]> git.proxmox.com Git - rustc.git/blame - src/librustc/middle/liveness.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / librustc / middle / liveness.rs
CommitLineData
1a4d82fc 1// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
223e47cc
LB
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
1a4d82fc
JJ
11//! A classic liveness analysis based on dataflow over the AST. Computes,
12//! for each local variable in a function, whether that variable is live
13//! at a given point. Program execution points are identified by their
14//! id.
15//!
16//! # Basic idea
17//!
18//! The basic model is that each local variable is assigned an index. We
19//! represent sets of local variables using a vector indexed by this
20//! index. The value in the vector is either 0, indicating the variable
21//! is dead, or the id of an expression that uses the variable.
22//!
23//! We conceptually walk over the AST in reverse execution order. If we
24//! find a use of a variable, we add it to the set of live variables. If
25//! we find an assignment to a variable, we remove it from the set of live
26//! variables. When we have to merge two flows, we take the union of
27//! those two flows---if the variable is live on both paths, we simply
28//! pick one id. In the event of loops, we continue doing this until a
29//! fixed point is reached.
30//!
31//! ## Checking initialization
32//!
33//! At the function entry point, all variables must be dead. If this is
34//! not the case, we can report an error using the id found in the set of
35//! live variables, which identifies a use of the variable which is not
36//! dominated by an assignment.
37//!
38//! ## Checking moves
39//!
40//! After each explicit move, the variable must be dead.
41//!
42//! ## Computing last uses
43//!
44//! Any use of the variable where the variable is dead afterwards is a
45//! last use.
46//!
47//! # Implementation details
48//!
49//! The actual implementation contains two (nested) walks over the AST.
50//! The outer walk has the job of building up the ir_maps instance for the
51//! enclosing function. On the way down the tree, it identifies those AST
52//! nodes and variable IDs that will be needed for the liveness analysis
53//! and assigns them contiguous IDs. The liveness id for an AST node is
c34b1796
AL
54//! called a `live_node` (it's a newtype'd usize) and the id for a variable
55//! is called a `variable` (another newtype'd usize).
1a4d82fc
JJ
56//!
57//! On the way back up the tree, as we are about to exit from a function
58//! declaration we allocate a `liveness` instance. Now that we know
59//! precisely how many nodes and variables we need, we can allocate all
60//! the various arrays that we will need to precisely the right size. We then
61//! perform the actual propagation on the `liveness` instance.
62//!
63//! This propagation is encoded in the various `propagate_through_*()`
64//! methods. It effectively does a reverse walk of the AST; whenever we
65//! reach a loop node, we iterate until a fixed point is reached.
66//!
67//! ## The `Users` struct
68//!
69//! At each live node `N`, we track three pieces of information for each
70//! variable `V` (these are encapsulated in the `Users` struct):
71//!
72//! - `reader`: the `LiveNode` ID of some node which will read the value
73//! that `V` holds on entry to `N`. Formally: a node `M` such
74//! that there exists a path `P` from `N` to `M` where `P` does not
75//! write `V`. If the `reader` is `invalid_node()`, then the current
76//! value will never be read (the variable is dead, essentially).
77//!
78//! - `writer`: the `LiveNode` ID of some node which will write the
79//! variable `V` and which is reachable from `N`. Formally: a node `M`
80//! such that there exists a path `P` from `N` to `M` and `M` writes
81//! `V`. If the `writer` is `invalid_node()`, then there is no writer
82//! of `V` that follows `N`.
83//!
84//! - `used`: a boolean value indicating whether `V` is *used*. We
85//! distinguish a *read* from a *use* in that a *use* is some read that
86//! is not just used to generate a new value. For example, `x += 1` is
87//! a read but not a use. This is used to generate better warnings.
88//!
89//! ## Special Variables
90//!
91//! We generate various special variables for various, well, special purposes.
92//! These are described in the `specials` struct:
93//!
94//! - `exit_ln`: a live node that is generated to represent every 'exit' from
95//! the function, whether it be by explicit return, panic, or other means.
96//!
97//! - `fallthrough_ln`: a live node that represents a fallthrough
98//!
99//! - `no_ret_var`: a synthetic variable that is only 'read' from, the
100//! fallthrough node. This allows us to detect functions where we fail
101//! to return explicitly.
102//! - `clean_exit_var`: a synthetic variable that is only 'read' from the
103//! fallthrough node. It is only live if the function could converge
104//! via means other than an explicit `return` expression. That is, it is
105//! only dead if the end of the function's block can never be reached.
106//! It is the responsibility of typeck to ensure that there are no
107//! `return` expressions in a function declared as diverging.
108use self::LoopKind::*;
109use self::LiveNodeKind::*;
110use self::VarKind::*;
111
7453a54e 112use dep_graph::DepNode;
54a0048b
SL
113use hir::def::*;
114use hir::pat_util;
115use ty::{self, TyCtxt, ParameterEnvironment};
116use traits::{self, ProjectionMode};
117use infer;
118use ty::subst::Subst;
1a4d82fc
JJ
119use lint;
120use util::nodemap::NodeMap;
121
c34b1796
AL
122use std::{fmt, usize};
123use std::io::prelude::*;
124use std::io;
c34b1796 125use std::rc::Rc;
e9174d1e 126use syntax::ast::{self, NodeId};
1a4d82fc 127use syntax::codemap::{BytePos, original_sp, Span};
c1a9b12d 128use syntax::parse::token::special_idents;
1a4d82fc 129use syntax::ptr::P;
e9174d1e 130
54a0048b
SL
131use hir::Expr;
132use hir;
133use hir::print::{expr_to_string, block_to_string};
134use hir::intravisit::{self, Visitor, FnKind};
1a4d82fc
JJ
135
136/// For use with `propagate_through_loop`.
137enum LoopKind<'a> {
138 /// An endless `loop` loop.
139 LoopLoop,
140 /// A `while` loop, with the given expression as condition.
141 WhileLoop(&'a Expr),
1a4d82fc
JJ
142}
143
c34b1796
AL
144#[derive(Copy, Clone, PartialEq)]
145struct Variable(usize);
1a4d82fc
JJ
146
147#[derive(Copy, PartialEq)]
c34b1796 148struct LiveNode(usize);
223e47cc 149
1a4d82fc 150impl Variable {
c34b1796 151 fn get(&self) -> usize { let Variable(v) = *self; v }
1a4d82fc
JJ
152}
153
154impl LiveNode {
c34b1796 155 fn get(&self) -> usize { let LiveNode(v) = *self; v }
1a4d82fc
JJ
156}
157
158impl Clone for LiveNode {
159 fn clone(&self) -> LiveNode {
160 LiveNode(self.get())
161 }
162}
163
c34b1796 164#[derive(Copy, Clone, PartialEq, Debug)]
223e47cc 165enum LiveNodeKind {
1a4d82fc
JJ
166 FreeVarNode(Span),
167 ExprNode(Span),
168 VarDefNode(Span),
223e47cc
LB
169 ExitNode
170}
171
54a0048b 172fn live_node_kind_to_string(lnk: LiveNodeKind, cx: &TyCtxt) -> String {
1a4d82fc 173 let cm = cx.sess.codemap();
223e47cc 174 match lnk {
1a4d82fc
JJ
175 FreeVarNode(s) => {
176 format!("Free var node [{}]", cm.span_to_string(s))
177 }
178 ExprNode(s) => {
179 format!("Expr node [{}]", cm.span_to_string(s))
180 }
181 VarDefNode(s) => {
182 format!("Var def node [{}]", cm.span_to_string(s))
183 }
184 ExitNode => "Exit node".to_string(),
223e47cc
LB
185 }
186}
187
1a4d82fc 188impl<'a, 'tcx, 'v> Visitor<'v> for IrMaps<'a, 'tcx> {
e9174d1e
SL
189 fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v hir::FnDecl,
190 b: &'v hir::Block, s: Span, id: NodeId) {
1a4d82fc
JJ
191 visit_fn(self, fk, fd, b, s, id);
192 }
e9174d1e 193 fn visit_local(&mut self, l: &hir::Local) { visit_local(self, l); }
1a4d82fc 194 fn visit_expr(&mut self, ex: &Expr) { visit_expr(self, ex); }
e9174d1e 195 fn visit_arm(&mut self, a: &hir::Arm) { visit_arm(self, a); }
1a4d82fc 196}
223e47cc 197
54a0048b 198pub fn check_crate(tcx: &TyCtxt) {
7453a54e 199 let _task = tcx.dep_graph.in_task(DepNode::Liveness);
92a42be0 200 tcx.map.krate().visit_all_items(&mut IrMaps::new(tcx));
223e47cc 201 tcx.sess.abort_if_errors();
223e47cc
LB
202}
203
85aaf69f 204impl fmt::Debug for LiveNode {
1a4d82fc
JJ
205 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
206 write!(f, "ln({})", self.get())
207 }
223e47cc
LB
208}
209
85aaf69f 210impl fmt::Debug for Variable {
1a4d82fc
JJ
211 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
212 write!(f, "v({})", self.get())
213 }
223e47cc
LB
214}
215
216// ______________________________________________________________________
217// Creating ir_maps
218//
219// This is the first pass and the one that drives the main
220// computation. It walks up and down the IR once. On the way down,
221// we count for each function the number of variables as well as
222// liveness nodes. A liveness node is basically an expression or
223// capture clause that does something of interest: either it has
224// interesting control flow or it uses/defines a local variable.
225//
226// On the way back up, at each function node we create liveness sets
227// (we now know precisely how big to make our various vectors and so
228// forth) and then do the data-flow propagation to compute the set
229// of live variables at each program point.
230//
231// Finally, we run back over the IR one last time and, using the
232// computed liveness, check various safety conditions. For example,
233// there must be no live nodes at the definition site for a variable
234// unless it has an initializer. Similarly, each non-mutable local
235// variable must not be assigned if there is some successor
236// assignment. And so forth.
237
970d7e83 238impl LiveNode {
1a4d82fc 239 fn is_valid(&self) -> bool {
c34b1796 240 self.get() != usize::MAX
970d7e83 241 }
223e47cc
LB
242}
243
c34b1796 244fn invalid_node() -> LiveNode { LiveNode(usize::MAX) }
223e47cc
LB
245
246struct CaptureInfo {
247 ln: LiveNode,
1a4d82fc 248 var_nid: NodeId
223e47cc
LB
249}
250
c34b1796 251#[derive(Copy, Clone, Debug)]
223e47cc 252struct LocalInfo {
1a4d82fc 253 id: NodeId,
9346a6ac 254 name: ast::Name
223e47cc
LB
255}
256
c34b1796 257#[derive(Copy, Clone, Debug)]
223e47cc 258enum VarKind {
9346a6ac 259 Arg(NodeId, ast::Name),
223e47cc 260 Local(LocalInfo),
1a4d82fc
JJ
261 ImplicitRet,
262 CleanExit
223e47cc
LB
263}
264
1a4d82fc 265struct IrMaps<'a, 'tcx: 'a> {
54a0048b 266 tcx: &'a TyCtxt<'tcx>,
223e47cc 267
c34b1796
AL
268 num_live_nodes: usize,
269 num_vars: usize,
1a4d82fc
JJ
270 live_node_map: NodeMap<LiveNode>,
271 variable_map: NodeMap<Variable>,
272 capture_info_map: NodeMap<Rc<Vec<CaptureInfo>>>,
273 var_kinds: Vec<VarKind>,
274 lnks: Vec<LiveNodeKind>,
223e47cc
LB
275}
276
1a4d82fc 277impl<'a, 'tcx> IrMaps<'a, 'tcx> {
54a0048b 278 fn new(tcx: &'a TyCtxt<'tcx>) -> IrMaps<'a, 'tcx> {
1a4d82fc
JJ
279 IrMaps {
280 tcx: tcx,
281 num_live_nodes: 0,
282 num_vars: 0,
85aaf69f
SL
283 live_node_map: NodeMap(),
284 variable_map: NodeMap(),
285 capture_info_map: NodeMap(),
1a4d82fc
JJ
286 var_kinds: Vec::new(),
287 lnks: Vec::new(),
288 }
223e47cc 289 }
223e47cc 290
1a4d82fc 291 fn add_live_node(&mut self, lnk: LiveNodeKind) -> LiveNode {
223e47cc
LB
292 let ln = LiveNode(self.num_live_nodes);
293 self.lnks.push(lnk);
294 self.num_live_nodes += 1;
295
1a4d82fc
JJ
296 debug!("{:?} is of kind {}", ln,
297 live_node_kind_to_string(lnk, self.tcx));
223e47cc
LB
298
299 ln
300 }
301
1a4d82fc 302 fn add_live_node_for_node(&mut self, node_id: NodeId, lnk: LiveNodeKind) {
223e47cc
LB
303 let ln = self.add_live_node(lnk);
304 self.live_node_map.insert(node_id, ln);
305
1a4d82fc 306 debug!("{:?} is node {}", ln, node_id);
223e47cc
LB
307 }
308
1a4d82fc 309 fn add_variable(&mut self, vk: VarKind) -> Variable {
223e47cc
LB
310 let v = Variable(self.num_vars);
311 self.var_kinds.push(vk);
312 self.num_vars += 1;
313
314 match vk {
1a4d82fc 315 Local(LocalInfo { id: node_id, .. }) | Arg(node_id, _) => {
223e47cc 316 self.variable_map.insert(node_id, v);
970d7e83 317 },
1a4d82fc 318 ImplicitRet | CleanExit => {}
223e47cc
LB
319 }
320
1a4d82fc 321 debug!("{:?} is {:?}", v, vk);
223e47cc
LB
322
323 v
324 }
325
1a4d82fc
JJ
326 fn variable(&self, node_id: NodeId, span: Span) -> Variable {
327 match self.variable_map.get(&node_id) {
54a0048b
SL
328 Some(&var) => var,
329 None => {
330 span_bug!(span, "no variable registered for id {}", node_id);
331 }
223e47cc
LB
332 }
333 }
334
1a4d82fc
JJ
335 fn variable_name(&self, var: Variable) -> String {
336 match self.var_kinds[var.get()] {
9346a6ac 337 Local(LocalInfo { name, .. }) | Arg(_, name) => {
c1a9b12d 338 name.to_string()
970d7e83 339 },
1a4d82fc
JJ
340 ImplicitRet => "<implicit-ret>".to_string(),
341 CleanExit => "<clean-exit>".to_string()
223e47cc
LB
342 }
343 }
344
1a4d82fc
JJ
345 fn set_captures(&mut self, node_id: NodeId, cs: Vec<CaptureInfo>) {
346 self.capture_info_map.insert(node_id, Rc::new(cs));
223e47cc
LB
347 }
348
1a4d82fc
JJ
349 fn lnk(&self, ln: LiveNode) -> LiveNodeKind {
350 self.lnks[ln.get()]
223e47cc 351 }
1a4d82fc 352}
223e47cc 353
1a4d82fc 354impl<'a, 'tcx, 'v> Visitor<'v> for Liveness<'a, 'tcx> {
e9174d1e
SL
355 fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v hir::FnDecl,
356 b: &'v hir::Block, s: Span, n: NodeId) {
1a4d82fc
JJ
357 check_fn(self, fk, fd, b, s, n);
358 }
e9174d1e 359 fn visit_local(&mut self, l: &hir::Local) {
1a4d82fc
JJ
360 check_local(self, l);
361 }
362 fn visit_expr(&mut self, ex: &Expr) {
363 check_expr(self, ex);
364 }
e9174d1e 365 fn visit_arm(&mut self, a: &hir::Arm) {
1a4d82fc 366 check_arm(self, a);
223e47cc 367 }
223e47cc
LB
368}
369
1a4d82fc
JJ
370fn visit_fn(ir: &mut IrMaps,
371 fk: FnKind,
e9174d1e
SL
372 decl: &hir::FnDecl,
373 body: &hir::Block,
1a4d82fc
JJ
374 sp: Span,
375 id: ast::NodeId) {
376 debug!("visit_fn");
223e47cc
LB
377
378 // swap in a new set of IR maps for this function body:
1a4d82fc 379 let mut fn_maps = IrMaps::new(ir.tcx);
223e47cc 380
1a4d82fc 381 debug!("creating fn_maps: {:?}", &fn_maps as *const IrMaps);
223e47cc 382
85aaf69f 383 for arg in &decl.inputs {
1a4d82fc 384 pat_util::pat_bindings(&ir.tcx.def_map,
7453a54e 385 &arg.pat,
1a4d82fc
JJ
386 |_bm, arg_id, _x, path1| {
387 debug!("adding argument {}", arg_id);
b039eaaf 388 let name = path1.node;
9346a6ac 389 fn_maps.add_variable(Arg(arg_id, name));
1a4d82fc 390 })
223e47cc
LB
391 };
392
223e47cc
LB
393 // gather up the various local variables, significant expressions,
394 // and so forth:
92a42be0 395 intravisit::walk_fn(&mut fn_maps, fk, decl, body, sp);
223e47cc
LB
396
397 // Special nodes and variables:
1a4d82fc 398 // - exit_ln represents the end of the fn, either by return or panic
223e47cc
LB
399 // - implicit_ret_var is a pseudo-variable that represents
400 // an implicit return
401 let specials = Specials {
402 exit_ln: fn_maps.add_live_node(ExitNode),
403 fallthrough_ln: fn_maps.add_live_node(ExitNode),
1a4d82fc
JJ
404 no_ret_var: fn_maps.add_variable(ImplicitRet),
405 clean_exit_var: fn_maps.add_variable(CleanExit)
223e47cc
LB
406 };
407
408 // compute liveness
1a4d82fc
JJ
409 let mut lsets = Liveness::new(&mut fn_maps, specials);
410 let entry_ln = lsets.compute(decl, body);
223e47cc
LB
411
412 // check for various error conditions
1a4d82fc
JJ
413 lsets.visit_block(body);
414 lsets.check_ret(id, sp, fk, entry_ln, body);
223e47cc
LB
415 lsets.warn_about_unused_args(decl, entry_ln);
416}
417
e9174d1e 418fn visit_local(ir: &mut IrMaps, local: &hir::Local) {
7453a54e 419 pat_util::pat_bindings(&ir.tcx.def_map, &local.pat, |_, p_id, sp, path1| {
1a4d82fc 420 debug!("adding local variable {}", p_id);
b039eaaf 421 let name = path1.node;
1a4d82fc
JJ
422 ir.add_live_node_for_node(p_id, VarDefNode(sp));
423 ir.add_variable(Local(LocalInfo {
223e47cc 424 id: p_id,
9346a6ac 425 name: name
223e47cc 426 }));
1a4d82fc 427 });
92a42be0 428 intravisit::walk_local(ir, local);
223e47cc
LB
429}
430
e9174d1e 431fn visit_arm(ir: &mut IrMaps, arm: &hir::Arm) {
85aaf69f 432 for pat in &arm.pats {
7453a54e 433 pat_util::pat_bindings(&ir.tcx.def_map, &pat, |bm, p_id, sp, path1| {
1a4d82fc 434 debug!("adding local variable {} from match with bm {:?}",
223e47cc 435 p_id, bm);
b039eaaf 436 let name = path1.node;
1a4d82fc
JJ
437 ir.add_live_node_for_node(p_id, VarDefNode(sp));
438 ir.add_variable(Local(LocalInfo {
223e47cc 439 id: p_id,
9346a6ac 440 name: name
223e47cc 441 }));
1a4d82fc 442 })
223e47cc 443 }
92a42be0 444 intravisit::walk_arm(ir, arm);
223e47cc
LB
445}
446
1a4d82fc 447fn visit_expr(ir: &mut IrMaps, expr: &Expr) {
223e47cc
LB
448 match expr.node {
449 // live nodes required for uses or definitions of variables:
e9174d1e 450 hir::ExprPath(..) => {
c34b1796 451 let def = ir.tcx.def_map.borrow().get(&expr.id).unwrap().full_def();
1a4d82fc 452 debug!("expr {}: path that leads to {:?}", expr.id, def);
7453a54e 453 if let Def::Local(..) = def {
1a4d82fc 454 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
223e47cc 455 }
92a42be0 456 intravisit::walk_expr(ir, expr);
223e47cc 457 }
e9174d1e 458 hir::ExprClosure(..) => {
223e47cc
LB
459 // Interesting control flow (for loops can contain labeled
460 // breaks or continues)
1a4d82fc 461 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
223e47cc
LB
462
463 // Make a live_node for each captured variable, with the span
464 // being the location that the variable is used. This results
465 // in better error messages than just pointing at the closure
466 // construction site.
1a4d82fc 467 let mut call_caps = Vec::new();
c1a9b12d 468 ir.tcx.with_freevars(expr.id, |freevars| {
85aaf69f 469 for fv in freevars {
7453a54e 470 if let Def::Local(_, rv) = fv.def {
1a4d82fc
JJ
471 let fv_ln = ir.add_live_node(FreeVarNode(fv.span));
472 call_caps.push(CaptureInfo {ln: fv_ln,
473 var_nid: rv});
474 }
223e47cc 475 }
1a4d82fc
JJ
476 });
477 ir.set_captures(expr.id, call_caps);
223e47cc 478
92a42be0 479 intravisit::walk_expr(ir, expr);
223e47cc
LB
480 }
481
482 // live nodes required for interesting control flow:
e9174d1e 483 hir::ExprIf(..) | hir::ExprMatch(..) | hir::ExprWhile(..) | hir::ExprLoop(..) => {
1a4d82fc 484 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
92a42be0 485 intravisit::walk_expr(ir, expr);
1a4d82fc 486 }
54a0048b 487 hir::ExprBinary(op, _, _) if op.node.is_lazy() => {
1a4d82fc 488 ir.add_live_node_for_node(expr.id, ExprNode(expr.span));
92a42be0 489 intravisit::walk_expr(ir, expr);
223e47cc
LB
490 }
491
492 // otherwise, live nodes are not required:
e9174d1e
SL
493 hir::ExprIndex(..) | hir::ExprField(..) | hir::ExprTupField(..) |
494 hir::ExprVec(..) | hir::ExprCall(..) | hir::ExprMethodCall(..) |
495 hir::ExprTup(..) | hir::ExprBinary(..) | hir::ExprAddrOf(..) |
496 hir::ExprCast(..) | hir::ExprUnary(..) | hir::ExprBreak(_) |
497 hir::ExprAgain(_) | hir::ExprLit(_) | hir::ExprRet(..) |
498 hir::ExprBlock(..) | hir::ExprAssign(..) | hir::ExprAssignOp(..) |
499 hir::ExprStruct(..) | hir::ExprRepeat(..) |
b039eaaf 500 hir::ExprInlineAsm(..) | hir::ExprBox(..) |
54a0048b 501 hir::ExprType(..) => {
92a42be0 502 intravisit::walk_expr(ir, expr);
223e47cc
LB
503 }
504 }
505}
506
507// ______________________________________________________________________
508// Computing liveness sets
509//
510// Actually we compute just a bit more than just liveness, but we use
511// the same basic propagation framework in all cases.
512
1a4d82fc 513#[derive(Clone, Copy)]
223e47cc
LB
514struct Users {
515 reader: LiveNode,
516 writer: LiveNode,
517 used: bool
518}
519
520fn invalid_users() -> Users {
521 Users {
522 reader: invalid_node(),
523 writer: invalid_node(),
524 used: false
525 }
526}
527
c34b1796 528#[derive(Copy, Clone)]
223e47cc
LB
529struct Specials {
530 exit_ln: LiveNode,
531 fallthrough_ln: LiveNode,
1a4d82fc
JJ
532 no_ret_var: Variable,
533 clean_exit_var: Variable
223e47cc
LB
534}
535
c34b1796
AL
536const ACC_READ: u32 = 1;
537const ACC_WRITE: u32 = 2;
538const ACC_USE: u32 = 4;
223e47cc 539
1a4d82fc
JJ
540struct Liveness<'a, 'tcx: 'a> {
541 ir: &'a mut IrMaps<'a, 'tcx>,
223e47cc 542 s: Specials,
1a4d82fc
JJ
543 successors: Vec<LiveNode>,
544 users: Vec<Users>,
223e47cc
LB
545 // The list of node IDs for the nested loop scopes
546 // we're in.
1a4d82fc 547 loop_scope: Vec<NodeId>,
223e47cc
LB
548 // mappings from loop node ID to LiveNode
549 // ("break" label should map to loop node ID,
550 // it probably doesn't now)
1a4d82fc
JJ
551 break_ln: NodeMap<LiveNode>,
552 cont_ln: NodeMap<LiveNode>
223e47cc
LB
553}
554
1a4d82fc
JJ
555impl<'a, 'tcx> Liveness<'a, 'tcx> {
556 fn new(ir: &'a mut IrMaps<'a, 'tcx>, specials: Specials) -> Liveness<'a, 'tcx> {
557 let num_live_nodes = ir.num_live_nodes;
558 let num_vars = ir.num_vars;
559 Liveness {
560 ir: ir,
561 s: specials,
c1a9b12d
SL
562 successors: vec![invalid_node(); num_live_nodes],
563 users: vec![invalid_users(); num_live_nodes * num_vars],
1a4d82fc 564 loop_scope: Vec::new(),
85aaf69f
SL
565 break_ln: NodeMap(),
566 cont_ln: NodeMap(),
1a4d82fc 567 }
223e47cc 568 }
223e47cc 569
1a4d82fc
JJ
570 fn live_node(&self, node_id: NodeId, span: Span) -> LiveNode {
571 match self.ir.live_node_map.get(&node_id) {
223e47cc
LB
572 Some(&ln) => ln,
573 None => {
574 // This must be a mismatch between the ir_map construction
575 // above and the propagation code below; the two sets of
576 // code have to agree about which AST nodes are worth
577 // creating liveness nodes for.
54a0048b 578 span_bug!(
1a4d82fc 579 span,
54a0048b
SL
580 "no live node registered for node {}",
581 node_id);
223e47cc 582 }
223e47cc
LB
583 }
584 }
585
1a4d82fc 586 fn variable(&self, node_id: NodeId, span: Span) -> Variable {
223e47cc
LB
587 self.ir.variable(node_id, span)
588 }
589
e9174d1e 590 fn pat_bindings<F>(&mut self, pat: &hir::Pat, mut f: F) where
1a4d82fc
JJ
591 F: FnMut(&mut Liveness<'a, 'tcx>, LiveNode, Variable, Span, NodeId),
592 {
593 pat_util::pat_bindings(&self.ir.tcx.def_map, pat, |_bm, p_id, sp, _n| {
223e47cc
LB
594 let ln = self.live_node(p_id, sp);
595 let var = self.variable(p_id, sp);
1a4d82fc
JJ
596 f(self, ln, var, sp, p_id);
597 })
223e47cc
LB
598 }
599
e9174d1e 600 fn arm_pats_bindings<F>(&mut self, pat: Option<&hir::Pat>, f: F) where
1a4d82fc
JJ
601 F: FnMut(&mut Liveness<'a, 'tcx>, LiveNode, Variable, Span, NodeId),
602 {
603 match pat {
604 Some(pat) => {
605 self.pat_bindings(pat, f);
606 }
607 None => {}
223e47cc
LB
608 }
609 }
610
e9174d1e 611 fn define_bindings_in_pat(&mut self, pat: &hir::Pat, succ: LiveNode)
1a4d82fc
JJ
612 -> LiveNode {
613 self.define_bindings_in_arm_pats(Some(pat), succ)
223e47cc
LB
614 }
615
e9174d1e 616 fn define_bindings_in_arm_pats(&mut self, pat: Option<&hir::Pat>, succ: LiveNode)
1a4d82fc 617 -> LiveNode {
223e47cc 618 let mut succ = succ;
1a4d82fc
JJ
619 self.arm_pats_bindings(pat, |this, ln, var, _sp, _id| {
620 this.init_from_succ(ln, succ);
621 this.define(ln, var);
223e47cc 622 succ = ln;
1a4d82fc 623 });
223e47cc
LB
624 succ
625 }
626
c34b1796 627 fn idx(&self, ln: LiveNode, var: Variable) -> usize {
1a4d82fc 628 ln.get() * self.ir.num_vars + var.get()
223e47cc
LB
629 }
630
1a4d82fc
JJ
631 fn live_on_entry(&self, ln: LiveNode, var: Variable)
632 -> Option<LiveNodeKind> {
223e47cc
LB
633 assert!(ln.is_valid());
634 let reader = self.users[self.idx(ln, var)].reader;
635 if reader.is_valid() {Some(self.ir.lnk(reader))} else {None}
636 }
637
638 /*
639 Is this variable live on entry to any of its successor nodes?
640 */
1a4d82fc
JJ
641 fn live_on_exit(&self, ln: LiveNode, var: Variable)
642 -> Option<LiveNodeKind> {
643 let successor = self.successors[ln.get()];
644 self.live_on_entry(successor, var)
223e47cc
LB
645 }
646
1a4d82fc 647 fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
223e47cc
LB
648 assert!(ln.is_valid());
649 self.users[self.idx(ln, var)].used
650 }
651
1a4d82fc
JJ
652 fn assigned_on_entry(&self, ln: LiveNode, var: Variable)
653 -> Option<LiveNodeKind> {
223e47cc
LB
654 assert!(ln.is_valid());
655 let writer = self.users[self.idx(ln, var)].writer;
656 if writer.is_valid() {Some(self.ir.lnk(writer))} else {None}
657 }
658
1a4d82fc
JJ
659 fn assigned_on_exit(&self, ln: LiveNode, var: Variable)
660 -> Option<LiveNodeKind> {
661 let successor = self.successors[ln.get()];
662 self.assigned_on_entry(successor, var)
223e47cc
LB
663 }
664
1a4d82fc 665 fn indices2<F>(&mut self, ln: LiveNode, succ_ln: LiveNode, mut op: F) where
c34b1796 666 F: FnMut(&mut Liveness<'a, 'tcx>, usize, usize),
1a4d82fc 667 {
85aaf69f
SL
668 let node_base_idx = self.idx(ln, Variable(0));
669 let succ_base_idx = self.idx(succ_ln, Variable(0));
670 for var_idx in 0..self.ir.num_vars {
1a4d82fc 671 op(self, node_base_idx + var_idx, succ_base_idx + var_idx);
223e47cc
LB
672 }
673 }
674
1a4d82fc 675 fn write_vars<F>(&self,
c34b1796 676 wr: &mut Write,
1a4d82fc
JJ
677 ln: LiveNode,
678 mut test: F)
c34b1796
AL
679 -> io::Result<()> where
680 F: FnMut(usize) -> LiveNode,
1a4d82fc 681 {
223e47cc 682 let node_base_idx = self.idx(ln, Variable(0));
85aaf69f 683 for var_idx in 0..self.ir.num_vars {
223e47cc
LB
684 let idx = node_base_idx + var_idx;
685 if test(idx).is_valid() {
54a0048b 686 write!(wr, " {:?}", Variable(var_idx))?;
223e47cc
LB
687 }
688 }
1a4d82fc 689 Ok(())
223e47cc
LB
690 }
691
1a4d82fc 692 fn find_loop_scope(&self,
b039eaaf 693 opt_label: Option<ast::Name>,
1a4d82fc
JJ
694 id: NodeId,
695 sp: Span)
696 -> NodeId {
223e47cc 697 match opt_label {
1a4d82fc
JJ
698 Some(_) => {
699 // Refers to a labeled loop. Use the results of resolve
700 // to find with one
c34b1796 701 match self.ir.tcx.def_map.borrow().get(&id).map(|d| d.full_def()) {
7453a54e 702 Some(Def::Label(loop_id)) => loop_id,
54a0048b
SL
703 _ => span_bug!(sp, "label on break/loop \
704 doesn't refer to a loop")
1a4d82fc
JJ
705 }
706 }
223e47cc
LB
707 None => {
708 // Vanilla 'break' or 'loop', so use the enclosing
709 // loop scope
9346a6ac 710 if self.loop_scope.is_empty() {
54a0048b 711 span_bug!(sp, "break outside loop");
970d7e83 712 } else {
1a4d82fc 713 *self.loop_scope.last().unwrap()
223e47cc
LB
714 }
715 }
716 }
717 }
718
1a4d82fc
JJ
719 #[allow(unused_must_use)]
720 fn ln_str(&self, ln: LiveNode) -> String {
721 let mut wr = Vec::new();
722 {
c34b1796 723 let wr = &mut wr as &mut Write;
1a4d82fc
JJ
724 write!(wr, "[ln({:?}) of kind {:?} reads", ln.get(), self.ir.lnk(ln));
725 self.write_vars(wr, ln, |idx| self.users[idx].reader);
726 write!(wr, " writes");
727 self.write_vars(wr, ln, |idx| self.users[idx].writer);
728 write!(wr, " precedes {:?}]", self.successors[ln.get()]);
223e47cc 729 }
1a4d82fc 730 String::from_utf8(wr).unwrap()
223e47cc
LB
731 }
732
1a4d82fc
JJ
733 fn init_empty(&mut self, ln: LiveNode, succ_ln: LiveNode) {
734 self.successors[ln.get()] = succ_ln;
223e47cc
LB
735
736 // It is not necessary to initialize the
737 // values to empty because this is the value
738 // they have when they are created, and the sets
739 // only grow during iterations.
740 //
741 // self.indices(ln) { |idx|
742 // self.users[idx] = invalid_users();
743 // }
744 }
745
1a4d82fc 746 fn init_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) {
223e47cc 747 // more efficient version of init_empty() / merge_from_succ()
1a4d82fc
JJ
748 self.successors[ln.get()] = succ_ln;
749
750 self.indices2(ln, succ_ln, |this, idx, succ_idx| {
751 this.users[idx] = this.users[succ_idx]
223e47cc 752 });
1a4d82fc 753 debug!("init_from_succ(ln={}, succ={})",
223e47cc
LB
754 self.ln_str(ln), self.ln_str(succ_ln));
755 }
756
1a4d82fc
JJ
757 fn merge_from_succ(&mut self,
758 ln: LiveNode,
759 succ_ln: LiveNode,
760 first_merge: bool)
761 -> bool {
223e47cc
LB
762 if ln == succ_ln { return false; }
763
764 let mut changed = false;
1a4d82fc
JJ
765 self.indices2(ln, succ_ln, |this, idx, succ_idx| {
766 changed |= copy_if_invalid(this.users[succ_idx].reader,
767 &mut this.users[idx].reader);
768 changed |= copy_if_invalid(this.users[succ_idx].writer,
769 &mut this.users[idx].writer);
770 if this.users[succ_idx].used && !this.users[idx].used {
771 this.users[idx].used = true;
223e47cc
LB
772 changed = true;
773 }
1a4d82fc 774 });
223e47cc 775
1a4d82fc
JJ
776 debug!("merge_from_succ(ln={:?}, succ={}, first_merge={}, changed={})",
777 ln, self.ln_str(succ_ln), first_merge, changed);
223e47cc
LB
778 return changed;
779
780 fn copy_if_invalid(src: LiveNode, dst: &mut LiveNode) -> bool {
1a4d82fc
JJ
781 if src.is_valid() && !dst.is_valid() {
782 *dst = src;
783 true
784 } else {
785 false
223e47cc 786 }
223e47cc
LB
787 }
788 }
789
790 // Indicates that a local variable was *defined*; we know that no
791 // uses of the variable can precede the definition (resolve checks
792 // this) so we just clear out all the data.
1a4d82fc 793 fn define(&mut self, writer: LiveNode, var: Variable) {
223e47cc
LB
794 let idx = self.idx(writer, var);
795 self.users[idx].reader = invalid_node();
796 self.users[idx].writer = invalid_node();
797
1a4d82fc 798 debug!("{:?} defines {:?} (idx={}): {}", writer, var,
223e47cc
LB
799 idx, self.ln_str(writer));
800 }
801
802 // Either read, write, or both depending on the acc bitset
c34b1796 803 fn acc(&mut self, ln: LiveNode, var: Variable, acc: u32) {
1a4d82fc
JJ
804 debug!("{:?} accesses[{:x}] {:?}: {}",
805 ln, acc, var, self.ln_str(ln));
806
223e47cc 807 let idx = self.idx(ln, var);
1a4d82fc 808 let user = &mut self.users[idx];
223e47cc
LB
809
810 if (acc & ACC_WRITE) != 0 {
811 user.reader = invalid_node();
812 user.writer = ln;
813 }
814
815 // Important: if we both read/write, must do read second
816 // or else the write will override.
817 if (acc & ACC_READ) != 0 {
818 user.reader = ln;
819 }
820
821 if (acc & ACC_USE) != 0 {
822 user.used = true;
823 }
223e47cc
LB
824 }
825
826 // _______________________________________________________________________
827
e9174d1e 828 fn compute(&mut self, decl: &hir::FnDecl, body: &hir::Block) -> LiveNode {
223e47cc
LB
829 // if there is a `break` or `again` at the top level, then it's
830 // effectively a return---this only occurs in `for` loops,
831 // where the body is really a closure.
832
1a4d82fc 833 debug!("compute: using id for block, {}", block_to_string(body));
223e47cc 834
1a4d82fc 835 let exit_ln = self.s.exit_ln;
223e47cc 836 let entry_ln: LiveNode =
1a4d82fc
JJ
837 self.with_loop_nodes(body.id, exit_ln, exit_ln,
838 |this| this.propagate_through_fn_block(decl, body));
223e47cc
LB
839
840 // hack to skip the loop unless debug! is enabled:
1a4d82fc 841 debug!("^^ liveness computation results for body {} (entry={:?})",
223e47cc 842 {
85aaf69f 843 for ln_idx in 0..self.ir.num_live_nodes {
1a4d82fc 844 debug!("{:?}", self.ln_str(LiveNode(ln_idx)));
223e47cc 845 }
1a4d82fc 846 body.id
223e47cc 847 },
1a4d82fc 848 entry_ln);
223e47cc
LB
849
850 entry_ln
851 }
852
e9174d1e 853 fn propagate_through_fn_block(&mut self, _: &hir::FnDecl, blk: &hir::Block)
1a4d82fc 854 -> LiveNode {
223e47cc
LB
855 // the fallthrough exit is only for those cases where we do not
856 // explicitly return:
1a4d82fc
JJ
857 let s = self.s;
858 self.init_from_succ(s.fallthrough_ln, s.exit_ln);
859 if blk.expr.is_none() {
860 self.acc(s.fallthrough_ln, s.no_ret_var, ACC_READ)
223e47cc 861 }
1a4d82fc 862 self.acc(s.fallthrough_ln, s.clean_exit_var, ACC_READ);
223e47cc 863
1a4d82fc 864 self.propagate_through_block(blk, s.fallthrough_ln)
223e47cc
LB
865 }
866
e9174d1e 867 fn propagate_through_block(&mut self, blk: &hir::Block, succ: LiveNode)
1a4d82fc
JJ
868 -> LiveNode {
869 let succ = self.propagate_through_opt_expr(blk.expr.as_ref().map(|e| &**e), succ);
870 blk.stmts.iter().rev().fold(succ, |succ, stmt| {
92a42be0 871 self.propagate_through_stmt(stmt, succ)
1a4d82fc 872 })
223e47cc
LB
873 }
874
e9174d1e 875 fn propagate_through_stmt(&mut self, stmt: &hir::Stmt, succ: LiveNode)
1a4d82fc 876 -> LiveNode {
223e47cc 877 match stmt.node {
e9174d1e 878 hir::StmtDecl(ref decl, _) => {
7453a54e 879 self.propagate_through_decl(&decl, succ)
1a4d82fc 880 }
223e47cc 881
e9174d1e 882 hir::StmtExpr(ref expr, _) | hir::StmtSemi(ref expr, _) => {
7453a54e 883 self.propagate_through_expr(&expr, succ)
1a4d82fc 884 }
223e47cc
LB
885 }
886 }
887
e9174d1e 888 fn propagate_through_decl(&mut self, decl: &hir::Decl, succ: LiveNode)
1a4d82fc 889 -> LiveNode {
223e47cc 890 match decl.node {
e9174d1e 891 hir::DeclLocal(ref local) => {
7453a54e 892 self.propagate_through_local(&local, succ)
223e47cc 893 }
e9174d1e 894 hir::DeclItem(_) => succ,
223e47cc
LB
895 }
896 }
897
e9174d1e 898 fn propagate_through_local(&mut self, local: &hir::Local, succ: LiveNode)
1a4d82fc 899 -> LiveNode {
223e47cc
LB
900 // Note: we mark the variable as defined regardless of whether
901 // there is an initializer. Initially I had thought to only mark
902 // the live variable as defined if it was initialized, and then we
903 // could check for uninit variables just by scanning what is live
904 // at the start of the function. But that doesn't work so well for
905 // immutable variables defined in a loop:
906 // loop { let x; x = 5; }
907 // because the "assignment" loops back around and generates an error.
908 //
909 // So now we just check that variables defined w/o an
910 // initializer are not live at the point of their
911 // initialization, which is mildly more complex than checking
912 // once at the func header but otherwise equivalent.
913
1a4d82fc 914 let succ = self.propagate_through_opt_expr(local.init.as_ref().map(|e| &**e), succ);
7453a54e 915 self.define_bindings_in_pat(&local.pat, succ)
223e47cc
LB
916 }
917
1a4d82fc
JJ
918 fn propagate_through_exprs(&mut self, exprs: &[P<Expr>], succ: LiveNode)
919 -> LiveNode {
920 exprs.iter().rev().fold(succ, |succ, expr| {
7453a54e 921 self.propagate_through_expr(&expr, succ)
1a4d82fc 922 })
223e47cc
LB
923 }
924
1a4d82fc
JJ
925 fn propagate_through_opt_expr(&mut self,
926 opt_expr: Option<&Expr>,
927 succ: LiveNode)
928 -> LiveNode {
929 opt_expr.map_or(succ, |expr| self.propagate_through_expr(expr, succ))
223e47cc
LB
930 }
931
1a4d82fc
JJ
932 fn propagate_through_expr(&mut self, expr: &Expr, succ: LiveNode)
933 -> LiveNode {
934 debug!("propagate_through_expr: {}", expr_to_string(expr));
223e47cc
LB
935
936 match expr.node {
937 // Interesting cases with control flow or which gen/kill
938
e9174d1e 939 hir::ExprPath(..) => {
223e47cc
LB
940 self.access_path(expr, succ, ACC_READ | ACC_USE)
941 }
942
e9174d1e 943 hir::ExprField(ref e, _) => {
7453a54e 944 self.propagate_through_expr(&e, succ)
1a4d82fc
JJ
945 }
946
e9174d1e 947 hir::ExprTupField(ref e, _) => {
7453a54e 948 self.propagate_through_expr(&e, succ)
223e47cc
LB
949 }
950
e9174d1e 951 hir::ExprClosure(_, _, ref blk) => {
1a4d82fc
JJ
952 debug!("{} is an ExprClosure",
953 expr_to_string(expr));
223e47cc
LB
954
955 /*
956 The next-node for a break is the successor of the entire
957 loop. The next-node for a continue is the top of this loop.
958 */
1a4d82fc
JJ
959 let node = self.live_node(expr.id, expr.span);
960 self.with_loop_nodes(blk.id, succ, node, |this| {
223e47cc
LB
961
962 // the construction of a closure itself is not important,
963 // but we have to consider the closed over variables.
1a4d82fc
JJ
964 let caps = match this.ir.capture_info_map.get(&expr.id) {
965 Some(caps) => caps.clone(),
966 None => {
54a0048b 967 span_bug!(expr.span, "no registered caps");
1a4d82fc
JJ
968 }
969 };
970 caps.iter().rev().fold(succ, |succ, cap| {
971 this.init_from_succ(cap.ln, succ);
972 let var = this.variable(cap.var_nid, expr.span);
973 this.acc(cap.ln, var, ACC_READ | ACC_USE);
223e47cc 974 cap.ln
1a4d82fc 975 })
223e47cc
LB
976 })
977 }
978
e9174d1e 979 hir::ExprIf(ref cond, ref then, ref els) => {
223e47cc
LB
980 //
981 // (cond)
982 // |
983 // v
984 // (expr)
985 // / \
986 // | |
987 // v v
988 // (then)(els)
989 // | |
990 // v v
991 // ( succ )
992 //
1a4d82fc 993 let else_ln = self.propagate_through_opt_expr(els.as_ref().map(|e| &**e), succ);
7453a54e 994 let then_ln = self.propagate_through_block(&then, succ);
223e47cc
LB
995 let ln = self.live_node(expr.id, expr.span);
996 self.init_from_succ(ln, else_ln);
997 self.merge_from_succ(ln, then_ln, false);
7453a54e 998 self.propagate_through_expr(&cond, ln)
1a4d82fc
JJ
999 }
1000
e9174d1e 1001 hir::ExprWhile(ref cond, ref blk, _) => {
7453a54e 1002 self.propagate_through_loop(expr, WhileLoop(&cond), &blk, succ)
1a4d82fc
JJ
1003 }
1004
223e47cc
LB
1005 // Note that labels have been resolved, so we don't need to look
1006 // at the label ident
e9174d1e 1007 hir::ExprLoop(ref blk, _) => {
7453a54e 1008 self.propagate_through_loop(expr, LoopLoop, &blk, succ)
223e47cc
LB
1009 }
1010
e9174d1e 1011 hir::ExprMatch(ref e, ref arms, _) => {
223e47cc
LB
1012 //
1013 // (e)
1014 // |
1015 // v
1016 // (expr)
1017 // / | \
1018 // | | |
1019 // v v v
1020 // (..arms..)
1021 // | | |
1022 // v v v
1023 // ( succ )
1024 //
1025 //
1026 let ln = self.live_node(expr.id, expr.span);
1027 self.init_empty(ln, succ);
1028 let mut first_merge = true;
85aaf69f 1029 for arm in arms {
223e47cc 1030 let body_succ =
7453a54e 1031 self.propagate_through_expr(&arm.body, succ);
223e47cc 1032 let guard_succ =
1a4d82fc
JJ
1033 self.propagate_through_opt_expr(arm.guard.as_ref().map(|e| &**e), body_succ);
1034 // only consider the first pattern; any later patterns must have
1035 // the same bindings, and we also consider the first pattern to be
1036 // the "authoritative" set of ids
223e47cc 1037 let arm_succ =
1a4d82fc
JJ
1038 self.define_bindings_in_arm_pats(arm.pats.first().map(|p| &**p),
1039 guard_succ);
223e47cc
LB
1040 self.merge_from_succ(ln, arm_succ, first_merge);
1041 first_merge = false;
1042 };
7453a54e 1043 self.propagate_through_expr(&e, ln)
223e47cc
LB
1044 }
1045
e9174d1e 1046 hir::ExprRet(ref o_e) => {
223e47cc 1047 // ignore succ and subst exit_ln:
1a4d82fc
JJ
1048 let exit_ln = self.s.exit_ln;
1049 self.propagate_through_opt_expr(o_e.as_ref().map(|e| &**e), exit_ln)
223e47cc
LB
1050 }
1051
e9174d1e 1052 hir::ExprBreak(opt_label) => {
223e47cc 1053 // Find which label this break jumps to
b039eaaf 1054 let sc = self.find_loop_scope(opt_label.map(|l| l.node.name), expr.id, expr.span);
223e47cc
LB
1055
1056 // Now that we know the label we're going to,
1057 // look it up in the break loop nodes table
1058
1a4d82fc 1059 match self.break_ln.get(&sc) {
223e47cc 1060 Some(&b) => b,
54a0048b 1061 None => span_bug!(expr.span, "break to unknown label")
223e47cc
LB
1062 }
1063 }
1064
e9174d1e 1065 hir::ExprAgain(opt_label) => {
970d7e83 1066 // Find which label this expr continues to
b039eaaf 1067 let sc = self.find_loop_scope(opt_label.map(|l| l.node.name), expr.id, expr.span);
223e47cc
LB
1068
1069 // Now that we know the label we're going to,
1070 // look it up in the continue loop nodes table
1071
1a4d82fc 1072 match self.cont_ln.get(&sc) {
223e47cc 1073 Some(&b) => b,
54a0048b 1074 None => span_bug!(expr.span, "loop to unknown label")
223e47cc
LB
1075 }
1076 }
1077
e9174d1e 1078 hir::ExprAssign(ref l, ref r) => {
223e47cc
LB
1079 // see comment on lvalues in
1080 // propagate_through_lvalue_components()
7453a54e
SL
1081 let succ = self.write_lvalue(&l, succ, ACC_WRITE);
1082 let succ = self.propagate_through_lvalue_components(&l, succ);
1083 self.propagate_through_expr(&r, succ)
223e47cc
LB
1084 }
1085
e9174d1e 1086 hir::ExprAssignOp(_, ref l, ref r) => {
54a0048b
SL
1087 // an overloaded assign op is like a method call
1088 if self.ir.tcx.is_method_call(expr.id) {
1089 let succ = self.propagate_through_expr(&l, succ);
1090 self.propagate_through_expr(&r, succ)
1091 } else {
1092 // see comment on lvalues in
1093 // propagate_through_lvalue_components()
1094 let succ = self.write_lvalue(&l, succ, ACC_WRITE|ACC_READ);
1095 let succ = self.propagate_through_expr(&r, succ);
1096 self.propagate_through_lvalue_components(&l, succ)
1097 }
223e47cc
LB
1098 }
1099
1100 // Uninteresting cases: just propagate in rev exec order
1101
e9174d1e 1102 hir::ExprVec(ref exprs) => {
85aaf69f 1103 self.propagate_through_exprs(&exprs[..], succ)
223e47cc
LB
1104 }
1105
e9174d1e 1106 hir::ExprRepeat(ref element, ref count) => {
7453a54e
SL
1107 let succ = self.propagate_through_expr(&count, succ);
1108 self.propagate_through_expr(&element, succ)
223e47cc
LB
1109 }
1110
e9174d1e 1111 hir::ExprStruct(_, ref fields, ref with_expr) => {
1a4d82fc
JJ
1112 let succ = self.propagate_through_opt_expr(with_expr.as_ref().map(|e| &**e), succ);
1113 fields.iter().rev().fold(succ, |succ, field| {
7453a54e 1114 self.propagate_through_expr(&field.expr, succ)
1a4d82fc 1115 })
223e47cc
LB
1116 }
1117
e9174d1e 1118 hir::ExprCall(ref f, ref args) => {
c1a9b12d 1119 let diverges = !self.ir.tcx.is_method_call(expr.id) &&
7453a54e 1120 self.ir.tcx.expr_ty_adjusted(&f).fn_ret().diverges();
1a4d82fc
JJ
1121 let succ = if diverges {
1122 self.s.exit_ln
1123 } else {
1124 succ
1125 };
85aaf69f 1126 let succ = self.propagate_through_exprs(&args[..], succ);
7453a54e 1127 self.propagate_through_expr(&f, succ)
223e47cc
LB
1128 }
1129
e9174d1e 1130 hir::ExprMethodCall(_, _, ref args) => {
1a4d82fc 1131 let method_call = ty::MethodCall::expr(expr.id);
c1a9b12d
SL
1132 let method_ty = self.ir.tcx.tables.borrow().method_map[&method_call].ty;
1133 let succ = if method_ty.fn_ret().diverges() {
1a4d82fc
JJ
1134 self.s.exit_ln
1135 } else {
1136 succ
1137 };
85aaf69f 1138 self.propagate_through_exprs(&args[..], succ)
223e47cc
LB
1139 }
1140
e9174d1e 1141 hir::ExprTup(ref exprs) => {
85aaf69f 1142 self.propagate_through_exprs(&exprs[..], succ)
223e47cc
LB
1143 }
1144
54a0048b 1145 hir::ExprBinary(op, ref l, ref r) if op.node.is_lazy() => {
7453a54e 1146 let r_succ = self.propagate_through_expr(&r, succ);
223e47cc
LB
1147
1148 let ln = self.live_node(expr.id, expr.span);
1149 self.init_from_succ(ln, succ);
1150 self.merge_from_succ(ln, r_succ, false);
1151
7453a54e 1152 self.propagate_through_expr(&l, ln)
223e47cc
LB
1153 }
1154
e9174d1e 1155 hir::ExprIndex(ref l, ref r) |
b039eaaf 1156 hir::ExprBinary(_, ref l, ref r) => {
7453a54e
SL
1157 let r_succ = self.propagate_through_expr(&r, succ);
1158 self.propagate_through_expr(&l, r_succ)
223e47cc
LB
1159 }
1160
b039eaaf 1161 hir::ExprBox(ref e) |
e9174d1e
SL
1162 hir::ExprAddrOf(_, ref e) |
1163 hir::ExprCast(ref e, _) |
9cc50fc6 1164 hir::ExprType(ref e, _) |
b039eaaf 1165 hir::ExprUnary(_, ref e) => {
7453a54e 1166 self.propagate_through_expr(&e, succ)
1a4d82fc
JJ
1167 }
1168
54a0048b
SL
1169 hir::ExprInlineAsm(ref ia, ref outputs, ref inputs) => {
1170 let succ = ia.outputs.iter().zip(outputs).rev().fold(succ, |succ, (o, output)| {
1171 // see comment on lvalues
1172 // in propagate_through_lvalue_components()
1173 if o.is_indirect {
1174 self.propagate_through_expr(output, succ)
1175 } else {
1176 let acc = if o.is_rw { ACC_WRITE|ACC_READ } else { ACC_WRITE };
1177 let succ = self.write_lvalue(output, succ, acc);
1178 self.propagate_through_lvalue_components(output, succ)
9cc50fc6 1179 }
54a0048b
SL
1180 });
1181
1a4d82fc 1182 // Inputs are executed first. Propagate last because of rev order
54a0048b 1183 self.propagate_through_exprs(inputs, succ)
223e47cc
LB
1184 }
1185
e9174d1e 1186 hir::ExprLit(..) => {
223e47cc
LB
1187 succ
1188 }
1189
e9174d1e 1190 hir::ExprBlock(ref blk) => {
7453a54e 1191 self.propagate_through_block(&blk, succ)
223e47cc 1192 }
223e47cc
LB
1193 }
1194 }
1195
1a4d82fc
JJ
1196 fn propagate_through_lvalue_components(&mut self,
1197 expr: &Expr,
1198 succ: LiveNode)
1199 -> LiveNode {
223e47cc
LB
1200 // # Lvalues
1201 //
1202 // In general, the full flow graph structure for an
1203 // assignment/move/etc can be handled in one of two ways,
1204 // depending on whether what is being assigned is a "tracked
1205 // value" or not. A tracked value is basically a local
1206 // variable or argument.
1207 //
1208 // The two kinds of graphs are:
1209 //
1210 // Tracked lvalue Untracked lvalue
1211 // ----------------------++-----------------------
1212 // ||
1213 // | || |
1214 // v || v
1215 // (rvalue) || (rvalue)
1216 // | || |
1217 // v || v
1218 // (write of lvalue) || (lvalue components)
1219 // | || |
1220 // v || v
1221 // (succ) || (succ)
1222 // ||
1223 // ----------------------++-----------------------
1224 //
1225 // I will cover the two cases in turn:
1226 //
1227 // # Tracked lvalues
1228 //
1229 // A tracked lvalue is a local variable/argument `x`. In
1230 // these cases, the link_node where the write occurs is linked
1231 // to node id of `x`. The `write_lvalue()` routine generates
1232 // the contents of this node. There are no subcomponents to
1233 // consider.
1234 //
1235 // # Non-tracked lvalues
1236 //
1237 // These are lvalues like `x[5]` or `x.f`. In that case, we
1238 // basically ignore the value which is written to but generate
1239 // reads for the components---`x` in these two examples. The
1240 // components reads are generated by
1241 // `propagate_through_lvalue_components()` (this fn).
1242 //
1243 // # Illegal lvalues
1244 //
1245 // It is still possible to observe assignments to non-lvalues;
1246 // these errors are detected in the later pass borrowck. We
1247 // just ignore such cases and treat them as reads.
1248
1249 match expr.node {
e9174d1e 1250 hir::ExprPath(..) => succ,
7453a54e
SL
1251 hir::ExprField(ref e, _) => self.propagate_through_expr(&e, succ),
1252 hir::ExprTupField(ref e, _) => self.propagate_through_expr(&e, succ),
223e47cc
LB
1253 _ => self.propagate_through_expr(expr, succ)
1254 }
1255 }
1256
1257 // see comment on propagate_through_lvalue()
c34b1796 1258 fn write_lvalue(&mut self, expr: &Expr, succ: LiveNode, acc: u32)
1a4d82fc 1259 -> LiveNode {
223e47cc 1260 match expr.node {
e9174d1e 1261 hir::ExprPath(..) => {
85aaf69f
SL
1262 self.access_path(expr, succ, acc)
1263 }
223e47cc
LB
1264
1265 // We do not track other lvalues, so just propagate through
1266 // to their subcomponents. Also, it may happen that
1267 // non-lvalues occur here, because those are detected in the
1268 // later pass borrowck.
1269 _ => succ
1270 }
1271 }
1272
c34b1796 1273 fn access_path(&mut self, expr: &Expr, succ: LiveNode, acc: u32)
1a4d82fc 1274 -> LiveNode {
c34b1796 1275 match self.ir.tcx.def_map.borrow().get(&expr.id).unwrap().full_def() {
7453a54e 1276 Def::Local(_, nid) => {
223e47cc 1277 let ln = self.live_node(expr.id, expr.span);
85aaf69f 1278 if acc != 0 {
223e47cc
LB
1279 self.init_from_succ(ln, succ);
1280 let var = self.variable(nid, expr.span);
1281 self.acc(ln, var, acc);
1282 }
1283 ln
1284 }
1a4d82fc 1285 _ => succ
223e47cc
LB
1286 }
1287 }
1288
1a4d82fc
JJ
1289 fn propagate_through_loop(&mut self,
1290 expr: &Expr,
1291 kind: LoopKind,
e9174d1e 1292 body: &hir::Block,
1a4d82fc
JJ
1293 succ: LiveNode)
1294 -> LiveNode {
223e47cc
LB
1295
1296 /*
1297
1298 We model control flow like this:
1299
1300 (cond) <--+
1301 | |
1302 v |
1303 +-- (expr) |
1304 | | |
1305 | v |
1306 | (body) ---+
1307 |
1308 |
1309 v
1310 (succ)
1311
1312 */
1313
1314
1315 // first iteration:
1316 let mut first_merge = true;
1317 let ln = self.live_node(expr.id, expr.span);
1318 self.init_empty(ln, succ);
1a4d82fc
JJ
1319 match kind {
1320 LoopLoop => {}
1321 _ => {
1322 // If this is not a `loop` loop, then it's possible we bypass
1323 // the body altogether. Otherwise, the only way is via a `break`
1324 // in the loop body.
1325 self.merge_from_succ(ln, succ, first_merge);
1326 first_merge = false;
1327 }
223e47cc 1328 }
1a4d82fc
JJ
1329 debug!("propagate_through_loop: using id for loop body {} {}",
1330 expr.id, block_to_string(body));
223e47cc 1331
1a4d82fc
JJ
1332 let cond_ln = match kind {
1333 LoopLoop => ln,
7453a54e 1334 WhileLoop(ref cond) => self.propagate_through_expr(&cond, ln),
1a4d82fc
JJ
1335 };
1336 let body_ln = self.with_loop_nodes(expr.id, succ, ln, |this| {
1337 this.propagate_through_block(body, cond_ln)
223e47cc
LB
1338 });
1339
1340 // repeat until fixed point is reached:
1341 while self.merge_from_succ(ln, body_ln, first_merge) {
1342 first_merge = false;
1a4d82fc
JJ
1343
1344 let new_cond_ln = match kind {
1345 LoopLoop => ln,
1a4d82fc 1346 WhileLoop(ref cond) => {
7453a54e 1347 self.propagate_through_expr(&cond, ln)
1a4d82fc
JJ
1348 }
1349 };
1350 assert!(cond_ln == new_cond_ln);
223e47cc 1351 assert!(body_ln == self.with_loop_nodes(expr.id, succ, ln,
1a4d82fc 1352 |this| this.propagate_through_block(body, cond_ln)));
223e47cc
LB
1353 }
1354
1355 cond_ln
1356 }
1357
1a4d82fc
JJ
1358 fn with_loop_nodes<R, F>(&mut self,
1359 loop_node_id: NodeId,
1360 break_ln: LiveNode,
1361 cont_ln: LiveNode,
1362 f: F)
1363 -> R where
1364 F: FnOnce(&mut Liveness<'a, 'tcx>) -> R,
1365 {
1366 debug!("with_loop_nodes: {} {}", loop_node_id, break_ln.get());
223e47cc
LB
1367 self.loop_scope.push(loop_node_id);
1368 self.break_ln.insert(loop_node_id, break_ln);
1369 self.cont_ln.insert(loop_node_id, cont_ln);
1a4d82fc 1370 let r = f(self);
223e47cc
LB
1371 self.loop_scope.pop();
1372 r
1373 }
1374}
1375
1376// _______________________________________________________________________
1377// Checking for error conditions
1378
e9174d1e 1379fn check_local(this: &mut Liveness, local: &hir::Local) {
1a4d82fc
JJ
1380 match local.init {
1381 Some(_) => {
7453a54e 1382 this.warn_about_unused_or_dead_vars_in_pat(&local.pat);
1a4d82fc
JJ
1383 },
1384 None => {
7453a54e 1385 this.pat_bindings(&local.pat, |this, ln, var, sp, id| {
1a4d82fc
JJ
1386 this.warn_about_unused(sp, id, ln, var);
1387 })
223e47cc 1388 }
223e47cc
LB
1389 }
1390
92a42be0 1391 intravisit::walk_local(this, local);
223e47cc
LB
1392}
1393
e9174d1e 1394fn check_arm(this: &mut Liveness, arm: &hir::Arm) {
1a4d82fc
JJ
1395 // only consider the first pattern; any later patterns must have
1396 // the same bindings, and we also consider the first pattern to be
1397 // the "authoritative" set of ids
1398 this.arm_pats_bindings(arm.pats.first().map(|p| &**p), |this, ln, var, sp, id| {
970d7e83 1399 this.warn_about_unused(sp, id, ln, var);
1a4d82fc 1400 });
92a42be0 1401 intravisit::walk_arm(this, arm);
223e47cc
LB
1402}
1403
1a4d82fc 1404fn check_expr(this: &mut Liveness, expr: &Expr) {
223e47cc 1405 match expr.node {
b039eaaf 1406 hir::ExprAssign(ref l, _) => {
7453a54e 1407 this.check_lvalue(&l);
223e47cc 1408
92a42be0 1409 intravisit::walk_expr(this, expr);
223e47cc
LB
1410 }
1411
e9174d1e 1412 hir::ExprAssignOp(_, ref l, _) => {
54a0048b
SL
1413 if !this.ir.tcx.is_method_call(expr.id) {
1414 this.check_lvalue(&l);
1415 }
223e47cc 1416
92a42be0 1417 intravisit::walk_expr(this, expr);
223e47cc
LB
1418 }
1419
54a0048b
SL
1420 hir::ExprInlineAsm(ref ia, ref outputs, ref inputs) => {
1421 for input in inputs {
1422 this.visit_expr(input);
223e47cc
LB
1423 }
1424
1425 // Output operands must be lvalues
54a0048b
SL
1426 for (o, output) in ia.outputs.iter().zip(outputs) {
1427 if !o.is_indirect {
1428 this.check_lvalue(output);
9cc50fc6 1429 }
54a0048b 1430 this.visit_expr(output);
223e47cc
LB
1431 }
1432
92a42be0 1433 intravisit::walk_expr(this, expr);
1a4d82fc
JJ
1434 }
1435
223e47cc 1436 // no correctness conditions related to liveness
e9174d1e
SL
1437 hir::ExprCall(..) | hir::ExprMethodCall(..) | hir::ExprIf(..) |
1438 hir::ExprMatch(..) | hir::ExprWhile(..) | hir::ExprLoop(..) |
1439 hir::ExprIndex(..) | hir::ExprField(..) | hir::ExprTupField(..) |
1440 hir::ExprVec(..) | hir::ExprTup(..) | hir::ExprBinary(..) |
1441 hir::ExprCast(..) | hir::ExprUnary(..) | hir::ExprRet(..) |
1442 hir::ExprBreak(..) | hir::ExprAgain(..) | hir::ExprLit(_) |
1443 hir::ExprBlock(..) | hir::ExprAddrOf(..) |
b039eaaf 1444 hir::ExprStruct(..) | hir::ExprRepeat(..) |
e9174d1e 1445 hir::ExprClosure(..) | hir::ExprPath(..) | hir::ExprBox(..) |
54a0048b 1446 hir::ExprType(..) => {
92a42be0 1447 intravisit::walk_expr(this, expr);
1a4d82fc 1448 }
223e47cc
LB
1449 }
1450}
1451
1a4d82fc
JJ
1452fn check_fn(_v: &Liveness,
1453 _fk: FnKind,
e9174d1e
SL
1454 _decl: &hir::FnDecl,
1455 _body: &hir::Block,
1a4d82fc
JJ
1456 _sp: Span,
1457 _id: NodeId) {
223e47cc
LB
1458 // do not check contents of nested fns
1459}
1460
1a4d82fc
JJ
1461impl<'a, 'tcx> Liveness<'a, 'tcx> {
1462 fn fn_ret(&self, id: NodeId) -> ty::PolyFnOutput<'tcx> {
c1a9b12d 1463 let fn_ty = self.ir.tcx.node_id_to_type(id);
1a4d82fc 1464 match fn_ty.sty {
c1a9b12d 1465 ty::TyClosure(closure_def_id, ref substs) =>
85aaf69f 1466 self.ir.tcx.closure_type(closure_def_id, substs).sig.output(),
c1a9b12d 1467 _ => fn_ty.fn_ret()
1a4d82fc
JJ
1468 }
1469 }
223e47cc 1470
1a4d82fc
JJ
1471 fn check_ret(&self,
1472 id: NodeId,
1473 sp: Span,
1474 _fk: FnKind,
1475 entry_ln: LiveNode,
e9174d1e 1476 body: &hir::Block)
1a4d82fc 1477 {
9cc50fc6
SL
1478 // within the fn body, late-bound regions are liberated
1479 // and must outlive the *call-site* of the function.
1a4d82fc 1480 let fn_ret =
c1a9b12d 1481 self.ir.tcx.liberate_late_bound_regions(
9cc50fc6 1482 self.ir.tcx.region_maps.call_site_extent(id, body.id),
1a4d82fc
JJ
1483 &self.fn_ret(id));
1484
1485 match fn_ret {
1486 ty::FnConverging(t_ret)
54a0048b
SL
1487 if self.live_on_entry(entry_ln, self.s.no_ret_var).is_some() => {
1488
1489 let param_env = ParameterEnvironment::for_item(&self.ir.tcx, id);
1490 let t_ret_subst = t_ret.subst(&self.ir.tcx, &param_env.free_substs);
1491 let infcx = infer::new_infer_ctxt(&self.ir.tcx,
1492 &self.ir.tcx.tables,
1493 Some(param_env),
1494 ProjectionMode::Any);
1495 let cause = traits::ObligationCause::dummy();
1496 let norm = traits::fully_normalize(&infcx,
1497 cause,
1498 &t_ret_subst);
1499
1500 if norm.unwrap().is_nil() {
1a4d82fc
JJ
1501 // for nil return types, it is ok to not return a value expl.
1502 } else {
1503 let ends_with_stmt = match body.expr {
9346a6ac 1504 None if !body.stmts.is_empty() =>
54a0048b 1505 match body.stmts.last().unwrap().node {
e9174d1e 1506 hir::StmtSemi(ref e, _) => {
7453a54e 1507 self.ir.tcx.expr_ty(&e) == t_ret
1a4d82fc
JJ
1508 },
1509 _ => false
1510 },
1511 _ => false
1512 };
9cc50fc6
SL
1513 let mut err = struct_span_err!(self.ir.tcx.sess,
1514 sp,
1515 E0269,
1516 "not all control paths return a value");
1a4d82fc 1517 if ends_with_stmt {
54a0048b 1518 let last_stmt = body.stmts.last().unwrap();
1a4d82fc
JJ
1519 let original_span = original_sp(self.ir.tcx.sess.codemap(),
1520 last_stmt.span, sp);
1521 let span_semicolon = Span {
1522 lo: original_span.hi - BytePos(1),
1523 hi: original_span.hi,
1524 expn_id: original_span.expn_id
1525 };
9cc50fc6 1526 err.span_help(span_semicolon, "consider removing this semicolon:");
1a4d82fc 1527 }
9cc50fc6 1528 err.emit();
1a4d82fc 1529 }
223e47cc 1530 }
1a4d82fc
JJ
1531 ty::FnDiverging
1532 if self.live_on_entry(entry_ln, self.s.clean_exit_var).is_some() => {
85aaf69f 1533 span_err!(self.ir.tcx.sess, sp, E0270,
1a4d82fc
JJ
1534 "computation may converge in a function marked as diverging");
1535 }
1536
1537 _ => {}
223e47cc
LB
1538 }
1539 }
1540
1a4d82fc 1541 fn check_lvalue(&mut self, expr: &Expr) {
223e47cc 1542 match expr.node {
e9174d1e 1543 hir::ExprPath(..) => {
7453a54e 1544 if let Def::Local(_, nid) = self.ir.tcx.def_map.borrow().get(&expr.id)
b039eaaf
SL
1545 .unwrap()
1546 .full_def() {
1a4d82fc
JJ
1547 // Assignment to an immutable variable or argument: only legal
1548 // if there is no later assignment. If this local is actually
1549 // mutable, then check for a reassignment to flag the mutability
1550 // as being used.
223e47cc
LB
1551 let ln = self.live_node(expr.id, expr.span);
1552 let var = self.variable(nid, expr.span);
970d7e83 1553 self.warn_about_dead_assign(expr.span, expr.id, ln, var);
223e47cc 1554 }
223e47cc 1555 }
1a4d82fc
JJ
1556 _ => {
1557 // For other kinds of lvalues, no checks are required,
1558 // and any embedded expressions are actually rvalues
92a42be0 1559 intravisit::walk_expr(self, expr);
1a4d82fc 1560 }
223e47cc
LB
1561 }
1562 }
1563
1a4d82fc 1564 fn should_warn(&self, var: Variable) -> Option<String> {
223e47cc 1565 let name = self.ir.variable_name(var);
9346a6ac 1566 if name.is_empty() || name.as_bytes()[0] == ('_' as u8) {
1a4d82fc
JJ
1567 None
1568 } else {
1569 Some(name)
1570 }
223e47cc
LB
1571 }
1572
e9174d1e 1573 fn warn_about_unused_args(&self, decl: &hir::FnDecl, entry_ln: LiveNode) {
85aaf69f 1574 for arg in &decl.inputs {
1a4d82fc 1575 pat_util::pat_bindings(&self.ir.tcx.def_map,
7453a54e 1576 &arg.pat,
1a4d82fc 1577 |_bm, p_id, sp, path1| {
223e47cc 1578 let var = self.variable(p_id, sp);
1a4d82fc 1579 // Ignore unused self.
b039eaaf
SL
1580 let name = path1.node;
1581 if name != special_idents::self_.name {
92a42be0
SL
1582 if !self.warn_about_unused(sp, p_id, entry_ln, var) {
1583 if self.live_on_entry(entry_ln, var).is_none() {
1584 self.report_dead_assign(p_id, sp, var, true);
1585 }
1586 }
1a4d82fc
JJ
1587 }
1588 })
223e47cc
LB
1589 }
1590 }
1591
e9174d1e 1592 fn warn_about_unused_or_dead_vars_in_pat(&mut self, pat: &hir::Pat) {
1a4d82fc
JJ
1593 self.pat_bindings(pat, |this, ln, var, sp, id| {
1594 if !this.warn_about_unused(sp, id, ln, var) {
1595 this.warn_about_dead_assign(sp, id, ln, var);
223e47cc 1596 }
1a4d82fc 1597 })
223e47cc
LB
1598 }
1599
1a4d82fc
JJ
1600 fn warn_about_unused(&self,
1601 sp: Span,
1602 id: NodeId,
1603 ln: LiveNode,
1604 var: Variable)
1605 -> bool {
223e47cc 1606 if !self.used_on_entry(ln, var) {
970d7e83 1607 let r = self.should_warn(var);
85aaf69f 1608 if let Some(name) = r {
223e47cc 1609
92a42be0 1610 // annoying: for parameters in funcs like `fn(x: i32)
223e47cc
LB
1611 // {ret}`, there is only one node, so asking about
1612 // assigned_on_exit() is not meaningful.
1613 let is_assigned = if ln == self.s.exit_ln {
1614 false
1615 } else {
1616 self.assigned_on_exit(ln, var).is_some()
1617 };
1618
1619 if is_assigned {
1a4d82fc
JJ
1620 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_VARIABLES, id, sp,
1621 format!("variable `{}` is assigned to, but never used",
85aaf69f 1622 name));
92a42be0 1623 } else if name != "self" {
1a4d82fc 1624 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_VARIABLES, id, sp,
85aaf69f 1625 format!("unused variable: `{}`", name));
223e47cc
LB
1626 }
1627 }
970d7e83
LB
1628 true
1629 } else {
1630 false
223e47cc 1631 }
223e47cc
LB
1632 }
1633
1a4d82fc
JJ
1634 fn warn_about_dead_assign(&self,
1635 sp: Span,
1636 id: NodeId,
1637 ln: LiveNode,
1638 var: Variable) {
223e47cc 1639 if self.live_on_exit(ln, var).is_none() {
92a42be0
SL
1640 self.report_dead_assign(id, sp, var, false);
1641 }
1642 }
1643
1644 fn report_dead_assign(&self, id: NodeId, sp: Span, var: Variable, is_argument: bool) {
1645 if let Some(name) = self.should_warn(var) {
1646 if is_argument {
1647 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_ASSIGNMENTS, id, sp,
1648 format!("value passed to `{}` is never read", name));
1649 } else {
1a4d82fc 1650 self.ir.tcx.sess.add_lint(lint::builtin::UNUSED_ASSIGNMENTS, id, sp,
85aaf69f 1651 format!("value assigned to `{}` is never read", name));
223e47cc
LB
1652 }
1653 }
1654 }
92a42be0 1655}