phantom: PhantomData,
508/// }
509/// }
510/// ```
1a4d82fc 511///
9346a6ac 512/// ## Unused type parameters
1a4d82fc 513///
9e0c209e 514/// It sometimes happens that you have unused type parameters which
9346a6ac
AL
515/// indicate what type of data a struct is "tied" to, even though that
516/// data is not actually found in the struct itself. Here is an
9e0c209e
SL
517/// example where this arises with [FFI]. The foreign interface uses
518/// handles of type `*mut ()` to refer to Rust values of different
519/// types. We track the Rust type using a phantom type parameter on
520/// the struct `ExternalResource` which wraps a handle.
521///
041b39d2 522/// [FFI]: ../../book/first-edition/ffi.html
c34b1796
AL
523///
524/// ```
92a42be0 525/// # #![allow(dead_code)]
9e0c209e 526/// # trait ResType { }
c34b1796
AL
527/// # struct ParamType;
528/// # mod foreign_lib {
9e0c209e
SL
529/// # pub fn new(_: usize) -> *mut () { 42 as *mut () }
530/// # pub fn do_stuff(_: *mut (), _: usize) {}
c34b1796
AL
531/// # }
532/// # fn convert_params(_: ParamType) -> usize { 42 }
533/// use std::marker::PhantomData;
534/// use std::mem;
535///
536/// struct ExternalResource<R> {
537/// resource_handle: *mut (),
538/// resource_type: PhantomData<R>,
539/// }
540///
541/// impl<R: ResType> ExternalResource<R> {
542/// fn new() -> ExternalResource<R> {
543/// let size_of_res = mem::size_of::<R>();
544/// ExternalResource {
545/// resource_handle: foreign_lib::new(size_of_res),
546/// resource_type: PhantomData,
547/// }
548/// }
549///
550/// fn do_stuff(&self, param: ParamType) {
551/// let foreign_params = convert_params(param);
552/// foreign_lib::do_stuff(self.resource_handle, foreign_params);
553/// }
554/// }
555/// ```
556///
9e0c209e 557/// ## Ownership and the drop check
9346a6ac 558///
9e0c209e
SL
559/// Adding a field of type `PhantomData<T>` indicates that your
560/// type owns data of type `T`. This in turn implies that when your
561/// type is dropped, it may drop one or more instances of the type
562/// `T`. This has bearing on the Rust compiler's [drop check]
563/// analysis.
9346a6ac
AL
564///
565/// If your struct does not in fact *own* the data of type `T`, it is
566/// better to use a reference type, like `PhantomData<&'a T>`
567/// (ideally) or `PhantomData<*const T>` (if no lifetime applies), so
568/// as not to indicate ownership.
9e0c209e
SL
569///
570/// [drop check]: ../../nomicon/dropck.html
d9579d0f 571#[lang = "phantom_data"]
85aaf69f
SL
572#[stable(feature = "rust1", since = "1.0.0")]
573pub struct PhantomData<T:?Sized>;
1a4d82fc 574
85aaf69f 575impls! { PhantomData }
1a4d82fc 576
85aaf69f 577mod impls {
92a42be0 578 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 579 unsafe impl<'a, T: Sync + ?Sized> Send for &'a T {}
92a42be0 580 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
581 unsafe impl<'a, T: Send + ?Sized> Send for &'a mut T {}
582}
cc61c64b
XL
583
584/// Compiler-internal trait used to determine whether a type contains
585/// any `UnsafeCell` internally, but not through an indirection.
586/// This affects, for example, whether a `static` of that type is
587/// placed in read-only static memory or writable static memory.
7cac9316 588#[lang = "freeze"]
2c00a5a8 589unsafe auto trait Freeze {}
cc61c64b
XL
590
591impl<T: ?Sized> !Freeze for UnsafeCell<T> {}
592unsafe impl<T: ?Sized> Freeze for PhantomData<T> {}
593unsafe impl<T: ?Sized> Freeze for *const T {}
594unsafe impl<T: ?Sized> Freeze for *mut T {}
595unsafe impl<'a, T: ?Sized> Freeze for &'a T {}
596unsafe impl<'a, T: ?Sized> Freeze for &'a mut T {}
0531ce1d
XL
597
598/// Types which can be moved out of a `Pin`.
599///
600/// The `Unpin` trait is used to control the behavior of the [`Pin`] type. If a
601/// type implements `Unpin`, it is safe to move a value of that type out of the
602/// `Pin` pointer.
603///
604/// This trait is automatically implemented for almost every type.
83c7162d
XL
605///
606/// [`Pin`]: ../mem/struct.Pin.html
0531ce1d
XL
607#[unstable(feature = "pin", issue = "49150")]
608pub unsafe auto trait Unpin {}
83c7162d
XL
609
610/// Implementations of `Copy` for primitive types.
611///
612/// Implementations that cannot be described in Rust
613/// are implemented in `SelectionContext::copy_clone_conditions()` in librustc.
614#[cfg(not(stage0))]
615mod copy_impls {
616
617 use super::Copy;
618
619 macro_rules! impl_copy {
620 ($($t:ty)*) => {
621 $(
622 #[stable(feature = "rust1", since = "1.0.0")]
623 impl Copy for $t {}
624 )*
625 }
626 }
627
628 impl_copy! {
629 usize u8 u16 u32 u64 u128
630 isize i8 i16 i32 i64 i128
631 f32 f64
632 bool char
633 }
634
635 #[unstable(feature = "never_type", issue = "35121")]
636 impl Copy for ! {}
637
638 #[stable(feature = "rust1", since = "1.0.0")]
639 impl<T: ?Sized> Copy for *const T {}
640
641 #[stable(feature = "rust1", since = "1.0.0")]
642 impl<T: ?Sized> Copy for *mut T {}
643
644 // Shared references can be copied, but mutable references *cannot*!
645 #[stable(feature = "rust1", since = "1.0.0")]
646 impl<'a, T: ?Sized> Copy for &'a T {}
647
648}