]> git.proxmox.com Git - rustc.git/blame - src/libcore/mem.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / libcore / mem.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
54a0048b 11//! Basic functions for dealing with memory.
1a4d82fc
JJ
12//!
13//! This module contains functions for querying the size and alignment of
14//! types, initializing and manipulating memory.
15
85aaf69f 16#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
17
18use marker::Sized;
19use intrinsics;
20use ptr;
21
85aaf69f 22#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
23pub use intrinsics::transmute;
24
bd371182
AL
25/// Leaks a value into the void, consuming ownership and never running its
26/// destructor.
1a4d82fc 27///
bd371182
AL
28/// This function will take ownership of its argument, but is distinct from the
29/// `mem::drop` function in that it **does not run the destructor**, leaking the
30/// value and any resources that it owns.
1a4d82fc 31///
e9174d1e
SL
32/// There's only a few reasons to use this function. They mainly come
33/// up in unsafe code or FFI code.
34///
35/// * You have an uninitialized value, perhaps for performance reasons, and
36/// need to prevent the destructor from running on it.
37/// * You have two copies of a value (like when writing something like
38/// [`mem::swap`][swap]), but need the destructor to only run once to
39/// prevent a double `free`.
b039eaaf 40/// * Transferring resources across [FFI][ffi] boundaries.
e9174d1e
SL
41///
42/// [swap]: fn.swap.html
43/// [ffi]: ../../book/ffi.html
44///
bd371182
AL
45/// # Safety
46///
47/// This function is not marked as `unsafe` as Rust does not guarantee that the
48/// `Drop` implementation for a value will always run. Note, however, that
49/// leaking resources such as memory or I/O objects is likely not desired, so
50/// this function is only recommended for specialized use cases.
51///
52/// The safety of this function implies that when writing `unsafe` code
53/// yourself care must be taken when leveraging a destructor that is required to
54/// run to preserve memory safety. There are known situations where the
55/// destructor may not run (such as if ownership of the object with the
56/// destructor is returned) which must be taken into account.
57///
58/// # Other forms of Leakage
59///
60/// It's important to point out that this function is not the only method by
61/// which a value can be leaked in safe Rust code. Other known sources of
62/// leakage are:
63///
64/// * `Rc` and `Arc` cycles
65/// * `mpsc::{Sender, Receiver}` cycles (they use `Arc` internally)
66/// * Panicking destructors are likely to leak local resources
67///
68/// # Example
69///
e9174d1e 70/// Leak some heap memory by never deallocating it:
62682a34
SL
71///
72/// ```rust
bd371182 73/// use std::mem;
bd371182 74///
bd371182
AL
75/// let heap_memory = Box::new(3);
76/// mem::forget(heap_memory);
62682a34
SL
77/// ```
78///
e9174d1e 79/// Leak an I/O object, never closing the file:
62682a34
SL
80///
81/// ```rust,no_run
82/// use std::mem;
83/// use std::fs::File;
bd371182 84///
bd371182
AL
85/// let file = File::open("foo.txt").unwrap();
86/// mem::forget(file);
87/// ```
62682a34 88///
e9174d1e 89/// The `mem::swap` function uses `mem::forget` to good effect:
62682a34
SL
90///
91/// ```rust
92/// use std::mem;
93/// use std::ptr;
94///
92a42be0 95/// # #[allow(dead_code)]
62682a34
SL
96/// fn swap<T>(x: &mut T, y: &mut T) {
97/// unsafe {
98/// // Give ourselves some scratch space to work with
99/// let mut t: T = mem::uninitialized();
100///
101/// // Perform the swap, `&mut` pointers never alias
102/// ptr::copy_nonoverlapping(&*x, &mut t, 1);
103/// ptr::copy_nonoverlapping(&*y, x, 1);
104/// ptr::copy_nonoverlapping(&t, y, 1);
105///
106/// // y and t now point to the same thing, but we need to completely
107/// // forget `t` because we do not want to run the destructor for `T`
108/// // on its value, which is still owned somewhere outside this function.
109/// mem::forget(t);
110/// }
111/// }
112/// ```
85aaf69f 113#[stable(feature = "rust1", since = "1.0.0")]
bd371182
AL
114pub fn forget<T>(t: T) {
115 unsafe { intrinsics::forget(t) }
116}
1a4d82fc
JJ
117
118/// Returns the size of a type in bytes.
119///
120/// # Examples
121///
122/// ```
123/// use std::mem;
124///
125/// assert_eq!(4, mem::size_of::<i32>());
126/// ```
127#[inline]
85aaf69f
SL
128#[stable(feature = "rust1", since = "1.0.0")]
129pub fn size_of<T>() -> usize {
1a4d82fc
JJ
130 unsafe { intrinsics::size_of::<T>() }
131}
132
9cc50fc6 133/// Returns the size of the given value in bytes.
d9579d0f
AL
134///
135/// # Examples
136///
137/// ```
138/// use std::mem;
139///
140/// assert_eq!(4, mem::size_of_val(&5i32));
141/// ```
d9579d0f
AL
142#[inline]
143#[stable(feature = "rust1", since = "1.0.0")]
144pub fn size_of_val<T: ?Sized>(val: &T) -> usize {
145 unsafe { intrinsics::size_of_val(val) }
146}
147
1a4d82fc
JJ
148/// Returns the ABI-required minimum alignment of a type
149///
150/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
151///
152/// # Examples
153///
154/// ```
92a42be0 155/// # #![allow(deprecated)]
1a4d82fc
JJ
156/// use std::mem;
157///
158/// assert_eq!(4, mem::min_align_of::<i32>());
159/// ```
160#[inline]
85aaf69f 161#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 162#[rustc_deprecated(reason = "use `align_of` instead", since = "1.2.0")]
85aaf69f 163pub fn min_align_of<T>() -> usize {
1a4d82fc
JJ
164 unsafe { intrinsics::min_align_of::<T>() }
165}
166
d9579d0f
AL
167/// Returns the ABI-required minimum alignment of the type of the value that `val` points to
168///
169/// # Examples
170///
171/// ```
92a42be0 172/// # #![allow(deprecated)]
d9579d0f
AL
173/// use std::mem;
174///
175/// assert_eq!(4, mem::min_align_of_val(&5i32));
176/// ```
d9579d0f
AL
177#[inline]
178#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 179#[rustc_deprecated(reason = "use `align_of_val` instead", since = "1.2.0")]
d9579d0f
AL
180pub fn min_align_of_val<T: ?Sized>(val: &T) -> usize {
181 unsafe { intrinsics::min_align_of_val(val) }
182}
183
1a4d82fc
JJ
184/// Returns the alignment in memory for a type.
185///
62682a34 186/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
1a4d82fc
JJ
187///
188/// # Examples
189///
190/// ```
191/// use std::mem;
192///
193/// assert_eq!(4, mem::align_of::<i32>());
194/// ```
195#[inline]
85aaf69f
SL
196#[stable(feature = "rust1", since = "1.0.0")]
197pub fn align_of<T>() -> usize {
62682a34 198 unsafe { intrinsics::min_align_of::<T>() }
1a4d82fc
JJ
199}
200
62682a34 201/// Returns the ABI-required minimum alignment of the type of the value that `val` points to
1a4d82fc
JJ
202///
203/// # Examples
204///
205/// ```
206/// use std::mem;
207///
208/// assert_eq!(4, mem::align_of_val(&5i32));
209/// ```
210#[inline]
85aaf69f 211#[stable(feature = "rust1", since = "1.0.0")]
62682a34
SL
212pub fn align_of_val<T: ?Sized>(val: &T) -> usize {
213 unsafe { intrinsics::min_align_of_val(val) }
1a4d82fc
JJ
214}
215
9346a6ac 216/// Creates a value initialized to zero.
1a4d82fc
JJ
217///
218/// This function is similar to allocating space for a local variable and zeroing it out (an unsafe
219/// operation).
220///
221/// Care must be taken when using this function, if the type `T` has a destructor and the value
222/// falls out of scope (due to unwinding or returning) before being initialized, then the
223/// destructor will run on zeroed data, likely leading to crashes.
224///
225/// This is useful for FFI functions sometimes, but should generally be avoided.
226///
227/// # Examples
228///
229/// ```
230/// use std::mem;
231///
85aaf69f 232/// let x: i32 = unsafe { mem::zeroed() };
1a4d82fc
JJ
233/// ```
234#[inline]
85aaf69f 235#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
236pub unsafe fn zeroed<T>() -> T {
237 intrinsics::init()
238}
239
9346a6ac 240/// Creates a value initialized to an unspecified series of bytes.
c34b1796
AL
241///
242/// The byte sequence usually indicates that the value at the memory
243/// in question has been dropped. Thus, *if* T carries a drop flag,
244/// any associated destructor will not be run when the value falls out
245/// of scope.
246///
247/// Some code at one time used the `zeroed` function above to
248/// accomplish this goal.
249///
250/// This function is expected to be deprecated with the transition
251/// to non-zeroing drop.
252#[inline]
e9174d1e 253#[unstable(feature = "filling_drop", issue = "5016")]
c34b1796
AL
254pub unsafe fn dropped<T>() -> T {
255 #[inline(always)]
256 unsafe fn dropped_impl<T>() -> T { intrinsics::init_dropped() }
257
258 dropped_impl()
259}
260
c1a9b12d
SL
261/// Bypasses Rust's normal memory-initialization checks by pretending to
262/// produce a value of type T, while doing nothing at all.
1a4d82fc 263///
c1a9b12d
SL
264/// **This is incredibly dangerous, and should not be done lightly. Deeply
265/// consider initializing your memory with a default value instead.**
1a4d82fc 266///
c1a9b12d
SL
267/// This is useful for FFI functions and initializing arrays sometimes,
268/// but should generally be avoided.
269///
b039eaaf 270/// # Undefined Behavior
c1a9b12d 271///
b039eaaf 272/// It is Undefined Behavior to read uninitialized memory. Even just an
c1a9b12d
SL
273/// uninitialized boolean. For instance, if you branch on the value of such
274/// a boolean your program may take one, both, or neither of the branches.
275///
276/// Note that this often also includes *writing* to the uninitialized value.
277/// Rust believes the value is initialized, and will therefore try to Drop
278/// the uninitialized value and its fields if you try to overwrite the memory
279/// in a normal manner. The only way to safely initialize an arbitrary
280/// uninitialized value is with one of the `ptr` functions: `write`, `copy`, or
281/// `copy_nonoverlapping`. This isn't necessary if `T` is a primitive
282/// or otherwise only contains types that don't implement Drop.
283///
284/// If this value *does* need some kind of Drop, it must be initialized before
285/// it goes out of scope (and therefore would be dropped). Note that this
286/// includes a `panic` occurring and unwinding the stack suddenly.
1a4d82fc
JJ
287///
288/// # Examples
289///
c1a9b12d
SL
290/// Here's how to safely initialize an array of `Vec`s.
291///
1a4d82fc
JJ
292/// ```
293/// use std::mem;
c1a9b12d 294/// use std::ptr;
1a4d82fc 295///
c1a9b12d
SL
296/// // Only declare the array. This safely leaves it
297/// // uninitialized in a way that Rust will track for us.
298/// // However we can't initialize it element-by-element
299/// // safely, and we can't use the `[value; 1000]`
300/// // constructor because it only works with `Copy` data.
301/// let mut data: [Vec<u32>; 1000];
302///
303/// unsafe {
304/// // So we need to do this to initialize it.
305/// data = mem::uninitialized();
306///
307/// // DANGER ZONE: if anything panics or otherwise
308/// // incorrectly reads the array here, we will have
b039eaaf 309/// // Undefined Behavior.
c1a9b12d
SL
310///
311/// // It's ok to mutably iterate the data, since this
312/// // doesn't involve reading it at all.
313/// // (ptr and len are statically known for arrays)
314/// for elem in &mut data[..] {
315/// // *elem = Vec::new() would try to drop the
316/// // uninitialized memory at `elem` -- bad!
317/// //
318/// // Vec::new doesn't allocate or do really
319/// // anything. It's only safe to call here
320/// // because we know it won't panic.
321/// ptr::write(elem, Vec::new());
322/// }
323///
324/// // SAFE ZONE: everything is initialized.
325/// }
326///
327/// println!("{:?}", &data[0]);
328/// ```
329///
330/// This example emphasizes exactly how delicate and dangerous doing this is.
331/// Note that the `vec!` macro *does* let you initialize every element with a
332/// value that is only `Clone`, so the following is semantically equivalent and
333/// vastly less dangerous, as long as you can live with an extra heap
334/// allocation:
335///
336/// ```
337/// let data: Vec<Vec<u32>> = vec![Vec::new(); 1000];
338/// println!("{:?}", &data[0]);
1a4d82fc
JJ
339/// ```
340#[inline]
85aaf69f 341#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
342pub unsafe fn uninitialized<T>() -> T {
343 intrinsics::uninit()
344}
345
b039eaaf 346/// Swap the values at two mutable locations of the same type, without deinitializing or copying
1a4d82fc
JJ
347/// either one.
348///
349/// # Examples
350///
351/// ```
352/// use std::mem;
353///
85aaf69f
SL
354/// let x = &mut 5;
355/// let y = &mut 42;
1a4d82fc
JJ
356///
357/// mem::swap(x, y);
358///
85aaf69f
SL
359/// assert_eq!(42, *x);
360/// assert_eq!(5, *y);
1a4d82fc
JJ
361/// ```
362#[inline]
85aaf69f 363#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
364pub fn swap<T>(x: &mut T, y: &mut T) {
365 unsafe {
366 // Give ourselves some scratch space to work with
367 let mut t: T = uninitialized();
368
369 // Perform the swap, `&mut` pointers never alias
c34b1796
AL
370 ptr::copy_nonoverlapping(&*x, &mut t, 1);
371 ptr::copy_nonoverlapping(&*y, x, 1);
372 ptr::copy_nonoverlapping(&t, y, 1);
1a4d82fc 373
62682a34
SL
374 // y and t now point to the same thing, but we need to completely
375 // forget `t` because we do not want to run the destructor for `T`
376 // on its value, which is still owned somewhere outside this function.
1a4d82fc
JJ
377 forget(t);
378 }
379}
380
9346a6ac 381/// Replaces the value at a mutable location with a new one, returning the old value, without
b039eaaf 382/// deinitializing or copying either one.
1a4d82fc
JJ
383///
384/// This is primarily used for transferring and swapping ownership of a value in a mutable
385/// location.
386///
387/// # Examples
388///
389/// A simple example:
390///
391/// ```
392/// use std::mem;
393///
394/// let mut v: Vec<i32> = Vec::new();
395///
396/// mem::replace(&mut v, Vec::new());
397/// ```
398///
399/// This function allows consumption of one field of a struct by replacing it with another value.
400/// The normal approach doesn't always work:
401///
402/// ```rust,ignore
403/// struct Buffer<T> { buf: Vec<T> }
404///
405/// impl<T> Buffer<T> {
406/// fn get_and_reset(&mut self) -> Vec<T> {
407/// // error: cannot move out of dereference of `&mut`-pointer
408/// let buf = self.buf;
409/// self.buf = Vec::new();
410/// buf
411/// }
412/// }
413/// ```
414///
415/// Note that `T` does not necessarily implement `Clone`, so it can't even clone and reset
416/// `self.buf`. But `replace` can be used to disassociate the original value of `self.buf` from
417/// `self`, allowing it to be returned:
418///
c34b1796 419/// ```
92a42be0 420/// # #![allow(dead_code)]
1a4d82fc
JJ
421/// use std::mem;
422/// # struct Buffer<T> { buf: Vec<T> }
423/// impl<T> Buffer<T> {
424/// fn get_and_reset(&mut self) -> Vec<T> {
425/// mem::replace(&mut self.buf, Vec::new())
426/// }
427/// }
428/// ```
429#[inline]
85aaf69f 430#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
431pub fn replace<T>(dest: &mut T, mut src: T) -> T {
432 swap(dest, &mut src);
433 src
434}
435
436/// Disposes of a value.
437///
c1a9b12d
SL
438/// While this does call the argument's implementation of `Drop`, it will not
439/// release any borrows, as borrows are based on lexical scope.
1a4d82fc 440///
b039eaaf
SL
441/// This effectively does nothing for
442/// [types which implement `Copy`](../../book/ownership.html#copy-types),
443/// e.g. integers. Such values are copied and _then_ moved into the function,
444/// so the value persists after this function call.
445///
1a4d82fc
JJ
446/// # Examples
447///
c1a9b12d
SL
448/// Basic usage:
449///
450/// ```
451/// let v = vec![1, 2, 3];
452///
453/// drop(v); // explicitly drop the vector
454/// ```
455///
456/// Borrows are based on lexical scope, so this produces an error:
457///
458/// ```ignore
459/// let mut v = vec![1, 2, 3];
460/// let x = &v[0];
461///
462/// drop(x); // explicitly drop the reference, but the borrow still exists
463///
464/// v.push(4); // error: cannot borrow `v` as mutable because it is also
465/// // borrowed as immutable
466/// ```
467///
468/// An inner scope is needed to fix this:
469///
470/// ```
471/// let mut v = vec![1, 2, 3];
472///
473/// {
474/// let x = &v[0];
475///
476/// drop(x); // this is now redundant, as `x` is going out of scope anyway
477/// }
478///
479/// v.push(4); // no problems
480/// ```
481///
482/// Since `RefCell` enforces the borrow rules at runtime, `drop()` can
483/// seemingly release a borrow of one:
484///
1a4d82fc
JJ
485/// ```
486/// use std::cell::RefCell;
487///
85aaf69f 488/// let x = RefCell::new(1);
1a4d82fc
JJ
489///
490/// let mut mutable_borrow = x.borrow_mut();
491/// *mutable_borrow = 1;
492///
493/// drop(mutable_borrow); // relinquish the mutable borrow on this slot
494///
495/// let borrow = x.borrow();
496/// println!("{}", *borrow);
497/// ```
b039eaaf
SL
498///
499/// Integers and other types implementing `Copy` are unaffected by `drop()`
500///
501/// ```
502/// #[derive(Copy, Clone)]
503/// struct Foo(u8);
504///
505/// let x = 1;
506/// let y = Foo(2);
507/// drop(x); // a copy of `x` is moved and dropped
508/// drop(y); // a copy of `y` is moved and dropped
509///
510/// println!("x: {}, y: {}", x, y.0); // still available
511/// ```
512///
1a4d82fc 513#[inline]
85aaf69f 514#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
515pub fn drop<T>(_x: T) { }
516
c34b1796
AL
517macro_rules! repeat_u8_as_u32 {
518 ($name:expr) => { (($name as u32) << 24 |
519 ($name as u32) << 16 |
520 ($name as u32) << 8 |
521 ($name as u32)) }
522}
523macro_rules! repeat_u8_as_u64 {
524 ($name:expr) => { ((repeat_u8_as_u32!($name) as u64) << 32 |
525 (repeat_u8_as_u32!($name) as u64)) }
526}
527
528// NOTE: Keep synchronized with values used in librustc_trans::trans::adt.
529//
530// In particular, the POST_DROP_U8 marker must never equal the
531// DTOR_NEEDED_U8 marker.
532//
533// For a while pnkfelix was using 0xc1 here.
534// But having the sign bit set is a pain, so 0x1d is probably better.
535//
536// And of course, 0x00 brings back the old world of zero'ing on drop.
e9174d1e 537#[unstable(feature = "filling_drop", issue = "5016")]
c1a9b12d 538#[allow(missing_docs)]
c34b1796 539pub const POST_DROP_U8: u8 = 0x1d;
e9174d1e 540#[unstable(feature = "filling_drop", issue = "5016")]
c1a9b12d 541#[allow(missing_docs)]
c34b1796 542pub const POST_DROP_U32: u32 = repeat_u8_as_u32!(POST_DROP_U8);
e9174d1e 543#[unstable(feature = "filling_drop", issue = "5016")]
c1a9b12d 544#[allow(missing_docs)]
c34b1796
AL
545pub const POST_DROP_U64: u64 = repeat_u8_as_u64!(POST_DROP_U8);
546
547#[cfg(target_pointer_width = "32")]
e9174d1e 548#[unstable(feature = "filling_drop", issue = "5016")]
c1a9b12d 549#[allow(missing_docs)]
c34b1796
AL
550pub const POST_DROP_USIZE: usize = POST_DROP_U32 as usize;
551#[cfg(target_pointer_width = "64")]
e9174d1e 552#[unstable(feature = "filling_drop", issue = "5016")]
c1a9b12d 553#[allow(missing_docs)]
c34b1796
AL
554pub const POST_DROP_USIZE: usize = POST_DROP_U64 as usize;
555
556/// Interprets `src` as `&U`, and then reads `src` without moving the contained
557/// value.
1a4d82fc 558///
c34b1796
AL
559/// This function will unsafely assume the pointer `src` is valid for
560/// `sizeof(U)` bytes by transmuting `&T` to `&U` and then reading the `&U`. It
561/// will also unsafely create a copy of the contained value instead of moving
562/// out of `src`.
1a4d82fc 563///
c34b1796
AL
564/// It is not a compile-time error if `T` and `U` have different sizes, but it
565/// is highly encouraged to only invoke this function where `T` and `U` have the
566/// same size. This function triggers undefined behavior if `U` is larger than
567/// `T`.
1a4d82fc
JJ
568///
569/// # Examples
570///
571/// ```
572/// use std::mem;
573///
7453a54e
SL
574/// #[repr(packed)]
575/// struct Foo {
576/// bar: u8,
577/// }
578///
579/// let foo_slice = [10u8];
580///
581/// unsafe {
582/// // Copy the data from 'foo_slice' and treat it as a 'Foo'
583/// let mut foo_struct: Foo = mem::transmute_copy(&foo_slice);
584/// assert_eq!(foo_struct.bar, 10);
585///
586/// // Modify the copied data
587/// foo_struct.bar = 20;
588/// assert_eq!(foo_struct.bar, 20);
589/// }
1a4d82fc 590///
7453a54e
SL
591/// // The contents of 'foo_slice' should not have changed
592/// assert_eq!(foo_slice, [10]);
1a4d82fc
JJ
593/// ```
594#[inline]
85aaf69f 595#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
596pub unsafe fn transmute_copy<T, U>(src: &T) -> U {
597 ptr::read(src as *const T as *const U)
598}