]> git.proxmox.com Git - rustc.git/blame - src/libcore/mem.rs
Imported Upstream version 1.2.0+dfsg1
[rustc.git] / src / libcore / mem.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! Basic functions for dealing with memory
12//!
13//! This module contains functions for querying the size and alignment of
14//! types, initializing and manipulating memory.
15
85aaf69f 16#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
17
18use marker::Sized;
19use intrinsics;
20use ptr;
21
85aaf69f 22#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
23pub use intrinsics::transmute;
24
bd371182
AL
25/// Leaks a value into the void, consuming ownership and never running its
26/// destructor.
1a4d82fc 27///
bd371182
AL
28/// This function will take ownership of its argument, but is distinct from the
29/// `mem::drop` function in that it **does not run the destructor**, leaking the
30/// value and any resources that it owns.
1a4d82fc 31///
bd371182
AL
32/// # Safety
33///
34/// This function is not marked as `unsafe` as Rust does not guarantee that the
35/// `Drop` implementation for a value will always run. Note, however, that
36/// leaking resources such as memory or I/O objects is likely not desired, so
37/// this function is only recommended for specialized use cases.
38///
39/// The safety of this function implies that when writing `unsafe` code
40/// yourself care must be taken when leveraging a destructor that is required to
41/// run to preserve memory safety. There are known situations where the
42/// destructor may not run (such as if ownership of the object with the
43/// destructor is returned) which must be taken into account.
44///
45/// # Other forms of Leakage
46///
47/// It's important to point out that this function is not the only method by
48/// which a value can be leaked in safe Rust code. Other known sources of
49/// leakage are:
50///
51/// * `Rc` and `Arc` cycles
52/// * `mpsc::{Sender, Receiver}` cycles (they use `Arc` internally)
53/// * Panicking destructors are likely to leak local resources
54///
62682a34
SL
55/// # When To Use
56///
57/// There's only a few reasons to use this function. They mainly come
58/// up in unsafe code or FFI code.
59///
60/// * You have an uninitialized value, perhaps for performance reasons, and
61/// need to prevent the destructor from running on it.
62/// * You have two copies of a value (like `std::mem::swap`), but need the
63/// destructor to only run once to prevent a double free.
64/// * Transferring resources across FFI boundries.
65///
bd371182
AL
66/// # Example
67///
62682a34
SL
68/// Leak some heap memory by never deallocating it.
69///
70/// ```rust
bd371182 71/// use std::mem;
bd371182 72///
bd371182
AL
73/// let heap_memory = Box::new(3);
74/// mem::forget(heap_memory);
62682a34
SL
75/// ```
76///
77/// Leak an I/O object, never closing the file.
78///
79/// ```rust,no_run
80/// use std::mem;
81/// use std::fs::File;
bd371182 82///
bd371182
AL
83/// let file = File::open("foo.txt").unwrap();
84/// mem::forget(file);
85/// ```
62682a34
SL
86///
87/// The swap function uses forget to good effect.
88///
89/// ```rust
90/// use std::mem;
91/// use std::ptr;
92///
93/// fn swap<T>(x: &mut T, y: &mut T) {
94/// unsafe {
95/// // Give ourselves some scratch space to work with
96/// let mut t: T = mem::uninitialized();
97///
98/// // Perform the swap, `&mut` pointers never alias
99/// ptr::copy_nonoverlapping(&*x, &mut t, 1);
100/// ptr::copy_nonoverlapping(&*y, x, 1);
101/// ptr::copy_nonoverlapping(&t, y, 1);
102///
103/// // y and t now point to the same thing, but we need to completely
104/// // forget `t` because we do not want to run the destructor for `T`
105/// // on its value, which is still owned somewhere outside this function.
106/// mem::forget(t);
107/// }
108/// }
109/// ```
85aaf69f 110#[stable(feature = "rust1", since = "1.0.0")]
bd371182
AL
111pub fn forget<T>(t: T) {
112 unsafe { intrinsics::forget(t) }
113}
1a4d82fc
JJ
114
115/// Returns the size of a type in bytes.
116///
117/// # Examples
118///
119/// ```
120/// use std::mem;
121///
122/// assert_eq!(4, mem::size_of::<i32>());
123/// ```
124#[inline]
85aaf69f
SL
125#[stable(feature = "rust1", since = "1.0.0")]
126pub fn size_of<T>() -> usize {
1a4d82fc
JJ
127 unsafe { intrinsics::size_of::<T>() }
128}
129
d9579d0f
AL
130/// Returns the size of the type that `val` points to in bytes.
131///
132/// # Examples
133///
134/// ```
135/// use std::mem;
136///
137/// assert_eq!(4, mem::size_of_val(&5i32));
138/// ```
d9579d0f
AL
139#[inline]
140#[stable(feature = "rust1", since = "1.0.0")]
141pub fn size_of_val<T: ?Sized>(val: &T) -> usize {
142 unsafe { intrinsics::size_of_val(val) }
143}
144
1a4d82fc
JJ
145/// Returns the ABI-required minimum alignment of a type
146///
147/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
148///
149/// # Examples
150///
151/// ```
152/// use std::mem;
153///
154/// assert_eq!(4, mem::min_align_of::<i32>());
155/// ```
156#[inline]
85aaf69f 157#[stable(feature = "rust1", since = "1.0.0")]
62682a34 158#[deprecated(reason = "use `align_of` instead", since = "1.2.0")]
85aaf69f 159pub fn min_align_of<T>() -> usize {
1a4d82fc
JJ
160 unsafe { intrinsics::min_align_of::<T>() }
161}
162
d9579d0f
AL
163/// Returns the ABI-required minimum alignment of the type of the value that `val` points to
164///
165/// # Examples
166///
167/// ```
168/// use std::mem;
169///
170/// assert_eq!(4, mem::min_align_of_val(&5i32));
171/// ```
d9579d0f
AL
172#[inline]
173#[stable(feature = "rust1", since = "1.0.0")]
62682a34 174#[deprecated(reason = "use `align_of_val` instead", since = "1.2.0")]
d9579d0f
AL
175pub fn min_align_of_val<T: ?Sized>(val: &T) -> usize {
176 unsafe { intrinsics::min_align_of_val(val) }
177}
178
1a4d82fc
JJ
179/// Returns the alignment in memory for a type.
180///
62682a34 181/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
1a4d82fc
JJ
182///
183/// # Examples
184///
185/// ```
186/// use std::mem;
187///
188/// assert_eq!(4, mem::align_of::<i32>());
189/// ```
190#[inline]
85aaf69f
SL
191#[stable(feature = "rust1", since = "1.0.0")]
192pub fn align_of<T>() -> usize {
62682a34 193 unsafe { intrinsics::min_align_of::<T>() }
1a4d82fc
JJ
194}
195
62682a34 196/// Returns the ABI-required minimum alignment of the type of the value that `val` points to
1a4d82fc
JJ
197///
198/// # Examples
199///
200/// ```
201/// use std::mem;
202///
203/// assert_eq!(4, mem::align_of_val(&5i32));
204/// ```
205#[inline]
85aaf69f 206#[stable(feature = "rust1", since = "1.0.0")]
62682a34
SL
207pub fn align_of_val<T: ?Sized>(val: &T) -> usize {
208 unsafe { intrinsics::min_align_of_val(val) }
1a4d82fc
JJ
209}
210
9346a6ac 211/// Creates a value initialized to zero.
1a4d82fc
JJ
212///
213/// This function is similar to allocating space for a local variable and zeroing it out (an unsafe
214/// operation).
215///
216/// Care must be taken when using this function, if the type `T` has a destructor and the value
217/// falls out of scope (due to unwinding or returning) before being initialized, then the
218/// destructor will run on zeroed data, likely leading to crashes.
219///
220/// This is useful for FFI functions sometimes, but should generally be avoided.
221///
222/// # Examples
223///
224/// ```
225/// use std::mem;
226///
85aaf69f 227/// let x: i32 = unsafe { mem::zeroed() };
1a4d82fc
JJ
228/// ```
229#[inline]
85aaf69f 230#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
231pub unsafe fn zeroed<T>() -> T {
232 intrinsics::init()
233}
234
9346a6ac 235/// Creates a value initialized to an unspecified series of bytes.
c34b1796
AL
236///
237/// The byte sequence usually indicates that the value at the memory
238/// in question has been dropped. Thus, *if* T carries a drop flag,
239/// any associated destructor will not be run when the value falls out
240/// of scope.
241///
242/// Some code at one time used the `zeroed` function above to
243/// accomplish this goal.
244///
245/// This function is expected to be deprecated with the transition
246/// to non-zeroing drop.
247#[inline]
248#[unstable(feature = "filling_drop")]
249pub unsafe fn dropped<T>() -> T {
250 #[inline(always)]
251 unsafe fn dropped_impl<T>() -> T { intrinsics::init_dropped() }
252
253 dropped_impl()
254}
255
9346a6ac 256/// Creates an uninitialized value.
1a4d82fc
JJ
257///
258/// Care must be taken when using this function, if the type `T` has a destructor and the value
259/// falls out of scope (due to unwinding or returning) before being initialized, then the
260/// destructor will run on uninitialized data, likely leading to crashes.
261///
262/// This is useful for FFI functions sometimes, but should generally be avoided.
263///
264/// # Examples
265///
266/// ```
267/// use std::mem;
268///
85aaf69f 269/// let x: i32 = unsafe { mem::uninitialized() };
1a4d82fc
JJ
270/// ```
271#[inline]
85aaf69f 272#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
273pub unsafe fn uninitialized<T>() -> T {
274 intrinsics::uninit()
275}
276
277/// Swap the values at two mutable locations of the same type, without deinitialising or copying
278/// either one.
279///
280/// # Examples
281///
282/// ```
283/// use std::mem;
284///
85aaf69f
SL
285/// let x = &mut 5;
286/// let y = &mut 42;
1a4d82fc
JJ
287///
288/// mem::swap(x, y);
289///
85aaf69f
SL
290/// assert_eq!(42, *x);
291/// assert_eq!(5, *y);
1a4d82fc
JJ
292/// ```
293#[inline]
85aaf69f 294#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
295pub fn swap<T>(x: &mut T, y: &mut T) {
296 unsafe {
297 // Give ourselves some scratch space to work with
298 let mut t: T = uninitialized();
299
300 // Perform the swap, `&mut` pointers never alias
c34b1796
AL
301 ptr::copy_nonoverlapping(&*x, &mut t, 1);
302 ptr::copy_nonoverlapping(&*y, x, 1);
303 ptr::copy_nonoverlapping(&t, y, 1);
1a4d82fc 304
62682a34
SL
305 // y and t now point to the same thing, but we need to completely
306 // forget `t` because we do not want to run the destructor for `T`
307 // on its value, which is still owned somewhere outside this function.
1a4d82fc
JJ
308 forget(t);
309 }
310}
311
9346a6ac 312/// Replaces the value at a mutable location with a new one, returning the old value, without
1a4d82fc
JJ
313/// deinitialising or copying either one.
314///
315/// This is primarily used for transferring and swapping ownership of a value in a mutable
316/// location.
317///
318/// # Examples
319///
320/// A simple example:
321///
322/// ```
323/// use std::mem;
324///
325/// let mut v: Vec<i32> = Vec::new();
326///
327/// mem::replace(&mut v, Vec::new());
328/// ```
329///
330/// This function allows consumption of one field of a struct by replacing it with another value.
331/// The normal approach doesn't always work:
332///
333/// ```rust,ignore
334/// struct Buffer<T> { buf: Vec<T> }
335///
336/// impl<T> Buffer<T> {
337/// fn get_and_reset(&mut self) -> Vec<T> {
338/// // error: cannot move out of dereference of `&mut`-pointer
339/// let buf = self.buf;
340/// self.buf = Vec::new();
341/// buf
342/// }
343/// }
344/// ```
345///
346/// Note that `T` does not necessarily implement `Clone`, so it can't even clone and reset
347/// `self.buf`. But `replace` can be used to disassociate the original value of `self.buf` from
348/// `self`, allowing it to be returned:
349///
c34b1796 350/// ```
1a4d82fc
JJ
351/// use std::mem;
352/// # struct Buffer<T> { buf: Vec<T> }
353/// impl<T> Buffer<T> {
354/// fn get_and_reset(&mut self) -> Vec<T> {
355/// mem::replace(&mut self.buf, Vec::new())
356/// }
357/// }
358/// ```
359#[inline]
85aaf69f 360#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
361pub fn replace<T>(dest: &mut T, mut src: T) -> T {
362 swap(dest, &mut src);
363 src
364}
365
366/// Disposes of a value.
367///
368/// This function can be used to destroy any value by allowing `drop` to take ownership of its
369/// argument.
370///
371/// # Examples
372///
373/// ```
374/// use std::cell::RefCell;
375///
85aaf69f 376/// let x = RefCell::new(1);
1a4d82fc
JJ
377///
378/// let mut mutable_borrow = x.borrow_mut();
379/// *mutable_borrow = 1;
380///
381/// drop(mutable_borrow); // relinquish the mutable borrow on this slot
382///
383/// let borrow = x.borrow();
384/// println!("{}", *borrow);
385/// ```
386#[inline]
85aaf69f 387#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
388pub fn drop<T>(_x: T) { }
389
c34b1796
AL
390macro_rules! repeat_u8_as_u32 {
391 ($name:expr) => { (($name as u32) << 24 |
392 ($name as u32) << 16 |
393 ($name as u32) << 8 |
394 ($name as u32)) }
395}
396macro_rules! repeat_u8_as_u64 {
397 ($name:expr) => { ((repeat_u8_as_u32!($name) as u64) << 32 |
398 (repeat_u8_as_u32!($name) as u64)) }
399}
400
401// NOTE: Keep synchronized with values used in librustc_trans::trans::adt.
402//
403// In particular, the POST_DROP_U8 marker must never equal the
404// DTOR_NEEDED_U8 marker.
405//
406// For a while pnkfelix was using 0xc1 here.
407// But having the sign bit set is a pain, so 0x1d is probably better.
408//
409// And of course, 0x00 brings back the old world of zero'ing on drop.
410#[unstable(feature = "filling_drop")]
411pub const POST_DROP_U8: u8 = 0x1d;
412#[unstable(feature = "filling_drop")]
413pub const POST_DROP_U32: u32 = repeat_u8_as_u32!(POST_DROP_U8);
414#[unstable(feature = "filling_drop")]
415pub const POST_DROP_U64: u64 = repeat_u8_as_u64!(POST_DROP_U8);
416
417#[cfg(target_pointer_width = "32")]
418#[unstable(feature = "filling_drop")]
419pub const POST_DROP_USIZE: usize = POST_DROP_U32 as usize;
420#[cfg(target_pointer_width = "64")]
421#[unstable(feature = "filling_drop")]
422pub const POST_DROP_USIZE: usize = POST_DROP_U64 as usize;
423
424/// Interprets `src` as `&U`, and then reads `src` without moving the contained
425/// value.
1a4d82fc 426///
c34b1796
AL
427/// This function will unsafely assume the pointer `src` is valid for
428/// `sizeof(U)` bytes by transmuting `&T` to `&U` and then reading the `&U`. It
429/// will also unsafely create a copy of the contained value instead of moving
430/// out of `src`.
1a4d82fc 431///
c34b1796
AL
432/// It is not a compile-time error if `T` and `U` have different sizes, but it
433/// is highly encouraged to only invoke this function where `T` and `U` have the
434/// same size. This function triggers undefined behavior if `U` is larger than
435/// `T`.
1a4d82fc
JJ
436///
437/// # Examples
438///
439/// ```
440/// use std::mem;
441///
85aaf69f 442/// let one = unsafe { mem::transmute_copy(&1) };
1a4d82fc 443///
85aaf69f 444/// assert_eq!(1, one);
1a4d82fc
JJ
445/// ```
446#[inline]
85aaf69f 447#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 448pub unsafe fn transmute_copy<T, U>(src: &T) -> U {
c34b1796
AL
449 // FIXME(#23542) Replace with type ascription.
450 #![allow(trivial_casts)]
1a4d82fc
JJ
451 ptr::read(src as *const T as *const U)
452}
453
454/// Transforms lifetime of the second pointer to match the first.
455#[inline]
62682a34 456#[unstable(feature = "copy_lifetime",
85aaf69f
SL
457 reason = "this function may be removed in the future due to its \
458 questionable utility")]
62682a34
SL
459#[deprecated(since = "1.2.0",
460 reason = "unclear that this function buys more safety and \
461 lifetimes are generally not handled as such in unsafe \
462 code today")]
1a4d82fc
JJ
463pub unsafe fn copy_lifetime<'a, S: ?Sized, T: ?Sized + 'a>(_ptr: &'a S,
464 ptr: &T) -> &'a T {
465 transmute(ptr)
466}
467
468/// Transforms lifetime of the second mutable pointer to match the first.
469#[inline]
62682a34 470#[unstable(feature = "copy_lifetime",
85aaf69f
SL
471 reason = "this function may be removed in the future due to its \
472 questionable utility")]
62682a34
SL
473#[deprecated(since = "1.2.0",
474 reason = "unclear that this function buys more safety and \
475 lifetimes are generally not handled as such in unsafe \
476 code today")]
85aaf69f
SL
477pub unsafe fn copy_mut_lifetime<'a, S: ?Sized, T: ?Sized + 'a>(_ptr: &'a S,
478 ptr: &mut T)
479 -> &'a mut T
480{
1a4d82fc
JJ
481 transmute(ptr)
482}