]> git.proxmox.com Git - rustc.git/blame - src/libcore/marker.rs
New upstream version 1.44.1+dfsg1
[rustc.git] / src / libcore / marker.rs
CommitLineData
9e0c209e 1//! Primitive traits and types representing basic properties of types.
1a4d82fc
JJ
2//!
3//! Rust types can be classified in various useful ways according to
9e0c209e
SL
4//! their intrinsic properties. These classifications are represented
5//! as traits.
1a4d82fc 6
85aaf69f 7#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 8
48663c56
XL
9use crate::cell::UnsafeCell;
10use crate::cmp;
11use crate::hash::Hash;
12use crate::hash::Hasher;
1a4d82fc 13
92a42be0 14/// Types that can be transferred across thread boundaries.
9cc50fc6 15///
9e0c209e
SL
16/// This trait is automatically implemented when the compiler determines it's
17/// appropriate.
18///
19/// An example of a non-`Send` type is the reference-counting pointer
476ff2be 20/// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same
9e0c209e 21/// reference-counted value, they might try to update the reference count at the
476ff2be 22/// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic
9e0c209e
SL
23/// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring
24/// some overhead) and thus is `Send`.
25///
26/// See [the Nomicon](../../nomicon/send-and-sync.html) for more details.
27///
476ff2be 28/// [`Rc`]: ../../std/rc/struct.Rc.html
9e0c209e 29/// [arc]: ../../std/sync/struct.Arc.html
8bb4bdeb 30/// [ub]: ../../reference/behavior-considered-undefined.html
85aaf69f 31#[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d 32#[cfg_attr(not(test), rustc_diagnostic_item = "send_trait")]
8faf50e0 33#[rustc_on_unimplemented(
dfeec247
XL
34 message = "`{Self}` cannot be sent between threads safely",
35 label = "`{Self}` cannot be sent between threads safely"
8faf50e0 36)]
2c00a5a8 37pub unsafe auto trait Send {
9346a6ac
AL
38 // empty.
39}
40
92a42be0 41#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 42impl<T: ?Sized> !Send for *const T {}
92a42be0 43#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 44impl<T: ?Sized> !Send for *mut T {}
c34b1796 45
9e0c209e 46/// Types with a constant size known at compile time.
b039eaaf 47///
9e0c209e
SL
48/// All type parameters have an implicit bound of `Sized`. The special syntax
49/// `?Sized` can be used to remove this bound if it's not appropriate.
b039eaaf
SL
50///
51/// ```
92a42be0 52/// # #![allow(dead_code)]
b039eaaf
SL
53/// struct Foo<T>(T);
54/// struct Bar<T: ?Sized>(T);
55///
56/// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32]
57/// struct BarUse(Bar<[i32]>); // OK
58/// ```
9e0c209e 59///
0531ce1d
XL
60/// The one exception is the implicit `Self` type of a trait. A trait does not
61/// have an implicit `Sized` bound as this is incompatible with [trait object]s
62/// where, by definition, the trait needs to work with all possible implementors,
63/// and thus could be any size.
64///
65/// Although Rust will let you bind `Sized` to a trait, you won't
66/// be able to use it to form a trait object later:
9e0c209e
SL
67///
68/// ```
69/// # #![allow(unused_variables)]
70/// trait Foo { }
71/// trait Bar: Sized { }
72///
73/// struct Impl;
74/// impl Foo for Impl { }
75/// impl Bar for Impl { }
76///
48663c56
XL
77/// let x: &dyn Foo = &Impl; // OK
78/// // let y: &dyn Bar = &Impl; // error: the trait `Bar` cannot
79/// // be made into an object
9e0c209e
SL
80/// ```
81///
9fa01778 82/// [trait object]: ../../book/ch17-02-trait-objects.html
85aaf69f 83#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 84#[lang = "sized"]
8faf50e0 85#[rustc_on_unimplemented(
dfeec247
XL
86 on(parent_trait = "std::path::Path", label = "borrow the `Path` instead"),
87 message = "the size for values of type `{Self}` cannot be known at compilation time",
88 label = "doesn't have a size known at compile-time",
89 note = "to learn more, visit <https://doc.rust-lang.org/book/\
ba9703b0 90 ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait>"
8faf50e0 91)]
c34b1796 92#[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable
ba9703b0 93#[cfg_attr(not(bootstrap), rustc_specialization_trait)]
9346a6ac
AL
94pub trait Sized {
95 // Empty.
96}
97
9e0c209e
SL
98/// Types that can be "unsized" to a dynamically-sized type.
99///
100/// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and
60c5eb7d 101/// `Unsize<dyn fmt::Debug>`.
9e0c209e
SL
102///
103/// All implementations of `Unsize` are provided automatically by the compiler.
104///
32a655c1
SL
105/// `Unsize` is implemented for:
106///
107/// - `[T; N]` is `Unsize<[T]>`
dc9dc135 108/// - `T` is `Unsize<dyn Trait>` when `T: Trait`
32a655c1
SL
109/// - `Foo<..., T, ...>` is `Unsize<Foo<..., U, ...>>` if:
110/// - `T: Unsize<U>`
111/// - Foo is a struct
112/// - Only the last field of `Foo` has a type involving `T`
113/// - `T` is not part of the type of any other fields
114/// - `Bar<T>: Unsize<Bar<U>>`, if the last field of `Foo` has type `Bar<T>`
115///
9e0c209e
SL
116/// `Unsize` is used along with [`ops::CoerceUnsized`][coerceunsized] to allow
117/// "user-defined" containers such as [`rc::Rc`][rc] to contain dynamically-sized
32a655c1
SL
118/// types. See the [DST coercion RFC][RFC982] and [the nomicon entry on coercion][nomicon-coerce]
119/// for more details.
9e0c209e
SL
120///
121/// [coerceunsized]: ../ops/trait.CoerceUnsized.html
122/// [rc]: ../../std/rc/struct.Rc.html
123/// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md
7cac9316 124/// [nomicon-coerce]: ../../nomicon/coercions.html
e9174d1e 125#[unstable(feature = "unsize", issue = "27732")]
ea8adc8c 126#[lang = "unsize"]
e9174d1e 127pub trait Unsize<T: ?Sized> {
1a4d82fc
JJ
128 // Empty.
129}
130
e74abb32
XL
131/// Required trait for constants used in pattern matches.
132///
133/// Any type that derives `PartialEq` automatically implements this trait,
134/// *regardless* of whether its type-parameters implement `Eq`.
135///
136/// If a `const` item contains some type that does not implement this trait,
137/// then that type either (1.) does not implement `PartialEq` (which means the
138/// constant will not provide that comparison method, which code generation
139/// assumes is available), or (2.) it implements *its own* version of
140/// `PartialEq` (which we assume does not conform to a structural-equality
141/// comparison).
142///
143/// In either of the two scenarios above, we reject usage of such a constant in
144/// a pattern match.
145///
dfeec247 146/// See also the [structural match RFC][RFC1445], and [issue 63438] which
e74abb32
XL
147/// motivated migrating from attribute-based design to this trait.
148///
149/// [RFC1445]: https://github.com/rust-lang/rfcs/blob/master/text/1445-restrict-constants-in-patterns.md
150/// [issue 63438]: https://github.com/rust-lang/rust/issues/63438
e74abb32 151#[unstable(feature = "structural_match", issue = "31434")]
dfeec247 152#[rustc_on_unimplemented(message = "the type `{Self}` does not `#[derive(PartialEq)]`")]
e74abb32
XL
153#[lang = "structural_peq"]
154pub trait StructuralPartialEq {
155 // Empty.
156}
157
158/// Required trait for constants used in pattern matches.
159///
160/// Any type that derives `Eq` automatically implements this trait, *regardless*
161/// of whether its type-parameters implement `Eq`.
162///
163/// This is a hack to workaround a limitation in our type-system.
164///
165/// Background:
166///
167/// We want to require that types of consts used in pattern matches
168/// have the attribute `#[derive(PartialEq, Eq)]`.
169///
170/// In a more ideal world, we could check that requirement by just checking that
171/// the given type implements both (1.) the `StructuralPartialEq` trait *and*
172/// (2.) the `Eq` trait. However, you can have ADTs that *do* `derive(PartialEq, Eq)`,
173/// and be a case that we want the compiler to accept, and yet the constant's
174/// type fails to implement `Eq`.
175///
176/// Namely, a case like this:
177///
178/// ```rust
179/// #[derive(PartialEq, Eq)]
180/// struct Wrap<X>(X);
181/// fn higher_order(_: &()) { }
182/// const CFN: Wrap<fn(&())> = Wrap(higher_order);
183/// fn main() {
184/// match CFN {
185/// CFN => {}
186/// _ => {}
187/// }
188/// }
189/// ```
190///
191/// (The problem in the above code is that `Wrap<fn(&())>` does not implement
192/// `PartialEq`, nor `Eq`, because `for<'a> fn(&'a _)` does not implement those
193/// traits.)
194///
195/// Therefore, we cannot rely on naive check for `StructuralPartialEq` and
196/// mere `Eq`.
197///
198/// As a hack to work around this, we use two separate traits injected by each
199/// of the two derives (`#[derive(PartialEq)]` and `#[derive(Eq)]`) and check
200/// that both of them are present as part of structural-match checking.
e74abb32 201#[unstable(feature = "structural_match", issue = "31434")]
dfeec247 202#[rustc_on_unimplemented(message = "the type `{Self}` does not `#[derive(Eq)]`")]
e74abb32
XL
203#[lang = "structural_teq"]
204pub trait StructuralEq {
205 // Empty.
206}
207
9e0c209e 208/// Types whose values can be duplicated simply by copying bits.
85aaf69f
SL
209///
210/// By default, variable bindings have 'move semantics.' In other
211/// words:
212///
213/// ```
214/// #[derive(Debug)]
215/// struct Foo;
216///
217/// let x = Foo;
218///
219/// let y = x;
220///
221/// // `x` has moved into `y`, and so cannot be used
222///
223/// // println!("{:?}", x); // error: use of moved value
224/// ```
225///
226/// However, if a type implements `Copy`, it instead has 'copy semantics':
227///
228/// ```
9e0c209e
SL
229/// // We can derive a `Copy` implementation. `Clone` is also required, as it's
230/// // a supertrait of `Copy`.
c34b1796 231/// #[derive(Debug, Copy, Clone)]
85aaf69f
SL
232/// struct Foo;
233///
234/// let x = Foo;
235///
236/// let y = x;
237///
238/// // `y` is a copy of `x`
239///
240/// println!("{:?}", x); // A-OK!
241/// ```
242///
9e0c209e
SL
243/// It's important to note that in these two examples, the only difference is whether you
244/// are allowed to access `x` after the assignment. Under the hood, both a copy and a move
245/// can result in bits being copied in memory, although this is sometimes optimized away.
246///
247/// ## How can I implement `Copy`?
248///
249/// There are two ways to implement `Copy` on your type. The simplest is to use `derive`:
250///
251/// ```
252/// #[derive(Copy, Clone)]
253/// struct MyStruct;
254/// ```
255///
256/// You can also implement `Copy` and `Clone` manually:
257///
258/// ```
259/// struct MyStruct;
260///
261/// impl Copy for MyStruct { }
262///
263/// impl Clone for MyStruct {
264/// fn clone(&self) -> MyStruct {
265/// *self
266/// }
267/// }
268/// ```
269///
270/// There is a small difference between the two: the `derive` strategy will also place a `Copy`
271/// bound on type parameters, which isn't always desired.
272///
273/// ## What's the difference between `Copy` and `Clone`?
274///
275/// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of
276/// `Copy` is not overloadable; it is always a simple bit-wise copy.
277///
476ff2be 278/// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can
9e0c209e 279/// provide any type-specific behavior necessary to duplicate values safely. For example,
476ff2be
SL
280/// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string
281/// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the
282/// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`]
9e0c209e
SL
283/// but not `Copy`.
284///
476ff2be 285/// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement
041b39d2 286/// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation only needs to return `*self`
9e0c209e
SL
287/// (see the example above).
288///
85aaf69f
SL
289/// ## When can my type be `Copy`?
290///
291/// A type can implement `Copy` if all of its components implement `Copy`. For example, this
9e0c209e 292/// struct can be `Copy`:
85aaf69f
SL
293///
294/// ```
92a42be0 295/// # #[allow(dead_code)]
85aaf69f
SL
296/// struct Point {
297/// x: i32,
298/// y: i32,
299/// }
300/// ```
301///
476ff2be 302/// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`.
9e0c209e 303/// By contrast, consider
85aaf69f
SL
304///
305/// ```
92a42be0 306/// # #![allow(dead_code)]
85aaf69f
SL
307/// # struct Point;
308/// struct PointList {
309/// points: Vec<Point>,
310/// }
311/// ```
312///
9e0c209e 313/// The struct `PointList` cannot implement `Copy`, because [`Vec<T>`] is not `Copy`. If we
62682a34 314/// attempt to derive a `Copy` implementation, we'll get an error:
85aaf69f
SL
315///
316/// ```text
62682a34 317/// the trait `Copy` may not be implemented for this type; field `points` does not implement `Copy`
85aaf69f
SL
318/// ```
319///
9e0c209e 320/// ## When *can't* my type be `Copy`?
3157f602
XL
321///
322/// Some types can't be copied safely. For example, copying `&mut T` would create an aliased
476ff2be
SL
323/// mutable reference. Copying [`String`] would duplicate responsibility for managing the
324/// [`String`]'s buffer, leading to a double free.
3157f602 325///
9e0c209e 326/// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's
cc61c64b 327/// managing some resource besides its own [`size_of::<T>`] bytes.
3157f602 328///
32a655c1
SL
329/// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get
330/// the error [E0204].
85aaf69f 331///
c30ab7b3 332/// [E0204]: ../../error-index.html#E0204
85aaf69f 333///
9e0c209e 334/// ## When *should* my type be `Copy`?
85aaf69f 335///
9e0c209e
SL
336/// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though,
337/// that implementing `Copy` is part of the public API of your type. If the type might become
338/// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to
339/// avoid a breaking API change.
85aaf69f 340///
83c7162d
XL
341/// ## Additional implementors
342///
343/// In addition to the [implementors listed below][impls],
344/// the following types also implement `Copy`:
345///
0731742a
XL
346/// * Function item types (i.e., the distinct types defined for each function)
347/// * Function pointer types (e.g., `fn() -> i32`)
348/// * Array types, for all sizes, if the item type also implements `Copy` (e.g., `[i32; 123456]`)
349/// * Tuple types, if each component also implements `Copy` (e.g., `()`, `(i32, bool)`)
83c7162d
XL
350/// * Closure types, if they capture no value from the environment
351/// or if all such captured values implement `Copy` themselves.
352/// Note that variables captured by shared reference always implement `Copy`
353/// (even if the referent doesn't),
354/// while variables captured by mutable reference never implement `Copy`.
355///
9e0c209e
SL
356/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
357/// [`String`]: ../../std/string/struct.String.html
358/// [`Drop`]: ../../std/ops/trait.Drop.html
cc61c64b 359/// [`size_of::<T>`]: ../../std/mem/fn.size_of.html
476ff2be
SL
360/// [`Clone`]: ../clone/trait.Clone.html
361/// [`String`]: ../../std/string/struct.String.html
362/// [`i32`]: ../../std/primitive.i32.html
83c7162d 363/// [impls]: #implementors
85aaf69f 364#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 365#[lang = "copy"]
dfeec247 366pub trait Copy: Clone {
1a4d82fc
JJ
367 // Empty.
368}
369
416331ca 370/// Derive macro generating an impl of the trait `Copy`.
416331ca 371#[rustc_builtin_macro]
416331ca
XL
372#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
373#[allow_internal_unstable(core_intrinsics, derive_clone_copy)]
dfeec247
XL
374pub macro Copy($item:item) {
375 /* compiler built-in */
376}
416331ca 377
9e0c209e
SL
378/// Types for which it is safe to share references between threads.
379///
380/// This trait is automatically implemented when the compiler determines
381/// it's appropriate.
1a4d82fc 382///
94b46f34 383/// The precise definition is: a type `T` is `Sync` if and only if `&T` is
9e0c209e
SL
384/// [`Send`][send]. In other words, if there is no possibility of
385/// [undefined behavior][ub] (including data races) when passing
386/// `&T` references between threads.
387///
388/// As one would expect, primitive types like [`u8`][u8] and [`f64`][f64]
389/// are all `Sync`, and so are simple aggregate types containing them,
390/// like tuples, structs and enums. More examples of basic `Sync`
391/// types include "immutable" types like `&T`, and those with simple
392/// inherited mutability, such as [`Box<T>`][box], [`Vec<T>`][vec] and
393/// most other collection types. (Generic parameters need to be `Sync`
394/// for their container to be `Sync`.)
395///
396/// A somewhat surprising consequence of the definition is that `&mut T`
397/// is `Sync` (if `T` is `Sync`) even though it seems like that might
398/// provide unsynchronized mutation. The trick is that a mutable
399/// reference behind a shared reference (that is, `& &mut T`)
400/// becomes read-only, as if it were a `& &T`. Hence there is no risk
401/// of a data race.
1a4d82fc
JJ
402///
403/// Types that are not `Sync` are those that have "interior
9e0c209e
SL
404/// mutability" in a non-thread-safe form, such as [`cell::Cell`][cell]
405/// and [`cell::RefCell`][refcell]. These types allow for mutation of
406/// their contents even through an immutable, shared reference. For
476ff2be
SL
407/// example the `set` method on [`Cell<T>`][cell] takes `&self`, so it requires
408/// only a shared reference [`&Cell<T>`][cell]. The method performs no
409/// synchronization, thus [`Cell`][cell] cannot be `Sync`.
1a4d82fc 410///
9e0c209e 411/// Another example of a non-`Sync` type is the reference-counting
476ff2be
SL
412/// pointer [`rc::Rc`][rc]. Given any reference [`&Rc<T>`][rc], you can clone
413/// a new [`Rc<T>`][rc], modifying the reference counts in a non-atomic way.
9cc50fc6 414///
9e0c209e
SL
415/// For cases when one does need thread-safe interior mutability,
416/// Rust provides [atomic data types], as well as explicit locking via
ff7c6d11 417/// [`sync::Mutex`][mutex] and [`sync::RwLock`][rwlock]. These types
9e0c209e
SL
418/// ensure that any mutation cannot cause data races, hence the types
419/// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe
476ff2be 420/// analogue of [`Rc`][rc].
9e0c209e
SL
421///
422/// Any types with interior mutability must also use the
423/// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which
424/// can be mutated through a shared reference. Failing to doing this is
425/// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing
426/// from `&T` to `&mut T` is invalid.
427///
428/// See [the Nomicon](../../nomicon/send-and-sync.html) for more
429/// details about `Sync`.
430///
431/// [send]: trait.Send.html
432/// [u8]: ../../std/primitive.u8.html
433/// [f64]: ../../std/primitive.f64.html
434/// [box]: ../../std/boxed/struct.Box.html
435/// [vec]: ../../std/vec/struct.Vec.html
436/// [cell]: ../cell/struct.Cell.html
437/// [refcell]: ../cell/struct.RefCell.html
438/// [rc]: ../../std/rc/struct.Rc.html
439/// [arc]: ../../std/sync/struct.Arc.html
440/// [atomic data types]: ../sync/atomic/index.html
441/// [mutex]: ../../std/sync/struct.Mutex.html
442/// [rwlock]: ../../std/sync/struct.RwLock.html
443/// [unsafecell]: ../cell/struct.UnsafeCell.html
8bb4bdeb 444/// [ub]: ../../reference/behavior-considered-undefined.html
9e0c209e 445/// [transmute]: ../../std/mem/fn.transmute.html
9346a6ac 446#[stable(feature = "rust1", since = "1.0.0")]
60c5eb7d 447#[cfg_attr(not(test), rustc_diagnostic_item = "sync_trait")]
d9579d0f 448#[lang = "sync"]
0531ce1d 449#[rustc_on_unimplemented(
dfeec247
XL
450 message = "`{Self}` cannot be shared between threads safely",
451 label = "`{Self}` cannot be shared between threads safely"
0531ce1d 452)]
2c00a5a8 453pub unsafe auto trait Sync {
0531ce1d
XL
454 // FIXME(estebank): once support to add notes in `rustc_on_unimplemented`
455 // lands in beta, and it has been extended to check whether a closure is
456 // anywhere in the requirement chain, extend it as such (#48534):
457 // ```
458 // on(
459 // closure,
460 // note="`{Self}` cannot be shared safely, consider marking the closure `move`"
461 // ),
462 // ```
463
9346a6ac
AL
464 // Empty
465}
466
92a42be0 467#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 468impl<T: ?Sized> !Sync for *const T {}
92a42be0 469#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 470impl<T: ?Sized> !Sync for *mut T {}
c34b1796 471
dfeec247
XL
472macro_rules! impls {
473 ($t: ident) => {
92a42be0 474 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 475 impl<T: ?Sized> Hash for $t<T> {
85aaf69f 476 #[inline]
dfeec247 477 fn hash<H: Hasher>(&self, _: &mut H) {}
85aaf69f
SL
478 }
479
92a42be0 480 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 481 impl<T: ?Sized> cmp::PartialEq for $t<T> {
85aaf69f
SL
482 fn eq(&self, _other: &$t<T>) -> bool {
483 true
484 }
485 }
486
92a42be0 487 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 488 impl<T: ?Sized> cmp::Eq for $t<T> {}
85aaf69f 489
92a42be0 490 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 491 impl<T: ?Sized> cmp::PartialOrd for $t<T> {
85aaf69f
SL
492 fn partial_cmp(&self, _other: &$t<T>) -> Option<cmp::Ordering> {
493 Option::Some(cmp::Ordering::Equal)
494 }
495 }
496
92a42be0 497 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 498 impl<T: ?Sized> cmp::Ord for $t<T> {
85aaf69f
SL
499 fn cmp(&self, _other: &$t<T>) -> cmp::Ordering {
500 cmp::Ordering::Equal
501 }
502 }
503
92a42be0 504 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 505 impl<T: ?Sized> Copy for $t<T> {}
85aaf69f 506
92a42be0 507 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
508 impl<T: ?Sized> Clone for $t<T> {
509 fn clone(&self) -> Self {
510 Self
85aaf69f
SL
511 }
512 }
92a42be0
SL
513
514 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247
XL
515 impl<T: ?Sized> Default for $t<T> {
516 fn default() -> Self {
517 Self
92a42be0
SL
518 }
519 }
e74abb32 520
e74abb32 521 #[unstable(feature = "structural_match", issue = "31434")]
dfeec247 522 impl<T: ?Sized> StructuralPartialEq for $t<T> {}
e74abb32 523
e74abb32 524 #[unstable(feature = "structural_match", issue = "31434")]
dfeec247
XL
525 impl<T: ?Sized> StructuralEq for $t<T> {}
526 };
85aaf69f
SL
527}
528
9e0c209e 529/// Zero-sized type used to mark things that "act like" they own a `T`.
9346a6ac 530///
9e0c209e
SL
531/// Adding a `PhantomData<T>` field to your type tells the compiler that your
532/// type acts as though it stores a value of type `T`, even though it doesn't
533/// really. This information is used when computing certain safety properties.
9cc50fc6 534///
9e0c209e
SL
535/// For a more in-depth explanation of how to use `PhantomData<T>`, please see
536/// [the Nomicon](../../nomicon/phantom-data.html).
9cc50fc6 537///
e9174d1e
SL
538/// # A ghastly note 👻👻👻
539///
9e0c209e
SL
540/// Though they both have scary names, `PhantomData` and 'phantom types' are
541/// related, but not identical. A phantom type parameter is simply a type
542/// parameter which is never used. In Rust, this often causes the compiler to
543/// complain, and the solution is to add a "dummy" use by way of `PhantomData`.
1a4d82fc 544///
c34b1796 545/// # Examples
1a4d82fc 546///
9e0c209e 547/// ## Unused lifetime parameters
1a4d82fc 548///
9e0c209e
SL
549/// Perhaps the most common use case for `PhantomData` is a struct that has an
550/// unused lifetime parameter, typically as part of some unsafe code. For
551/// example, here is a struct `Slice` that has two pointers of type `*const T`,
552/// presumably pointing into an array somewhere:
85aaf69f 553///
041b39d2 554/// ```compile_fail,E0392
9346a6ac
AL
555/// struct Slice<'a, T> {
556/// start: *const T,
557/// end: *const T,
1a4d82fc
JJ
558/// }
559/// ```
560///
9346a6ac
AL
561/// The intention is that the underlying data is only valid for the
562/// lifetime `'a`, so `Slice` should not outlive `'a`. However, this
563/// intent is not expressed in the code, since there are no uses of
564/// the lifetime `'a` and hence it is not clear what data it applies
565/// to. We can correct this by telling the compiler to act *as if* the
9e0c209e 566/// `Slice` struct contained a reference `&'a T`:
1a4d82fc 567///
c34b1796 568/// ```
9346a6ac 569/// use std::marker::PhantomData;
1a4d82fc 570///
92a42be0 571/// # #[allow(dead_code)]
9cc50fc6 572/// struct Slice<'a, T: 'a> {
9346a6ac
AL
573/// start: *const T,
574/// end: *const T,
9e0c209e 575/// phantom: PhantomData<&'a T>,
9346a6ac 576/// }
c34b1796 577/// ```
1a4d82fc 578///
9e0c209e
SL
579/// This also in turn requires the annotation `T: 'a`, indicating
580/// that any references in `T` are valid over the lifetime `'a`.
581///
582/// When initializing a `Slice` you simply provide the value
583/// `PhantomData` for the field `phantom`:
584///
585/// ```
586/// # #![allow(dead_code)]
587/// # use std::marker::PhantomData;
588/// # struct Slice<'a, T: 'a> {
589/// # start: *const T,
590/// # end: *const T,
591/// # phantom: PhantomData<&'a T>,
592/// # }
416331ca 593/// fn borrow_vec<T>(vec: &Vec<T>) -> Slice<'_, T> {
9e0c209e
SL
594/// let ptr = vec.as_ptr();
595/// Slice {
596/// start: ptr,
b7449926 597/// end: unsafe { ptr.add(vec.len()) },
9e0c209e
SL
598/// phantom: PhantomData,
599/// }
600/// }
601/// ```
1a4d82fc 602///
9346a6ac 603/// ## Unused type parameters
1a4d82fc 604///
9e0c209e 605/// It sometimes happens that you have unused type parameters which
9346a6ac
AL
606/// indicate what type of data a struct is "tied" to, even though that
607/// data is not actually found in the struct itself. Here is an
9e0c209e
SL
608/// example where this arises with [FFI]. The foreign interface uses
609/// handles of type `*mut ()` to refer to Rust values of different
610/// types. We track the Rust type using a phantom type parameter on
611/// the struct `ExternalResource` which wraps a handle.
612///
9fa01778 613/// [FFI]: ../../book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
c34b1796
AL
614///
615/// ```
92a42be0 616/// # #![allow(dead_code)]
9e0c209e 617/// # trait ResType { }
c34b1796
AL
618/// # struct ParamType;
619/// # mod foreign_lib {
9e0c209e
SL
620/// # pub fn new(_: usize) -> *mut () { 42 as *mut () }
621/// # pub fn do_stuff(_: *mut (), _: usize) {}
c34b1796
AL
622/// # }
623/// # fn convert_params(_: ParamType) -> usize { 42 }
624/// use std::marker::PhantomData;
625/// use std::mem;
626///
627/// struct ExternalResource<R> {
628/// resource_handle: *mut (),
629/// resource_type: PhantomData<R>,
630/// }
631///
632/// impl<R: ResType> ExternalResource<R> {
633/// fn new() -> ExternalResource<R> {
634/// let size_of_res = mem::size_of::<R>();
635/// ExternalResource {
636/// resource_handle: foreign_lib::new(size_of_res),
637/// resource_type: PhantomData,
638/// }
639/// }
640///
641/// fn do_stuff(&self, param: ParamType) {
642/// let foreign_params = convert_params(param);
643/// foreign_lib::do_stuff(self.resource_handle, foreign_params);
644/// }
645/// }
646/// ```
647///
9e0c209e 648/// ## Ownership and the drop check
9346a6ac 649///
9e0c209e
SL
650/// Adding a field of type `PhantomData<T>` indicates that your
651/// type owns data of type `T`. This in turn implies that when your
652/// type is dropped, it may drop one or more instances of the type
653/// `T`. This has bearing on the Rust compiler's [drop check]
654/// analysis.
9346a6ac
AL
655///
656/// If your struct does not in fact *own* the data of type `T`, it is
657/// better to use a reference type, like `PhantomData<&'a T>`
658/// (ideally) or `PhantomData<*const T>` (if no lifetime applies), so
659/// as not to indicate ownership.
9e0c209e
SL
660///
661/// [drop check]: ../../nomicon/dropck.html
d9579d0f 662#[lang = "phantom_data"]
85aaf69f 663#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 664pub struct PhantomData<T: ?Sized>;
1a4d82fc 665
85aaf69f 666impls! { PhantomData }
1a4d82fc 667
85aaf69f 668mod impls {
92a42be0 669 #[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 670 unsafe impl<T: Sync + ?Sized> Send for &T {}
92a42be0 671 #[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 672 unsafe impl<T: Send + ?Sized> Send for &mut T {}
85aaf69f 673}
cc61c64b
XL
674
675/// Compiler-internal trait used to determine whether a type contains
676/// any `UnsafeCell` internally, but not through an indirection.
677/// This affects, for example, whether a `static` of that type is
678/// placed in read-only static memory or writable static memory.
7cac9316 679#[lang = "freeze"]
0731742a 680pub(crate) unsafe auto trait Freeze {}
cc61c64b
XL
681
682impl<T: ?Sized> !Freeze for UnsafeCell<T> {}
683unsafe impl<T: ?Sized> Freeze for PhantomData<T> {}
684unsafe impl<T: ?Sized> Freeze for *const T {}
685unsafe impl<T: ?Sized> Freeze for *mut T {}
0bf4aa26
XL
686unsafe impl<T: ?Sized> Freeze for &T {}
687unsafe impl<T: ?Sized> Freeze for &mut T {}
0531ce1d 688
e1599b0c 689/// Types that can be safely moved after being pinned.
0531ce1d 690///
0731742a 691/// Since Rust itself has no notion of immovable types, and considers moves
e1599b0c 692/// (e.g., through assignment or [`mem::replace`]) to always be safe,
b7449926
XL
693/// this trait cannot prevent types from moving by itself.
694///
0731742a
XL
695/// Instead it is used to prevent moves through the type system,
696/// by controlling the behavior of pointers `P` wrapped in the [`Pin<P>`] wrapper,
b7449926
XL
697/// which "pin" the type in place by not allowing it to be moved out of them.
698/// See the [`pin module`] documentation for more information on pinning.
699///
700/// Implementing this trait lifts the restrictions of pinning off a type,
0731742a
XL
701/// which then allows it to move out with functions such as [`mem::replace`].
702///
703/// `Unpin` has no consequence at all for non-pinned data. In particular,
704/// [`mem::replace`] happily moves `!Unpin` data (it works for any `&mut T`, not
705/// just when `T: Unpin`). However, you cannot use
706/// [`mem::replace`] on data wrapped inside a [`Pin<P>`] because you cannot get the
707/// `&mut T` you need for that, and *that* is what makes this system work.
b7449926
XL
708///
709/// So this, for example, can only be done on types implementing `Unpin`:
710///
711/// ```rust
0731742a 712/// use std::mem;
0bf4aa26 713/// use std::pin::Pin;
b7449926
XL
714///
715/// let mut string = "this".to_string();
0bf4aa26 716/// let mut pinned_string = Pin::new(&mut string);
b7449926 717///
0731742a
XL
718/// // We need a mutable reference to call `mem::replace`.
719/// // We can obtain such a reference by (implicitly) invoking `Pin::deref_mut`,
720/// // but that is only possible because `String` implements `Unpin`.
721/// mem::replace(&mut *pinned_string, "other".to_string());
b7449926 722/// ```
0531ce1d
XL
723///
724/// This trait is automatically implemented for almost every type.
83c7162d 725///
0731742a
XL
726/// [`mem::replace`]: ../../std/mem/fn.replace.html
727/// [`Pin<P>`]: ../pin/struct.Pin.html
b7449926 728/// [`pin module`]: ../../std/pin/index.html
0731742a 729#[stable(feature = "pin", since = "1.33.0")]
74b04a01
XL
730#[rustc_on_unimplemented(
731 on(_Self = "std::future::Future", note = "consider using `Box::pin`",),
732 message = "`{Self}` cannot be unpinned"
733)]
532ac7d7 734#[lang = "unpin"]
94b46f34
XL
735pub auto trait Unpin {}
736
0731742a 737/// A marker type which does not implement `Unpin`.
94b46f34 738///
0731742a
XL
739/// If a type contains a `PhantomPinned`, it will not implement `Unpin` by default.
740#[stable(feature = "pin", since = "1.33.0")]
94b46f34 741#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
0731742a 742pub struct PhantomPinned;
94b46f34 743
0731742a
XL
744#[stable(feature = "pin", since = "1.33.0")]
745impl !Unpin for PhantomPinned {}
83c7162d 746
0731742a 747#[stable(feature = "pin", since = "1.33.0")]
8faf50e0
XL
748impl<'a, T: ?Sized + 'a> Unpin for &'a T {}
749
0731742a 750#[stable(feature = "pin", since = "1.33.0")]
8faf50e0
XL
751impl<'a, T: ?Sized + 'a> Unpin for &'a mut T {}
752
416331ca
XL
753#[stable(feature = "pin_raw", since = "1.38.0")]
754impl<T: ?Sized> Unpin for *const T {}
755
756#[stable(feature = "pin_raw", since = "1.38.0")]
757impl<T: ?Sized> Unpin for *mut T {}
758
83c7162d
XL
759/// Implementations of `Copy` for primitive types.
760///
761/// Implementations that cannot be described in Rust
ba9703b0
XL
762/// are implemented in `traits::SelectionContext::copy_clone_conditions()`
763/// in `rustc_trait_selection`.
83c7162d
XL
764mod copy_impls {
765
766 use super::Copy;
767
768 macro_rules! impl_copy {
769 ($($t:ty)*) => {
770 $(
771 #[stable(feature = "rust1", since = "1.0.0")]
772 impl Copy for $t {}
773 )*
774 }
775 }
776
777 impl_copy! {
778 usize u8 u16 u32 u64 u128
779 isize i8 i16 i32 i64 i128
780 f32 f64
781 bool char
782 }
783
784 #[unstable(feature = "never_type", issue = "35121")]
785 impl Copy for ! {}
786
787 #[stable(feature = "rust1", since = "1.0.0")]
788 impl<T: ?Sized> Copy for *const T {}
789
790 #[stable(feature = "rust1", since = "1.0.0")]
791 impl<T: ?Sized> Copy for *mut T {}
792
ba9703b0 793 /// Shared references can be copied, but mutable references *cannot*!
83c7162d 794 #[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 795 impl<T: ?Sized> Copy for &T {}
83c7162d 796}