]> git.proxmox.com Git - rustc.git/blame - src/libcore/marker.rs
New upstream version 1.17.0+dfsg2
[rustc.git] / src / libcore / marker.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
9e0c209e 11//! Primitive traits and types representing basic properties of types.
1a4d82fc
JJ
12//!
13//! Rust types can be classified in various useful ways according to
9e0c209e
SL
14//! their intrinsic properties. These classifications are represented
15//! as traits.
1a4d82fc 16
85aaf69f 17#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 18
85aaf69f 19use cmp;
85aaf69f
SL
20use hash::Hash;
21use hash::Hasher;
1a4d82fc 22
92a42be0 23/// Types that can be transferred across thread boundaries.
9cc50fc6 24///
9e0c209e
SL
25/// This trait is automatically implemented when the compiler determines it's
26/// appropriate.
27///
28/// An example of a non-`Send` type is the reference-counting pointer
476ff2be 29/// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same
9e0c209e 30/// reference-counted value, they might try to update the reference count at the
476ff2be 31/// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic
9e0c209e
SL
32/// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring
33/// some overhead) and thus is `Send`.
34///
35/// See [the Nomicon](../../nomicon/send-and-sync.html) for more details.
36///
476ff2be 37/// [`Rc`]: ../../std/rc/struct.Rc.html
9e0c209e 38/// [arc]: ../../std/sync/struct.Arc.html
8bb4bdeb 39/// [ub]: ../../reference/behavior-considered-undefined.html
85aaf69f 40#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 41#[lang = "send"]
85aaf69f 42#[rustc_on_unimplemented = "`{Self}` cannot be sent between threads safely"]
9346a6ac
AL
43pub unsafe trait Send {
44 // empty.
45}
46
92a42be0 47#[stable(feature = "rust1", since = "1.0.0")]
c34b1796
AL
48unsafe impl Send for .. { }
49
92a42be0
SL
50#[stable(feature = "rust1", since = "1.0.0")]
51impl<T: ?Sized> !Send for *const T { }
52#[stable(feature = "rust1", since = "1.0.0")]
53impl<T: ?Sized> !Send for *mut T { }
c34b1796 54
9e0c209e 55/// Types with a constant size known at compile time.
b039eaaf 56///
9e0c209e
SL
57/// All type parameters have an implicit bound of `Sized`. The special syntax
58/// `?Sized` can be used to remove this bound if it's not appropriate.
b039eaaf
SL
59///
60/// ```
92a42be0 61/// # #![allow(dead_code)]
b039eaaf
SL
62/// struct Foo<T>(T);
63/// struct Bar<T: ?Sized>(T);
64///
65/// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32]
66/// struct BarUse(Bar<[i32]>); // OK
67/// ```
9e0c209e
SL
68///
69/// The one exception is the implicit `Self` type of a trait, which does not
70/// get an implicit `Sized` bound. This is because a `Sized` bound prevents
71/// the trait from being used to form a [trait object]:
72///
73/// ```
74/// # #![allow(unused_variables)]
75/// trait Foo { }
76/// trait Bar: Sized { }
77///
78/// struct Impl;
79/// impl Foo for Impl { }
80/// impl Bar for Impl { }
81///
82/// let x: &Foo = &Impl; // OK
83/// // let y: &Bar = &Impl; // error: the trait `Bar` cannot
84/// // be made into an object
85/// ```
86///
87/// [trait object]: ../../book/trait-objects.html
85aaf69f 88#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 89#[lang = "sized"]
85aaf69f 90#[rustc_on_unimplemented = "`{Self}` does not have a constant size known at compile-time"]
c34b1796 91#[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable
9346a6ac
AL
92pub trait Sized {
93 // Empty.
94}
95
9e0c209e
SL
96/// Types that can be "unsized" to a dynamically-sized type.
97///
98/// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and
99/// `Unsize<fmt::Debug>`.
100///
101/// All implementations of `Unsize` are provided automatically by the compiler.
102///
32a655c1
SL
103/// `Unsize` is implemented for:
104///
105/// - `[T; N]` is `Unsize<[T]>`
106/// - `T` is `Unsize<Trait>` when `T: Trait`
107/// - `Foo<..., T, ...>` is `Unsize<Foo<..., U, ...>>` if:
108/// - `T: Unsize<U>`
109/// - Foo is a struct
110/// - Only the last field of `Foo` has a type involving `T`
111/// - `T` is not part of the type of any other fields
112/// - `Bar<T>: Unsize<Bar<U>>`, if the last field of `Foo` has type `Bar<T>`
113///
9e0c209e
SL
114/// `Unsize` is used along with [`ops::CoerceUnsized`][coerceunsized] to allow
115/// "user-defined" containers such as [`rc::Rc`][rc] to contain dynamically-sized
32a655c1
SL
116/// types. See the [DST coercion RFC][RFC982] and [the nomicon entry on coercion][nomicon-coerce]
117/// for more details.
9e0c209e
SL
118///
119/// [coerceunsized]: ../ops/trait.CoerceUnsized.html
120/// [rc]: ../../std/rc/struct.Rc.html
121/// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md
32a655c1 122
e9174d1e 123#[unstable(feature = "unsize", issue = "27732")]
d9579d0f 124#[lang="unsize"]
e9174d1e 125pub trait Unsize<T: ?Sized> {
1a4d82fc
JJ
126 // Empty.
127}
128
9e0c209e 129/// Types whose values can be duplicated simply by copying bits.
85aaf69f
SL
130///
131/// By default, variable bindings have 'move semantics.' In other
132/// words:
133///
134/// ```
135/// #[derive(Debug)]
136/// struct Foo;
137///
138/// let x = Foo;
139///
140/// let y = x;
141///
142/// // `x` has moved into `y`, and so cannot be used
143///
144/// // println!("{:?}", x); // error: use of moved value
145/// ```
146///
147/// However, if a type implements `Copy`, it instead has 'copy semantics':
148///
149/// ```
9e0c209e
SL
150/// // We can derive a `Copy` implementation. `Clone` is also required, as it's
151/// // a supertrait of `Copy`.
c34b1796 152/// #[derive(Debug, Copy, Clone)]
85aaf69f
SL
153/// struct Foo;
154///
155/// let x = Foo;
156///
157/// let y = x;
158///
159/// // `y` is a copy of `x`
160///
161/// println!("{:?}", x); // A-OK!
162/// ```
163///
9e0c209e
SL
164/// It's important to note that in these two examples, the only difference is whether you
165/// are allowed to access `x` after the assignment. Under the hood, both a copy and a move
166/// can result in bits being copied in memory, although this is sometimes optimized away.
167///
168/// ## How can I implement `Copy`?
169///
170/// There are two ways to implement `Copy` on your type. The simplest is to use `derive`:
171///
172/// ```
173/// #[derive(Copy, Clone)]
174/// struct MyStruct;
175/// ```
176///
177/// You can also implement `Copy` and `Clone` manually:
178///
179/// ```
180/// struct MyStruct;
181///
182/// impl Copy for MyStruct { }
183///
184/// impl Clone for MyStruct {
185/// fn clone(&self) -> MyStruct {
186/// *self
187/// }
188/// }
189/// ```
190///
191/// There is a small difference between the two: the `derive` strategy will also place a `Copy`
192/// bound on type parameters, which isn't always desired.
193///
194/// ## What's the difference between `Copy` and `Clone`?
195///
196/// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of
197/// `Copy` is not overloadable; it is always a simple bit-wise copy.
198///
476ff2be 199/// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can
9e0c209e 200/// provide any type-specific behavior necessary to duplicate values safely. For example,
476ff2be
SL
201/// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string
202/// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the
203/// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`]
9e0c209e
SL
204/// but not `Copy`.
205///
476ff2be
SL
206/// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement
207/// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation need only return `*self`
9e0c209e
SL
208/// (see the example above).
209///
85aaf69f
SL
210/// ## When can my type be `Copy`?
211///
212/// A type can implement `Copy` if all of its components implement `Copy`. For example, this
9e0c209e 213/// struct can be `Copy`:
85aaf69f
SL
214///
215/// ```
92a42be0 216/// # #[allow(dead_code)]
85aaf69f
SL
217/// struct Point {
218/// x: i32,
219/// y: i32,
220/// }
221/// ```
222///
476ff2be 223/// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`.
9e0c209e 224/// By contrast, consider
85aaf69f
SL
225///
226/// ```
92a42be0 227/// # #![allow(dead_code)]
85aaf69f
SL
228/// # struct Point;
229/// struct PointList {
230/// points: Vec<Point>,
231/// }
232/// ```
233///
9e0c209e 234/// The struct `PointList` cannot implement `Copy`, because [`Vec<T>`] is not `Copy`. If we
62682a34 235/// attempt to derive a `Copy` implementation, we'll get an error:
85aaf69f
SL
236///
237/// ```text
62682a34 238/// the trait `Copy` may not be implemented for this type; field `points` does not implement `Copy`
85aaf69f
SL
239/// ```
240///
9e0c209e 241/// ## When *can't* my type be `Copy`?
3157f602
XL
242///
243/// Some types can't be copied safely. For example, copying `&mut T` would create an aliased
476ff2be
SL
244/// mutable reference. Copying [`String`] would duplicate responsibility for managing the
245/// [`String`]'s buffer, leading to a double free.
3157f602 246///
9e0c209e
SL
247/// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's
248/// managing some resource besides its own [`size_of::<T>()`] bytes.
3157f602 249///
32a655c1
SL
250/// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get
251/// the error [E0204].
85aaf69f 252///
c30ab7b3 253/// [E0204]: ../../error-index.html#E0204
85aaf69f 254///
9e0c209e 255/// ## When *should* my type be `Copy`?
85aaf69f 256///
9e0c209e
SL
257/// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though,
258/// that implementing `Copy` is part of the public API of your type. If the type might become
259/// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to
260/// avoid a breaking API change.
85aaf69f 261///
9e0c209e
SL
262/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
263/// [`String`]: ../../std/string/struct.String.html
264/// [`Drop`]: ../../std/ops/trait.Drop.html
265/// [`size_of::<T>()`]: ../../std/mem/fn.size_of.html
476ff2be
SL
266/// [`Clone`]: ../clone/trait.Clone.html
267/// [`String`]: ../../std/string/struct.String.html
268/// [`i32`]: ../../std/primitive.i32.html
85aaf69f 269#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 270#[lang = "copy"]
c34b1796 271pub trait Copy : Clone {
1a4d82fc
JJ
272 // Empty.
273}
274
9e0c209e
SL
275/// Types for which it is safe to share references between threads.
276///
277/// This trait is automatically implemented when the compiler determines
278/// it's appropriate.
1a4d82fc
JJ
279///
280/// The precise definition is: a type `T` is `Sync` if `&T` is
9e0c209e
SL
281/// [`Send`][send]. In other words, if there is no possibility of
282/// [undefined behavior][ub] (including data races) when passing
283/// `&T` references between threads.
284///
285/// As one would expect, primitive types like [`u8`][u8] and [`f64`][f64]
286/// are all `Sync`, and so are simple aggregate types containing them,
287/// like tuples, structs and enums. More examples of basic `Sync`
288/// types include "immutable" types like `&T`, and those with simple
289/// inherited mutability, such as [`Box<T>`][box], [`Vec<T>`][vec] and
290/// most other collection types. (Generic parameters need to be `Sync`
291/// for their container to be `Sync`.)
292///
293/// A somewhat surprising consequence of the definition is that `&mut T`
294/// is `Sync` (if `T` is `Sync`) even though it seems like that might
295/// provide unsynchronized mutation. The trick is that a mutable
296/// reference behind a shared reference (that is, `& &mut T`)
297/// becomes read-only, as if it were a `& &T`. Hence there is no risk
298/// of a data race.
1a4d82fc
JJ
299///
300/// Types that are not `Sync` are those that have "interior
9e0c209e
SL
301/// mutability" in a non-thread-safe form, such as [`cell::Cell`][cell]
302/// and [`cell::RefCell`][refcell]. These types allow for mutation of
303/// their contents even through an immutable, shared reference. For
476ff2be
SL
304/// example the `set` method on [`Cell<T>`][cell] takes `&self`, so it requires
305/// only a shared reference [`&Cell<T>`][cell]. The method performs no
306/// synchronization, thus [`Cell`][cell] cannot be `Sync`.
1a4d82fc 307///
9e0c209e 308/// Another example of a non-`Sync` type is the reference-counting
476ff2be
SL
309/// pointer [`rc::Rc`][rc]. Given any reference [`&Rc<T>`][rc], you can clone
310/// a new [`Rc<T>`][rc], modifying the reference counts in a non-atomic way.
9cc50fc6 311///
9e0c209e
SL
312/// For cases when one does need thread-safe interior mutability,
313/// Rust provides [atomic data types], as well as explicit locking via
314/// [`sync::Mutex`][mutex] and [`sync::RWLock`][rwlock]. These types
315/// ensure that any mutation cannot cause data races, hence the types
316/// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe
476ff2be 317/// analogue of [`Rc`][rc].
9e0c209e
SL
318///
319/// Any types with interior mutability must also use the
320/// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which
321/// can be mutated through a shared reference. Failing to doing this is
322/// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing
323/// from `&T` to `&mut T` is invalid.
324///
325/// See [the Nomicon](../../nomicon/send-and-sync.html) for more
326/// details about `Sync`.
327///
328/// [send]: trait.Send.html
329/// [u8]: ../../std/primitive.u8.html
330/// [f64]: ../../std/primitive.f64.html
331/// [box]: ../../std/boxed/struct.Box.html
332/// [vec]: ../../std/vec/struct.Vec.html
333/// [cell]: ../cell/struct.Cell.html
334/// [refcell]: ../cell/struct.RefCell.html
335/// [rc]: ../../std/rc/struct.Rc.html
336/// [arc]: ../../std/sync/struct.Arc.html
337/// [atomic data types]: ../sync/atomic/index.html
338/// [mutex]: ../../std/sync/struct.Mutex.html
339/// [rwlock]: ../../std/sync/struct.RwLock.html
340/// [unsafecell]: ../cell/struct.UnsafeCell.html
8bb4bdeb 341/// [ub]: ../../reference/behavior-considered-undefined.html
9e0c209e 342/// [transmute]: ../../std/mem/fn.transmute.html
9346a6ac 343#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 344#[lang = "sync"]
9346a6ac
AL
345#[rustc_on_unimplemented = "`{Self}` cannot be shared between threads safely"]
346pub unsafe trait Sync {
347 // Empty
348}
349
92a42be0 350#[stable(feature = "rust1", since = "1.0.0")]
c34b1796
AL
351unsafe impl Sync for .. { }
352
92a42be0
SL
353#[stable(feature = "rust1", since = "1.0.0")]
354impl<T: ?Sized> !Sync for *const T { }
355#[stable(feature = "rust1", since = "1.0.0")]
356impl<T: ?Sized> !Sync for *mut T { }
c34b1796 357
85aaf69f
SL
358macro_rules! impls{
359 ($t: ident) => (
92a42be0 360 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
361 impl<T:?Sized> Hash for $t<T> {
362 #[inline]
363 fn hash<H: Hasher>(&self, _: &mut H) {
364 }
365 }
366
92a42be0 367 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
368 impl<T:?Sized> cmp::PartialEq for $t<T> {
369 fn eq(&self, _other: &$t<T>) -> bool {
370 true
371 }
372 }
373
92a42be0 374 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
375 impl<T:?Sized> cmp::Eq for $t<T> {
376 }
377
92a42be0 378 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
379 impl<T:?Sized> cmp::PartialOrd for $t<T> {
380 fn partial_cmp(&self, _other: &$t<T>) -> Option<cmp::Ordering> {
381 Option::Some(cmp::Ordering::Equal)
382 }
383 }
384
92a42be0 385 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
386 impl<T:?Sized> cmp::Ord for $t<T> {
387 fn cmp(&self, _other: &$t<T>) -> cmp::Ordering {
388 cmp::Ordering::Equal
389 }
390 }
391
92a42be0 392 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
393 impl<T:?Sized> Copy for $t<T> { }
394
92a42be0 395 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
396 impl<T:?Sized> Clone for $t<T> {
397 fn clone(&self) -> $t<T> {
398 $t
399 }
400 }
92a42be0
SL
401
402 #[stable(feature = "rust1", since = "1.0.0")]
403 impl<T:?Sized> Default for $t<T> {
404 fn default() -> $t<T> {
405 $t
406 }
407 }
85aaf69f
SL
408 )
409}
410
9e0c209e 411/// Zero-sized type used to mark things that "act like" they own a `T`.
9346a6ac 412///
9e0c209e
SL
413/// Adding a `PhantomData<T>` field to your type tells the compiler that your
414/// type acts as though it stores a value of type `T`, even though it doesn't
415/// really. This information is used when computing certain safety properties.
9cc50fc6 416///
9e0c209e
SL
417/// For a more in-depth explanation of how to use `PhantomData<T>`, please see
418/// [the Nomicon](../../nomicon/phantom-data.html).
9cc50fc6 419///
e9174d1e
SL
420/// # A ghastly note 👻👻👻
421///
9e0c209e
SL
422/// Though they both have scary names, `PhantomData` and 'phantom types' are
423/// related, but not identical. A phantom type parameter is simply a type
424/// parameter which is never used. In Rust, this often causes the compiler to
425/// complain, and the solution is to add a "dummy" use by way of `PhantomData`.
1a4d82fc 426///
c34b1796 427/// # Examples
1a4d82fc 428///
9e0c209e 429/// ## Unused lifetime parameters
1a4d82fc 430///
9e0c209e
SL
431/// Perhaps the most common use case for `PhantomData` is a struct that has an
432/// unused lifetime parameter, typically as part of some unsafe code. For
433/// example, here is a struct `Slice` that has two pointers of type `*const T`,
434/// presumably pointing into an array somewhere:
85aaf69f 435///
9346a6ac
AL
436/// ```ignore
437/// struct Slice<'a, T> {
438/// start: *const T,
439/// end: *const T,
1a4d82fc
JJ
440/// }
441/// ```
442///
9346a6ac
AL
443/// The intention is that the underlying data is only valid for the
444/// lifetime `'a`, so `Slice` should not outlive `'a`. However, this
445/// intent is not expressed in the code, since there are no uses of
446/// the lifetime `'a` and hence it is not clear what data it applies
447/// to. We can correct this by telling the compiler to act *as if* the
9e0c209e 448/// `Slice` struct contained a reference `&'a T`:
1a4d82fc 449///
c34b1796 450/// ```
9346a6ac 451/// use std::marker::PhantomData;
1a4d82fc 452///
92a42be0 453/// # #[allow(dead_code)]
9cc50fc6 454/// struct Slice<'a, T: 'a> {
9346a6ac
AL
455/// start: *const T,
456/// end: *const T,
9e0c209e 457/// phantom: PhantomData<&'a T>,
9346a6ac 458/// }
c34b1796 459/// ```
1a4d82fc 460///
9e0c209e
SL
461/// This also in turn requires the annotation `T: 'a`, indicating
462/// that any references in `T` are valid over the lifetime `'a`.
463///
464/// When initializing a `Slice` you simply provide the value
465/// `PhantomData` for the field `phantom`:
466///
467/// ```
468/// # #![allow(dead_code)]
469/// # use std::marker::PhantomData;
470/// # struct Slice<'a, T: 'a> {
471/// # start: *const T,
472/// # end: *const T,
473/// # phantom: PhantomData<&'a T>,
474/// # }
475/// fn borrow_vec<'a, T>(vec: &'a Vec<T>) -> Slice<'a, T> {
476/// let ptr = vec.as_ptr();
477/// Slice {
478/// start: ptr,
479/// end: unsafe { ptr.offset(vec.len() as isize) },
480/// phantom: PhantomData,
481/// }
482/// }
483/// ```
1a4d82fc 484///
9346a6ac 485/// ## Unused type parameters
1a4d82fc 486///
9e0c209e 487/// It sometimes happens that you have unused type parameters which
9346a6ac
AL
488/// indicate what type of data a struct is "tied" to, even though that
489/// data is not actually found in the struct itself. Here is an
9e0c209e
SL
490/// example where this arises with [FFI]. The foreign interface uses
491/// handles of type `*mut ()` to refer to Rust values of different
492/// types. We track the Rust type using a phantom type parameter on
493/// the struct `ExternalResource` which wraps a handle.
494///
495/// [FFI]: ../../book/ffi.html
c34b1796
AL
496///
497/// ```
92a42be0 498/// # #![allow(dead_code)]
9e0c209e 499/// # trait ResType { }
c34b1796
AL
500/// # struct ParamType;
501/// # mod foreign_lib {
9e0c209e
SL
502/// # pub fn new(_: usize) -> *mut () { 42 as *mut () }
503/// # pub fn do_stuff(_: *mut (), _: usize) {}
c34b1796
AL
504/// # }
505/// # fn convert_params(_: ParamType) -> usize { 42 }
506/// use std::marker::PhantomData;
507/// use std::mem;
508///
509/// struct ExternalResource<R> {
510/// resource_handle: *mut (),
511/// resource_type: PhantomData<R>,
512/// }
513///
514/// impl<R: ResType> ExternalResource<R> {
515/// fn new() -> ExternalResource<R> {
516/// let size_of_res = mem::size_of::<R>();
517/// ExternalResource {
518/// resource_handle: foreign_lib::new(size_of_res),
519/// resource_type: PhantomData,
520/// }
521/// }
522///
523/// fn do_stuff(&self, param: ParamType) {
524/// let foreign_params = convert_params(param);
525/// foreign_lib::do_stuff(self.resource_handle, foreign_params);
526/// }
527/// }
528/// ```
529///
9e0c209e 530/// ## Ownership and the drop check
9346a6ac 531///
9e0c209e
SL
532/// Adding a field of type `PhantomData<T>` indicates that your
533/// type owns data of type `T`. This in turn implies that when your
534/// type is dropped, it may drop one or more instances of the type
535/// `T`. This has bearing on the Rust compiler's [drop check]
536/// analysis.
9346a6ac
AL
537///
538/// If your struct does not in fact *own* the data of type `T`, it is
539/// better to use a reference type, like `PhantomData<&'a T>`
540/// (ideally) or `PhantomData<*const T>` (if no lifetime applies), so
541/// as not to indicate ownership.
9e0c209e
SL
542///
543/// [drop check]: ../../nomicon/dropck.html
d9579d0f 544#[lang = "phantom_data"]
85aaf69f
SL
545#[stable(feature = "rust1", since = "1.0.0")]
546pub struct PhantomData<T:?Sized>;
1a4d82fc 547
85aaf69f 548impls! { PhantomData }
1a4d82fc 549
85aaf69f 550mod impls {
92a42be0 551 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 552 unsafe impl<'a, T: Sync + ?Sized> Send for &'a T {}
92a42be0 553 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
554 unsafe impl<'a, T: Send + ?Sized> Send for &'a mut T {}
555}