]> git.proxmox.com Git - rustc.git/blame - src/librustc/infer/combine.rs
New upstream version 1.12.0+dfsg1
[rustc.git] / src / librustc / infer / combine.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11///////////////////////////////////////////////////////////////////////////
12// # Type combining
13//
14// There are four type combiners: equate, sub, lub, and glb. Each
15// implements the trait `Combine` and contains methods for combining
16// two instances of various things and yielding a new instance. These
17// combiner methods always yield a `Result<T>`. There is a lot of
18// common code for these operations, implemented as default methods on
19// the `Combine` trait.
20//
21// Each operation may have side-effects on the inference context,
22// though these can be unrolled using snapshots. On success, the
23// LUB/GLB operations return the appropriate bound. The Eq and Sub
24// operations generally return the first operand.
25//
26// ## Contravariance
27//
28// When you are relating two things which have a contravariant
29// relationship, you should use `contratys()` or `contraregions()`,
30// rather than inversing the order of arguments! This is necessary
31// because the order of arguments is not relevant for LUB and GLB. It
32// is also useful to track which value is the "expected" value in
33// terms of error reporting.
34
85aaf69f 35use super::bivariate::Bivariate;
1a4d82fc
JJ
36use super::equate::Equate;
37use super::glb::Glb;
38use super::lub::Lub;
39use super::sub::Sub;
54a0048b 40use super::InferCtxt;
1a4d82fc 41use super::{MiscVariable, TypeTrace};
85aaf69f 42use super::type_variable::{RelationDir, BiTo, EqTo, SubtypeOf, SupertypeOf};
1a4d82fc 43
54a0048b
SL
44use ty::{IntType, UintType};
45use ty::{self, Ty, TyCtxt};
46use ty::error::TypeError;
a7813a04
XL
47use ty::fold::TypeFoldable;
48use ty::relate::{RelateResult, TypeRelation};
54a0048b 49use traits::PredicateObligations;
1a4d82fc 50
b039eaaf 51use syntax::ast;
3157f602 52use syntax_pos::Span;
1a4d82fc 53
1a4d82fc 54#[derive(Clone)]
5bcae85e
SL
55pub struct CombineFields<'infcx, 'gcx: 'infcx+'tcx, 'tcx: 'infcx> {
56 pub infcx: &'infcx InferCtxt<'infcx, 'gcx, 'tcx>,
1a4d82fc 57 pub trace: TypeTrace<'tcx>,
e9174d1e 58 pub cause: Option<ty::relate::Cause>,
54a0048b 59 pub obligations: PredicateObligations<'tcx>,
1a4d82fc
JJ
60}
61
5bcae85e 62impl<'infcx, 'gcx, 'tcx> InferCtxt<'infcx, 'gcx, 'tcx> {
a7813a04
XL
63 pub fn super_combine_tys<R>(&self,
64 relation: &mut R,
65 a: Ty<'tcx>,
66 b: Ty<'tcx>)
67 -> RelateResult<'tcx, Ty<'tcx>>
5bcae85e 68 where R: TypeRelation<'infcx, 'gcx, 'tcx>
a7813a04
XL
69 {
70 let a_is_expected = relation.a_is_expected();
1a4d82fc 71
a7813a04
XL
72 match (&a.sty, &b.sty) {
73 // Relate integral variables to other types
74 (&ty::TyInfer(ty::IntVar(a_id)), &ty::TyInfer(ty::IntVar(b_id))) => {
75 self.int_unification_table
76 .borrow_mut()
77 .unify_var_var(a_id, b_id)
78 .map_err(|e| int_unification_error(a_is_expected, e))?;
79 Ok(a)
80 }
81 (&ty::TyInfer(ty::IntVar(v_id)), &ty::TyInt(v)) => {
82 self.unify_integral_variable(a_is_expected, v_id, IntType(v))
83 }
84 (&ty::TyInt(v), &ty::TyInfer(ty::IntVar(v_id))) => {
85 self.unify_integral_variable(!a_is_expected, v_id, IntType(v))
86 }
87 (&ty::TyInfer(ty::IntVar(v_id)), &ty::TyUint(v)) => {
88 self.unify_integral_variable(a_is_expected, v_id, UintType(v))
89 }
90 (&ty::TyUint(v), &ty::TyInfer(ty::IntVar(v_id))) => {
91 self.unify_integral_variable(!a_is_expected, v_id, UintType(v))
92 }
1a4d82fc 93
a7813a04
XL
94 // Relate floating-point variables to other types
95 (&ty::TyInfer(ty::FloatVar(a_id)), &ty::TyInfer(ty::FloatVar(b_id))) => {
96 self.float_unification_table
97 .borrow_mut()
98 .unify_var_var(a_id, b_id)
99 .map_err(|e| float_unification_error(relation.a_is_expected(), e))?;
100 Ok(a)
101 }
102 (&ty::TyInfer(ty::FloatVar(v_id)), &ty::TyFloat(v)) => {
103 self.unify_float_variable(a_is_expected, v_id, v)
104 }
105 (&ty::TyFloat(v), &ty::TyInfer(ty::FloatVar(v_id))) => {
106 self.unify_float_variable(!a_is_expected, v_id, v)
107 }
1a4d82fc 108
a7813a04
XL
109 // All other cases of inference are errors
110 (&ty::TyInfer(_), _) |
111 (_, &ty::TyInfer(_)) => {
112 Err(TypeError::Sorts(ty::relate::expected_found(relation, &a, &b)))
113 }
1a4d82fc 114
1a4d82fc 115
a7813a04
XL
116 _ => {
117 ty::relate::super_relate_tys(relation, a, b)
118 }
1a4d82fc
JJ
119 }
120 }
121
a7813a04
XL
122 fn unify_integral_variable(&self,
123 vid_is_expected: bool,
124 vid: ty::IntVid,
125 val: ty::IntVarValue)
126 -> RelateResult<'tcx, Ty<'tcx>>
127 {
128 self.int_unification_table
129 .borrow_mut()
130 .unify_var_value(vid, val)
131 .map_err(|e| int_unification_error(vid_is_expected, e))?;
132 match val {
133 IntType(v) => Ok(self.tcx.mk_mach_int(v)),
134 UintType(v) => Ok(self.tcx.mk_mach_uint(v)),
135 }
1a4d82fc 136 }
1a4d82fc 137
a7813a04
XL
138 fn unify_float_variable(&self,
139 vid_is_expected: bool,
140 vid: ty::FloatVid,
141 val: ast::FloatTy)
142 -> RelateResult<'tcx, Ty<'tcx>>
143 {
144 self.float_unification_table
145 .borrow_mut()
146 .unify_var_value(vid, val)
147 .map_err(|e| float_unification_error(vid_is_expected, e))?;
148 Ok(self.tcx.mk_mach_float(val))
149 }
c34b1796
AL
150}
151
5bcae85e
SL
152impl<'infcx, 'gcx, 'tcx> CombineFields<'infcx, 'gcx, 'tcx> {
153 pub fn tcx(&self) -> TyCtxt<'infcx, 'gcx, 'tcx> {
c34b1796
AL
154 self.infcx.tcx
155 }
156
5bcae85e
SL
157 pub fn equate<'a>(&'a mut self, a_is_expected: bool) -> Equate<'a, 'infcx, 'gcx, 'tcx> {
158 Equate::new(self, a_is_expected)
1a4d82fc
JJ
159 }
160
5bcae85e
SL
161 pub fn bivariate<'a>(&'a mut self, a_is_expected: bool) -> Bivariate<'a, 'infcx, 'gcx, 'tcx> {
162 Bivariate::new(self, a_is_expected)
85aaf69f
SL
163 }
164
5bcae85e
SL
165 pub fn sub<'a>(&'a mut self, a_is_expected: bool) -> Sub<'a, 'infcx, 'gcx, 'tcx> {
166 Sub::new(self, a_is_expected)
c34b1796
AL
167 }
168
5bcae85e
SL
169 pub fn lub<'a>(&'a mut self, a_is_expected: bool) -> Lub<'a, 'infcx, 'gcx, 'tcx> {
170 Lub::new(self, a_is_expected)
c34b1796
AL
171 }
172
5bcae85e
SL
173 pub fn glb<'a>(&'a mut self, a_is_expected: bool) -> Glb<'a, 'infcx, 'gcx, 'tcx> {
174 Glb::new(self, a_is_expected)
1a4d82fc
JJ
175 }
176
5bcae85e 177 pub fn instantiate(&mut self,
1a4d82fc
JJ
178 a_ty: Ty<'tcx>,
179 dir: RelationDir,
5bcae85e
SL
180 b_vid: ty::TyVid,
181 a_is_expected: bool)
c34b1796 182 -> RelateResult<'tcx, ()>
1a4d82fc 183 {
1a4d82fc
JJ
184 let mut stack = Vec::new();
185 stack.push((a_ty, dir, b_vid));
186 loop {
187 // For each turn of the loop, we extract a tuple
188 //
189 // (a_ty, dir, b_vid)
190 //
191 // to relate. Here dir is either SubtypeOf or
192 // SupertypeOf. The idea is that we should ensure that
193 // the type `a_ty` is a subtype or supertype (respectively) of the
194 // type to which `b_vid` is bound.
195 //
196 // If `b_vid` has not yet been instantiated with a type
197 // (which is always true on the first iteration, but not
198 // necessarily true on later iterations), we will first
199 // instantiate `b_vid` with a *generalized* version of
200 // `a_ty`. Generalization introduces other inference
201 // variables wherever subtyping could occur (at time of
202 // this writing, this means replacing free regions with
203 // region variables).
204 let (a_ty, dir, b_vid) = match stack.pop() {
205 None => break,
206 Some(e) => e,
207 };
54a0048b
SL
208 // Get the actual variable that b_vid has been inferred to
209 let (b_vid, b_ty) = {
210 let mut variables = self.infcx.type_variables.borrow_mut();
211 let b_vid = variables.root_var(b_vid);
212 (b_vid, variables.probe_root(b_vid))
213 };
1a4d82fc 214
62682a34
SL
215 debug!("instantiate(a_ty={:?} dir={:?} b_vid={:?})",
216 a_ty,
1a4d82fc 217 dir,
62682a34 218 b_vid);
1a4d82fc
JJ
219
220 // Check whether `vid` has been instantiated yet. If not,
221 // make a generalized form of `ty` and instantiate with
222 // that.
1a4d82fc
JJ
223 let b_ty = match b_ty {
224 Some(t) => t, // ...already instantiated.
225 None => { // ...not yet instantiated:
226 // Generalize type if necessary.
54a0048b 227 let generalized_ty = match dir {
c34b1796
AL
228 EqTo => self.generalize(a_ty, b_vid, false),
229 BiTo | SupertypeOf | SubtypeOf => self.generalize(a_ty, b_vid, true),
54a0048b 230 }?;
62682a34
SL
231 debug!("instantiate(a_ty={:?}, dir={:?}, \
232 b_vid={:?}, generalized_ty={:?})",
233 a_ty, dir, b_vid,
234 generalized_ty);
1a4d82fc
JJ
235 self.infcx.type_variables
236 .borrow_mut()
237 .instantiate_and_push(
238 b_vid, generalized_ty, &mut stack);
239 generalized_ty
240 }
241 };
242
243 // The original triple was `(a_ty, dir, b_vid)` -- now we have
244 // resolved `b_vid` to `b_ty`, so apply `(a_ty, dir, b_ty)`:
245 //
246 // FIXME(#16847): This code is non-ideal because all these subtype
247 // relations wind up attributed to the same spans. We need
248 // to associate causes/spans with each of the relations in
249 // the stack to get this right.
54a0048b 250 match dir {
5bcae85e
SL
251 BiTo => self.bivariate(a_is_expected).relate(&a_ty, &b_ty),
252 EqTo => self.equate(a_is_expected).relate(&a_ty, &b_ty),
253 SubtypeOf => self.sub(a_is_expected).relate(&a_ty, &b_ty),
254 SupertypeOf => self.sub(a_is_expected).relate_with_variance(
255 ty::Contravariant, &a_ty, &b_ty),
54a0048b 256 }?;
1a4d82fc
JJ
257 }
258
259 Ok(())
260 }
261
262 /// Attempts to generalize `ty` for the type variable `for_vid`. This checks for cycle -- that
263 /// is, whether the type `ty` references `for_vid`. If `make_region_vars` is true, it will also
62682a34 264 /// replace all regions with fresh variables. Returns `TyError` in the case of a cycle, `Ok`
1a4d82fc
JJ
265 /// otherwise.
266 fn generalize(&self,
267 ty: Ty<'tcx>,
268 for_vid: ty::TyVid,
269 make_region_vars: bool)
c34b1796 270 -> RelateResult<'tcx, Ty<'tcx>>
1a4d82fc 271 {
c34b1796
AL
272 let mut generalize = Generalizer {
273 infcx: self.infcx,
274 span: self.trace.origin.span(),
275 for_vid: for_vid,
276 make_region_vars: make_region_vars,
277 cycle_detected: false
278 };
1a4d82fc
JJ
279 let u = ty.fold_with(&mut generalize);
280 if generalize.cycle_detected {
c1a9b12d 281 Err(TypeError::CyclicTy)
1a4d82fc
JJ
282 } else {
283 Ok(u)
284 }
285 }
286}
287
a7813a04
XL
288struct Generalizer<'cx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
289 infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
1a4d82fc
JJ
290 span: Span,
291 for_vid: ty::TyVid,
292 make_region_vars: bool,
293 cycle_detected: bool,
294}
295
a7813a04
XL
296impl<'cx, 'gcx, 'tcx> ty::fold::TypeFolder<'gcx, 'tcx> for Generalizer<'cx, 'gcx, 'tcx> {
297 fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx> {
1a4d82fc
JJ
298 self.infcx.tcx
299 }
300
301 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
302 // Check to see whether the type we are genealizing references
303 // `vid`. At the same time, also update any type variables to
304 // the values that they are bound to. This is needed to truly
305 // check for cycles, but also just makes things readable.
306 //
307 // (In particular, you could have something like `$0 = Box<$1>`
308 // where `$1` has already been instantiated with `Box<$0>`)
309 match t.sty {
62682a34 310 ty::TyInfer(ty::TyVar(vid)) => {
54a0048b
SL
311 let mut variables = self.infcx.type_variables.borrow_mut();
312 let vid = variables.root_var(vid);
1a4d82fc
JJ
313 if vid == self.for_vid {
314 self.cycle_detected = true;
315 self.tcx().types.err
316 } else {
54a0048b
SL
317 match variables.probe_root(vid) {
318 Some(u) => {
319 drop(variables);
320 self.fold_ty(u)
321 }
1a4d82fc
JJ
322 None => t,
323 }
324 }
325 }
326 _ => {
9cc50fc6 327 t.super_fold_with(self)
1a4d82fc
JJ
328 }
329 }
330 }
331
332 fn fold_region(&mut self, r: ty::Region) -> ty::Region {
333 match r {
3157f602
XL
334 // Never make variables for regions bound within the type itself,
335 // nor for erased regions.
336 ty::ReLateBound(..) |
337 ty::ReErased => { return r; }
1a4d82fc
JJ
338
339 // Early-bound regions should really have been substituted away before
340 // we get to this point.
341 ty::ReEarlyBound(..) => {
54a0048b 342 span_bug!(
1a4d82fc 343 self.span,
54a0048b
SL
344 "Encountered early bound region when generalizing: {:?}",
345 r);
1a4d82fc
JJ
346 }
347
348 // Always make a fresh region variable for skolemized regions;
349 // the higher-ranked decision procedures rely on this.
e9174d1e 350 ty::ReSkolemized(..) => { }
1a4d82fc
JJ
351
352 // For anything else, we make a region variable, unless we
353 // are *equating*, in which case it's just wasteful.
354 ty::ReEmpty |
355 ty::ReStatic |
356 ty::ReScope(..) |
e9174d1e 357 ty::ReVar(..) |
1a4d82fc
JJ
358 ty::ReFree(..) => {
359 if !self.make_region_vars {
360 return r;
361 }
362 }
363 }
364
365 // FIXME: This is non-ideal because we don't give a
366 // very descriptive origin for this region variable.
367 self.infcx.next_region_var(MiscVariable(self.span))
368 }
369}
c34b1796
AL
370
371pub trait RelateResultCompare<'tcx, T> {
372 fn compare<F>(&self, t: T, f: F) -> RelateResult<'tcx, T> where
e9174d1e 373 F: FnOnce() -> TypeError<'tcx>;
c34b1796
AL
374}
375
376impl<'tcx, T:Clone + PartialEq> RelateResultCompare<'tcx, T> for RelateResult<'tcx, T> {
377 fn compare<F>(&self, t: T, f: F) -> RelateResult<'tcx, T> where
e9174d1e 378 F: FnOnce() -> TypeError<'tcx>,
c34b1796
AL
379 {
380 self.clone().and_then(|s| {
381 if s == t {
382 self.clone()
383 } else {
384 Err(f())
385 }
386 })
387 }
388}
389
390fn int_unification_error<'tcx>(a_is_expected: bool, v: (ty::IntVarValue, ty::IntVarValue))
e9174d1e 391 -> TypeError<'tcx>
c34b1796
AL
392{
393 let (a, b) = v;
e9174d1e 394 TypeError::IntMismatch(ty::relate::expected_found_bool(a_is_expected, &a, &b))
c34b1796
AL
395}
396
397fn float_unification_error<'tcx>(a_is_expected: bool,
b039eaaf 398 v: (ast::FloatTy, ast::FloatTy))
e9174d1e 399 -> TypeError<'tcx>
c34b1796
AL
400{
401 let (a, b) = v;
e9174d1e 402 TypeError::FloatMismatch(ty::relate::expected_found_bool(a_is_expected, &a, &b))
c34b1796 403}