]> git.proxmox.com Git - rustc.git/blame - src/libcore/num/f64.rs
New upstream version 1.41.1+dfsg1
[rustc.git] / src / libcore / num / f64.rs
CommitLineData
ff7c6d11
XL
1//! This module provides constants which are specific to the implementation
2//! of the `f64` floating point data type.
3//!
ff7c6d11 4//! *[See also the `f64` primitive type](../../std/primitive.f64.html).*
94b46f34
XL
5//!
6//! Mathematically significant numbers are provided in the `consts` sub-module.
1a4d82fc 7
85aaf69f 8#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 9
60c5eb7d
XL
10#[cfg(not(bootstrap))]
11use crate::convert::FloatToInt;
dc9dc135
XL
12#[cfg(not(test))]
13use crate::intrinsics;
48663c56
XL
14use crate::mem;
15use crate::num::FpCategory;
1a4d82fc 16
5bcae85e 17/// The radix or base of the internal representation of `f64`.
c34b1796
AL
18#[stable(feature = "rust1", since = "1.0.0")]
19pub const RADIX: u32 = 2;
1a4d82fc 20
5bcae85e 21/// Number of significant digits in base 2.
c34b1796
AL
22#[stable(feature = "rust1", since = "1.0.0")]
23pub const MANTISSA_DIGITS: u32 = 53;
5bcae85e 24/// Approximate number of significant digits in base 10.
c34b1796
AL
25#[stable(feature = "rust1", since = "1.0.0")]
26pub const DIGITS: u32 = 15;
1a4d82fc 27
94b46f34
XL
28/// [Machine epsilon] value for `f64`.
29///
60c5eb7d 30/// This is the difference between `1.0` and the next larger representable number.
94b46f34
XL
31///
32/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
85aaf69f 33#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
34pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
35
5bcae85e 36/// Smallest finite `f64` value.
85aaf69f
SL
37#[stable(feature = "rust1", since = "1.0.0")]
38pub const MIN: f64 = -1.7976931348623157e+308_f64;
5bcae85e 39/// Smallest positive normal `f64` value.
85aaf69f
SL
40#[stable(feature = "rust1", since = "1.0.0")]
41pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
5bcae85e 42/// Largest finite `f64` value.
85aaf69f
SL
43#[stable(feature = "rust1", since = "1.0.0")]
44pub const MAX: f64 = 1.7976931348623157e+308_f64;
45
5bcae85e 46/// One greater than the minimum possible normal power of 2 exponent.
c34b1796
AL
47#[stable(feature = "rust1", since = "1.0.0")]
48pub const MIN_EXP: i32 = -1021;
5bcae85e 49/// Maximum possible power of 2 exponent.
c34b1796
AL
50#[stable(feature = "rust1", since = "1.0.0")]
51pub const MAX_EXP: i32 = 1024;
1a4d82fc 52
5bcae85e 53/// Minimum possible normal power of 10 exponent.
c34b1796
AL
54#[stable(feature = "rust1", since = "1.0.0")]
55pub const MIN_10_EXP: i32 = -307;
5bcae85e 56/// Maximum possible power of 10 exponent.
c34b1796
AL
57#[stable(feature = "rust1", since = "1.0.0")]
58pub const MAX_10_EXP: i32 = 308;
1a4d82fc 59
5bcae85e 60/// Not a Number (NaN).
85aaf69f 61#[stable(feature = "rust1", since = "1.0.0")]
c30ab7b3 62pub const NAN: f64 = 0.0_f64 / 0.0_f64;
5bcae85e 63/// Infinity (∞).
85aaf69f 64#[stable(feature = "rust1", since = "1.0.0")]
c30ab7b3 65pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
5bcae85e 66/// Negative infinity (-∞).
85aaf69f 67#[stable(feature = "rust1", since = "1.0.0")]
c30ab7b3 68pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
1a4d82fc 69
b039eaaf 70/// Basic mathematical constants.
c34b1796 71#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
72pub mod consts {
73 // FIXME: replace with mathematical constants from cmath.
74
5bcae85e 75 /// Archimedes' constant (π)
c34b1796 76 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
77 pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
78
60c5eb7d
XL
79 /// The full circle constant (τ)
80 ///
81 /// Equal to 2π.
82 #[unstable(feature = "tau_constant", issue = "66770")]
83 pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
84
5bcae85e 85 /// π/2
c34b1796 86 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
87 pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
88
5bcae85e 89 /// π/3
c34b1796 90 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
91 pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
92
5bcae85e 93 /// π/4
c34b1796 94 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
95 pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
96
5bcae85e 97 /// π/6
c34b1796 98 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
99 pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
100
5bcae85e 101 /// π/8
c34b1796 102 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
103 pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
104
5bcae85e 105 /// 1/π
c34b1796 106 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
107 pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
108
5bcae85e 109 /// 2/π
c34b1796 110 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
111 pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
112
5bcae85e 113 /// 2/sqrt(π)
c34b1796
AL
114 #[stable(feature = "rust1", since = "1.0.0")]
115 pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
116
5bcae85e 117 /// sqrt(2)
c34b1796
AL
118 #[stable(feature = "rust1", since = "1.0.0")]
119 pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
120
5bcae85e 121 /// 1/sqrt(2)
c34b1796
AL
122 #[stable(feature = "rust1", since = "1.0.0")]
123 pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
124
5bcae85e 125 /// Euler's number (e)
c34b1796 126 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
127 pub const E: f64 = 2.71828182845904523536028747135266250_f64;
128
94b46f34
XL
129 /// log<sub>2</sub>(10)
130 #[unstable(feature = "extra_log_consts", issue = "50540")]
131 pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
132
5bcae85e 133 /// log<sub>2</sub>(e)
c34b1796 134 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
135 pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
136
94b46f34
XL
137 /// log<sub>10</sub>(2)
138 #[unstable(feature = "extra_log_consts", issue = "50540")]
139 pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
140
5bcae85e 141 /// log<sub>10</sub>(e)
c34b1796 142 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
143 pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
144
5bcae85e 145 /// ln(2)
c34b1796 146 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
147 pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
148
5bcae85e 149 /// ln(10)
c34b1796 150 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
151 pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
152}
153
94b46f34
XL
154#[lang = "f64"]
155#[cfg(not(test))]
156impl f64 {
9fa01778 157 /// Returns `true` if this value is `NaN`.
83c7162d
XL
158 ///
159 /// ```
160 /// use std::f64;
161 ///
162 /// let nan = f64::NAN;
163 /// let f = 7.0_f64;
164 ///
165 /// assert!(nan.is_nan());
166 /// assert!(!f.is_nan());
167 /// ```
168 #[stable(feature = "rust1", since = "1.0.0")]
169 #[inline]
94b46f34
XL
170 pub fn is_nan(self) -> bool {
171 self != self
172 }
83c7162d 173
0731742a
XL
174 // FIXME(#50145): `abs` is publicly unavailable in libcore due to
175 // concerns about portability, so this implementation is for
176 // private use internally.
177 #[inline]
178 fn abs_private(self) -> f64 {
179 f64::from_bits(self.to_bits() & 0x7fff_ffff_ffff_ffff)
180 }
181
9fa01778
XL
182 /// Returns `true` if this value is positive infinity or negative infinity, and
183 /// `false` otherwise.
83c7162d
XL
184 ///
185 /// ```
186 /// use std::f64;
187 ///
188 /// let f = 7.0f64;
189 /// let inf = f64::INFINITY;
190 /// let neg_inf = f64::NEG_INFINITY;
191 /// let nan = f64::NAN;
192 ///
193 /// assert!(!f.is_infinite());
194 /// assert!(!nan.is_infinite());
195 ///
196 /// assert!(inf.is_infinite());
197 /// assert!(neg_inf.is_infinite());
198 /// ```
199 #[stable(feature = "rust1", since = "1.0.0")]
200 #[inline]
94b46f34 201 pub fn is_infinite(self) -> bool {
0731742a 202 self.abs_private() == INFINITY
94b46f34 203 }
83c7162d
XL
204
205 /// Returns `true` if this number is neither infinite nor `NaN`.
206 ///
207 /// ```
208 /// use std::f64;
209 ///
210 /// let f = 7.0f64;
211 /// let inf: f64 = f64::INFINITY;
212 /// let neg_inf: f64 = f64::NEG_INFINITY;
213 /// let nan: f64 = f64::NAN;
214 ///
215 /// assert!(f.is_finite());
216 ///
217 /// assert!(!nan.is_finite());
218 /// assert!(!inf.is_finite());
219 /// assert!(!neg_inf.is_finite());
220 /// ```
221 #[stable(feature = "rust1", since = "1.0.0")]
222 #[inline]
94b46f34 223 pub fn is_finite(self) -> bool {
0731742a
XL
224 // There's no need to handle NaN separately: if self is NaN,
225 // the comparison is not true, exactly as desired.
226 self.abs_private() < INFINITY
94b46f34 227 }
83c7162d
XL
228
229 /// Returns `true` if the number is neither zero, infinite,
230 /// [subnormal][subnormal], or `NaN`.
231 ///
232 /// ```
233 /// use std::f64;
234 ///
235 /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
236 /// let max = f64::MAX;
237 /// let lower_than_min = 1.0e-308_f64;
238 /// let zero = 0.0f64;
239 ///
240 /// assert!(min.is_normal());
241 /// assert!(max.is_normal());
242 ///
243 /// assert!(!zero.is_normal());
244 /// assert!(!f64::NAN.is_normal());
245 /// assert!(!f64::INFINITY.is_normal());
246 /// // Values between `0` and `min` are Subnormal.
247 /// assert!(!lower_than_min.is_normal());
248 /// ```
249 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
250 #[stable(feature = "rust1", since = "1.0.0")]
251 #[inline]
94b46f34
XL
252 pub fn is_normal(self) -> bool {
253 self.classify() == FpCategory::Normal
254 }
83c7162d
XL
255
256 /// Returns the floating point category of the number. If only one property
257 /// is going to be tested, it is generally faster to use the specific
258 /// predicate instead.
259 ///
260 /// ```
261 /// use std::num::FpCategory;
262 /// use std::f64;
263 ///
264 /// let num = 12.4_f64;
265 /// let inf = f64::INFINITY;
266 ///
267 /// assert_eq!(num.classify(), FpCategory::Normal);
268 /// assert_eq!(inf.classify(), FpCategory::Infinite);
269 /// ```
270 #[stable(feature = "rust1", since = "1.0.0")]
94b46f34
XL
271 pub fn classify(self) -> FpCategory {
272 const EXP_MASK: u64 = 0x7ff0000000000000;
273 const MAN_MASK: u64 = 0x000fffffffffffff;
274
275 let bits = self.to_bits();
276 match (bits & MAN_MASK, bits & EXP_MASK) {
277 (0, 0) => FpCategory::Zero,
278 (_, 0) => FpCategory::Subnormal,
279 (0, EXP_MASK) => FpCategory::Infinite,
280 (_, EXP_MASK) => FpCategory::Nan,
281 _ => FpCategory::Normal,
282 }
283 }
83c7162d 284
9fa01778 285 /// Returns `true` if `self` has a positive sign, including `+0.0`, `NaN`s with
83c7162d
XL
286 /// positive sign bit and positive infinity.
287 ///
288 /// ```
289 /// let f = 7.0_f64;
290 /// let g = -7.0_f64;
291 ///
292 /// assert!(f.is_sign_positive());
293 /// assert!(!g.is_sign_positive());
294 /// ```
295 #[stable(feature = "rust1", since = "1.0.0")]
296 #[inline]
94b46f34
XL
297 pub fn is_sign_positive(self) -> bool {
298 !self.is_sign_negative()
299 }
83c7162d
XL
300
301 #[stable(feature = "rust1", since = "1.0.0")]
302 #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_positive")]
303 #[inline]
304 #[doc(hidden)]
94b46f34
XL
305 pub fn is_positive(self) -> bool {
306 self.is_sign_positive()
307 }
83c7162d 308
9fa01778 309 /// Returns `true` if `self` has a negative sign, including `-0.0`, `NaN`s with
83c7162d
XL
310 /// negative sign bit and negative infinity.
311 ///
312 /// ```
313 /// let f = 7.0_f64;
314 /// let g = -7.0_f64;
315 ///
316 /// assert!(!f.is_sign_negative());
317 /// assert!(g.is_sign_negative());
318 /// ```
319 #[stable(feature = "rust1", since = "1.0.0")]
320 #[inline]
94b46f34
XL
321 pub fn is_sign_negative(self) -> bool {
322 self.to_bits() & 0x8000_0000_0000_0000 != 0
323 }
83c7162d
XL
324
325 #[stable(feature = "rust1", since = "1.0.0")]
326 #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_negative")]
327 #[inline]
328 #[doc(hidden)]
94b46f34
XL
329 pub fn is_negative(self) -> bool {
330 self.is_sign_negative()
331 }
83c7162d
XL
332
333 /// Takes the reciprocal (inverse) of a number, `1/x`.
334 ///
335 /// ```
336 /// let x = 2.0_f64;
e1599b0c 337 /// let abs_difference = (x.recip() - (1.0 / x)).abs();
83c7162d
XL
338 ///
339 /// assert!(abs_difference < 1e-10);
340 /// ```
341 #[stable(feature = "rust1", since = "1.0.0")]
342 #[inline]
94b46f34
XL
343 pub fn recip(self) -> f64 {
344 1.0 / self
345 }
83c7162d
XL
346
347 /// Converts radians to degrees.
348 ///
349 /// ```
350 /// use std::f64::consts;
351 ///
352 /// let angle = consts::PI;
353 ///
354 /// let abs_difference = (angle.to_degrees() - 180.0).abs();
355 ///
356 /// assert!(abs_difference < 1e-10);
357 /// ```
358 #[stable(feature = "rust1", since = "1.0.0")]
359 #[inline]
94b46f34
XL
360 pub fn to_degrees(self) -> f64 {
361 // The division here is correctly rounded with respect to the true
362 // value of 180/π. (This differs from f32, where a constant must be
363 // used to ensure a correctly rounded result.)
364 self * (180.0f64 / consts::PI)
365 }
83c7162d
XL
366
367 /// Converts degrees to radians.
368 ///
369 /// ```
370 /// use std::f64::consts;
371 ///
372 /// let angle = 180.0_f64;
373 ///
374 /// let abs_difference = (angle.to_radians() - consts::PI).abs();
375 ///
376 /// assert!(abs_difference < 1e-10);
377 /// ```
378 #[stable(feature = "rust1", since = "1.0.0")]
379 #[inline]
94b46f34
XL
380 pub fn to_radians(self) -> f64 {
381 let value: f64 = consts::PI;
382 self * (value / 180.0)
383 }
83c7162d
XL
384
385 /// Returns the maximum of the two numbers.
386 ///
387 /// ```
388 /// let x = 1.0_f64;
389 /// let y = 2.0_f64;
390 ///
391 /// assert_eq!(x.max(y), y);
392 /// ```
393 ///
394 /// If one of the arguments is NaN, then the other argument is returned.
395 #[stable(feature = "rust1", since = "1.0.0")]
396 #[inline]
397 pub fn max(self, other: f64) -> f64 {
dc9dc135 398 intrinsics::maxnumf64(self, other)
83c7162d
XL
399 }
400
401 /// Returns the minimum of the two numbers.
402 ///
403 /// ```
404 /// let x = 1.0_f64;
405 /// let y = 2.0_f64;
406 ///
407 /// assert_eq!(x.min(y), x);
408 /// ```
409 ///
410 /// If one of the arguments is NaN, then the other argument is returned.
411 #[stable(feature = "rust1", since = "1.0.0")]
412 #[inline]
413 pub fn min(self, other: f64) -> f64 {
dc9dc135 414 intrinsics::minnumf64(self, other)
83c7162d
XL
415 }
416
60c5eb7d
XL
417 /// Rounds toward zero and converts to any primitive integer type,
418 /// assuming that the value is finite and fits in that type.
419 ///
420 /// ```
421 /// #![feature(float_approx_unchecked_to)]
422 ///
423 /// let value = 4.6_f32;
424 /// let rounded = unsafe { value.approx_unchecked_to::<u16>() };
425 /// assert_eq!(rounded, 4);
426 ///
427 /// let value = -128.9_f32;
428 /// let rounded = unsafe { value.approx_unchecked_to::<i8>() };
429 /// assert_eq!(rounded, std::i8::MIN);
430 /// ```
431 ///
432 /// # Safety
433 ///
434 /// The value must:
435 ///
436 /// * Not be `NaN`
437 /// * Not be infinite
438 /// * Be representable in the return type `Int`, after truncating off its fractional part
439 #[cfg(not(bootstrap))]
440 #[unstable(feature = "float_approx_unchecked_to", issue = "67058")]
441 #[inline]
442 pub unsafe fn approx_unchecked_to<Int>(self) -> Int
443 where
444 Self: FloatToInt<Int>,
445 {
446 FloatToInt::<Int>::approx_unchecked(self)
447 }
448
83c7162d
XL
449 /// Raw transmutation to `u64`.
450 ///
451 /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
452 ///
453 /// See `from_bits` for some discussion of the portability of this operation
454 /// (there are almost no issues).
455 ///
456 /// Note that this function is distinct from `as` casting, which attempts to
457 /// preserve the *numeric* value, and not the bitwise value.
458 ///
459 /// # Examples
460 ///
461 /// ```
462 /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
463 /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
464 ///
465 /// ```
466 #[stable(feature = "float_bits_conv", since = "1.20.0")]
467 #[inline]
468 pub fn to_bits(self) -> u64 {
60c5eb7d 469 // SAFETY: `u64` is a plain old datatype so we can always transmute to it
94b46f34 470 unsafe { mem::transmute(self) }
83c7162d
XL
471 }
472
473 /// Raw transmutation from `u64`.
474 ///
475 /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
476 /// It turns out this is incredibly portable, for two reasons:
477 ///
478 /// * Floats and Ints have the same endianness on all supported platforms.
479 /// * IEEE-754 very precisely specifies the bit layout of floats.
480 ///
481 /// However there is one caveat: prior to the 2008 version of IEEE-754, how
482 /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
483 /// (notably x86 and ARM) picked the interpretation that was ultimately
484 /// standardized in 2008, but some didn't (notably MIPS). As a result, all
485 /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
486 ///
487 /// Rather than trying to preserve signaling-ness cross-platform, this
488 /// implementation favours preserving the exact bits. This means that
489 /// any payloads encoded in NaNs will be preserved even if the result of
490 /// this method is sent over the network from an x86 machine to a MIPS one.
491 ///
492 /// If the results of this method are only manipulated by the same
493 /// architecture that produced them, then there is no portability concern.
494 ///
495 /// If the input isn't NaN, then there is no portability concern.
496 ///
497 /// If you don't care about signalingness (very likely), then there is no
498 /// portability concern.
499 ///
500 /// Note that this function is distinct from `as` casting, which attempts to
501 /// preserve the *numeric* value, and not the bitwise value.
502 ///
503 /// # Examples
504 ///
505 /// ```
83c7162d 506 /// let v = f64::from_bits(0x4029000000000000);
416331ca 507 /// assert_eq!(v, 12.5);
83c7162d
XL
508 /// ```
509 #[stable(feature = "float_bits_conv", since = "1.20.0")]
510 #[inline]
511 pub fn from_bits(v: u64) -> Self {
60c5eb7d 512 // SAFETY: `u64` is a plain old datatype so we can always transmute from it
94b46f34
XL
513 // It turns out the safety issues with sNaN were overblown! Hooray!
514 unsafe { mem::transmute(v) }
83c7162d 515 }
416331ca
XL
516
517 /// Return the memory representation of this floating point number as a byte array in
518 /// big-endian (network) byte order.
519 ///
520 /// # Examples
521 ///
522 /// ```
416331ca
XL
523 /// let bytes = 12.5f64.to_be_bytes();
524 /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
525 /// ```
e74abb32 526 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
416331ca
XL
527 #[inline]
528 pub fn to_be_bytes(self) -> [u8; 8] {
529 self.to_bits().to_be_bytes()
530 }
531
532 /// Return the memory representation of this floating point number as a byte array in
533 /// little-endian byte order.
534 ///
535 /// # Examples
536 ///
537 /// ```
416331ca
XL
538 /// let bytes = 12.5f64.to_le_bytes();
539 /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
540 /// ```
e74abb32 541 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
416331ca
XL
542 #[inline]
543 pub fn to_le_bytes(self) -> [u8; 8] {
544 self.to_bits().to_le_bytes()
545 }
546
547 /// Return the memory representation of this floating point number as a byte array in
548 /// native byte order.
549 ///
550 /// As the target platform's native endianness is used, portable code
551 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
552 ///
553 /// [`to_be_bytes`]: #method.to_be_bytes
554 /// [`to_le_bytes`]: #method.to_le_bytes
555 ///
556 /// # Examples
557 ///
558 /// ```
416331ca
XL
559 /// let bytes = 12.5f64.to_ne_bytes();
560 /// assert_eq!(
561 /// bytes,
562 /// if cfg!(target_endian = "big") {
563 /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
564 /// } else {
565 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
566 /// }
567 /// );
568 /// ```
e74abb32 569 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
416331ca
XL
570 #[inline]
571 pub fn to_ne_bytes(self) -> [u8; 8] {
572 self.to_bits().to_ne_bytes()
573 }
574
575 /// Create a floating point value from its representation as a byte array in big endian.
576 ///
577 /// # Examples
578 ///
579 /// ```
416331ca
XL
580 /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
581 /// assert_eq!(value, 12.5);
582 /// ```
e74abb32 583 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
416331ca
XL
584 #[inline]
585 pub fn from_be_bytes(bytes: [u8; 8]) -> Self {
586 Self::from_bits(u64::from_be_bytes(bytes))
587 }
588
589 /// Create a floating point value from its representation as a byte array in little endian.
590 ///
591 /// # Examples
592 ///
593 /// ```
416331ca
XL
594 /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
595 /// assert_eq!(value, 12.5);
596 /// ```
e74abb32 597 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
416331ca
XL
598 #[inline]
599 pub fn from_le_bytes(bytes: [u8; 8]) -> Self {
600 Self::from_bits(u64::from_le_bytes(bytes))
601 }
602
603 /// Create a floating point value from its representation as a byte array in native endian.
604 ///
605 /// As the target platform's native endianness is used, portable code
606 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
607 /// appropriate instead.
608 ///
609 /// [`from_be_bytes`]: #method.from_be_bytes
610 /// [`from_le_bytes`]: #method.from_le_bytes
611 ///
612 /// # Examples
613 ///
614 /// ```
416331ca
XL
615 /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
616 /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
617 /// } else {
618 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
619 /// });
620 /// assert_eq!(value, 12.5);
621 /// ```
e74abb32 622 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
416331ca
XL
623 #[inline]
624 pub fn from_ne_bytes(bytes: [u8; 8]) -> Self {
625 Self::from_bits(u64::from_ne_bytes(bytes))
626 }
83c7162d 627}