]> git.proxmox.com Git - rustc.git/blame - src/librustc/middle/region.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / librustc / middle / region.rs
CommitLineData
1a4d82fc 1// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
223e47cc
LB
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
1a4d82fc
JJ
11//! This file actually contains two passes related to regions. The first
12//! pass builds up the `scope_map`, which describes the parent links in
13//! the region hierarchy. The second pass infers which types must be
14//! region parameterized.
15//!
16//! Most of the documentation on regions can be found in
9cc50fc6 17//! `middle/infer/region_inference/README.md`
1a4d82fc 18
7453a54e 19use dep_graph::DepNode;
54a0048b 20use hir::map as ast_map;
1a4d82fc 21use session::Session;
e9174d1e 22use util::nodemap::{FnvHashMap, NodeMap, NodeSet};
92a42be0 23use middle::cstore::InlinedItem;
54a0048b 24use ty;
1a4d82fc
JJ
25
26use std::cell::RefCell;
e9174d1e
SL
27use std::collections::hash_map::Entry;
28use std::fmt;
29use std::mem;
85aaf69f 30use syntax::codemap::{self, Span};
e9174d1e
SL
31use syntax::ast::{self, NodeId};
32
54a0048b
SL
33use hir;
34use hir::intravisit::{self, Visitor, FnKind};
35use hir::{Block, Item, FnDecl, Arm, Pat, PatKind, Stmt, Expr, Local};
e9174d1e
SL
36
37#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable,
38 RustcDecodable, Copy)]
39pub struct CodeExtent(u32);
40
41impl fmt::Debug for CodeExtent {
42 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
54a0048b 43 write!(f, "CodeExtent({:?}", self.0)?;
e9174d1e 44
54a0048b 45 ty::tls::with_opt(|opt_tcx| {
e9174d1e 46 if let Some(tcx) = opt_tcx {
54a0048b
SL
47 if let Some(data) = tcx.region_maps.code_extents.borrow().get(self.0 as usize) {
48 write!(f, "/{:?}", data)?;
49 }
e9174d1e
SL
50 }
51 Ok(())
54a0048b 52 })?;
e9174d1e
SL
53
54 write!(f, ")")
55 }
56}
57
58/// The root of everything. I should be using NonZero or profiling
59/// instead of this (probably).
60pub const ROOT_CODE_EXTENT : CodeExtent = CodeExtent(0);
61/// A placeholder used in trans to stand for real code extents
62pub const DUMMY_CODE_EXTENT : CodeExtent = CodeExtent(1);
223e47cc 63
1a4d82fc
JJ
64/// CodeExtent represents a statically-describable extent that can be
65/// used to bound the lifetime/region for values.
66///
85aaf69f
SL
67/// `Misc(node_id)`: Any AST node that has any extent at all has the
68/// `Misc(node_id)` extent. Other variants represent special cases not
69/// immediately derivable from the abstract syntax tree structure.
70///
71/// `DestructionScope(node_id)` represents the extent of destructors
72/// implicitly-attached to `node_id` that run immediately after the
73/// expression for `node_id` itself. Not every AST node carries a
74/// `DestructionScope`, but those that are `terminating_scopes` do;
75/// see discussion with `RegionMaps`.
76///
77/// `Remainder(BlockRemainder { block, statement_index })` represents
78/// the extent of user code running immediately after the initializer
79/// expression for the indexed statement, until the end of the block.
80///
81/// So: the following code can be broken down into the extents beneath:
82/// ```
83/// let a = f().g( 'b: { let x = d(); let y = d(); x.h(y) } ) ;
84/// ```
85///
86/// +-+ (D12.)
87/// +-+ (D11.)
88/// +---------+ (R10.)
89/// +-+ (D9.)
90/// +----------+ (M8.)
91/// +----------------------+ (R7.)
92/// +-+ (D6.)
93/// +----------+ (M5.)
94/// +-----------------------------------+ (M4.)
95/// +--------------------------------------------------+ (M3.)
96/// +--+ (M2.)
97/// +-----------------------------------------------------------+ (M1.)
98///
99/// (M1.): Misc extent of the whole `let a = ...;` statement.
100/// (M2.): Misc extent of the `f()` expression.
101/// (M3.): Misc extent of the `f().g(..)` expression.
102/// (M4.): Misc extent of the block labelled `'b:`.
103/// (M5.): Misc extent of the `let x = d();` statement
104/// (D6.): DestructionScope for temporaries created during M5.
105/// (R7.): Remainder extent for block `'b:`, stmt 0 (let x = ...).
106/// (M8.): Misc Extent of the `let y = d();` statement.
107/// (D9.): DestructionScope for temporaries created during M8.
108/// (R10.): Remainder extent for block `'b:`, stmt 1 (let y = ...).
109/// (D11.): DestructionScope for temporaries and bindings from block `'b:`.
110/// (D12.): DestructionScope for temporaries created during M1 (e.g. f()).
111///
112/// Note that while the above picture shows the destruction scopes
113/// as following their corresponding misc extents, in the internal
114/// data structures of the compiler the destruction scopes are
115/// represented as enclosing parents. This is sound because we use the
116/// enclosing parent relationship just to ensure that referenced
117/// values live long enough; phrased another way, the starting point
118/// of each range is not really the important thing in the above
119/// picture, but rather the ending point.
120///
1a4d82fc
JJ
121/// FIXME (pnkfelix): This currently derives `PartialOrd` and `Ord` to
122/// placate the same deriving in `ty::FreeRegion`, but we may want to
123/// actually attach a more meaningful ordering to scopes than the one
124/// generated via deriving here.
e9174d1e
SL
125#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Debug, Copy)]
126pub enum CodeExtentData {
85aaf69f 127 Misc(ast::NodeId),
9346a6ac 128
9cc50fc6
SL
129 // extent of the call-site for a function or closure (outlives
130 // the parameters as well as the body).
131 CallSiteScope { fn_id: ast::NodeId, body_id: ast::NodeId },
132
9346a6ac
AL
133 // extent of parameters passed to a function or closure (they
134 // outlive its body)
135 ParameterScope { fn_id: ast::NodeId, body_id: ast::NodeId },
136
137 // extent of destructors for temporaries of node-id
138 DestructionScope(ast::NodeId),
139
140 // extent of code following a `let id = expr;` binding in a block
85aaf69f
SL
141 Remainder(BlockRemainder)
142}
143
9cc50fc6 144/// extent of call-site for a function/method.
85aaf69f
SL
145#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable,
146 RustcDecodable, Debug, Copy)]
9cc50fc6
SL
147pub struct CallSiteScopeData {
148 pub fn_id: ast::NodeId, pub body_id: ast::NodeId,
85aaf69f
SL
149}
150
9cc50fc6 151impl CallSiteScopeData {
e9174d1e
SL
152 pub fn to_code_extent(&self, region_maps: &RegionMaps) -> CodeExtent {
153 region_maps.lookup_code_extent(
9cc50fc6
SL
154 match *self {
155 CallSiteScopeData { fn_id, body_id } =>
156 CodeExtentData::CallSiteScope { fn_id: fn_id, body_id: body_id },
157 })
85aaf69f
SL
158 }
159}
160
161/// Represents a subscope of `block` for a binding that is introduced
162/// by `block.stmts[first_statement_index]`. Such subscopes represent
163/// a suffix of the block. Note that each subscope does not include
164/// the initializer expression, if any, for the statement indexed by
165/// `first_statement_index`.
166///
167/// For example, given `{ let (a, b) = EXPR_1; let c = EXPR_2; ... }`:
168///
169/// * the subscope with `first_statement_index == 0` is scope of both
170/// `a` and `b`; it does not include EXPR_1, but does include
171/// everything after that first `let`. (If you want a scope that
e9174d1e 172/// includes EXPR_1 as well, then do not use `CodeExtentData::Remainder`,
85aaf69f 173/// but instead another `CodeExtent` that encompasses the whole block,
e9174d1e 174/// e.g. `CodeExtentData::Misc`.
85aaf69f
SL
175///
176/// * the subscope with `first_statement_index == 1` is scope of `c`,
177/// and thus does not include EXPR_2, but covers the `...`.
178#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable,
179 RustcDecodable, Debug, Copy)]
180pub struct BlockRemainder {
181 pub block: ast::NodeId,
e9174d1e 182 pub first_statement_index: u32,
1a4d82fc 183}
223e47cc 184
e9174d1e 185impl CodeExtentData {
1a4d82fc
JJ
186 /// Returns a node id associated with this scope.
187 ///
188 /// NB: likely to be replaced as API is refined; e.g. pnkfelix
189 /// anticipates `fn entry_node_id` and `fn each_exit_node_id`.
190 pub fn node_id(&self) -> ast::NodeId {
191 match *self {
e9174d1e 192 CodeExtentData::Misc(node_id) => node_id,
9346a6ac
AL
193
194 // These cases all return rough approximations to the
195 // precise extent denoted by `self`.
e9174d1e
SL
196 CodeExtentData::Remainder(br) => br.block,
197 CodeExtentData::DestructionScope(node_id) => node_id,
9cc50fc6 198 CodeExtentData::CallSiteScope { fn_id: _, body_id } |
e9174d1e 199 CodeExtentData::ParameterScope { fn_id: _, body_id } => body_id,
1a4d82fc
JJ
200 }
201 }
e9174d1e 202}
223e47cc 203
e9174d1e
SL
204impl CodeExtent {
205 #[inline]
206 fn into_option(self) -> Option<CodeExtent> {
207 if self == ROOT_CODE_EXTENT {
208 None
209 } else {
210 Some(self)
1a4d82fc
JJ
211 }
212 }
e9174d1e
SL
213 pub fn node_id(&self, region_maps: &RegionMaps) -> ast::NodeId {
214 region_maps.code_extent_data(*self).node_id()
215 }
85aaf69f
SL
216
217 /// Returns the span of this CodeExtent. Note that in general the
218 /// returned span may not correspond to the span of any node id in
219 /// the AST.
e9174d1e
SL
220 pub fn span(&self, region_maps: &RegionMaps, ast_map: &ast_map::Map) -> Option<Span> {
221 match ast_map.find(self.node_id(region_maps)) {
85aaf69f 222 Some(ast_map::NodeBlock(ref blk)) => {
e9174d1e 223 match region_maps.code_extent_data(*self) {
9cc50fc6 224 CodeExtentData::CallSiteScope { .. } |
e9174d1e
SL
225 CodeExtentData::ParameterScope { .. } |
226 CodeExtentData::Misc(_) |
227 CodeExtentData::DestructionScope(_) => Some(blk.span),
85aaf69f 228
e9174d1e 229 CodeExtentData::Remainder(r) => {
85aaf69f
SL
230 assert_eq!(r.block, blk.id);
231 // Want span for extent starting after the
232 // indexed statement and ending at end of
233 // `blk`; reuse span of `blk` and shift `lo`
234 // forward to end of indexed statement.
235 //
236 // (This is the special case aluded to in the
237 // doc-comment for this method)
e9174d1e 238 let stmt_span = blk.stmts[r.first_statement_index as usize].span;
85aaf69f
SL
239 Some(Span { lo: stmt_span.hi, ..blk.span })
240 }
241 }
242 }
243 Some(ast_map::NodeExpr(ref expr)) => Some(expr.span),
244 Some(ast_map::NodeStmt(ref stmt)) => Some(stmt.span),
245 Some(ast_map::NodeItem(ref item)) => Some(item.span),
246 Some(_) | None => None,
247 }
248 }
1a4d82fc 249}
223e47cc 250
1a4d82fc 251/// The region maps encode information about region relationships.
970d7e83 252pub struct RegionMaps {
e9174d1e
SL
253 code_extents: RefCell<Vec<CodeExtentData>>,
254 code_extent_interner: RefCell<FnvHashMap<CodeExtentData, CodeExtent>>,
c34b1796
AL
255 /// `scope_map` maps from a scope id to the enclosing scope id;
256 /// this is usually corresponding to the lexical nesting, though
257 /// in the case of closures the parent scope is the innermost
258 /// conditional expression or repeating block. (Note that the
259 /// enclosing scope id for the block associated with a closure is
260 /// the closure itself.)
e9174d1e 261 scope_map: RefCell<Vec<CodeExtent>>,
c34b1796
AL
262
263 /// `var_map` maps from a variable or binding id to the block in
264 /// which that variable is declared.
1a4d82fc 265 var_map: RefCell<NodeMap<CodeExtent>>,
c34b1796 266
c34b1796
AL
267 /// `rvalue_scopes` includes entries for those expressions whose cleanup scope is
268 /// larger than the default. The map goes from the expression id
269 /// to the cleanup scope id. For rvalues not present in this
270 /// table, the appropriate cleanup scope is the innermost
271 /// enclosing statement, conditional expression, or repeating
272 /// block (see `terminating_scopes`).
1a4d82fc 273 rvalue_scopes: RefCell<NodeMap<CodeExtent>>,
c34b1796 274
c34b1796
AL
275 /// Encodes the hierarchy of fn bodies. Every fn body (including
276 /// closures) forms its own distinct region hierarchy, rooted in
277 /// the block that is the fn body. This map points from the id of
278 /// that root block to the id of the root block for the enclosing
279 /// fn, if any. Thus the map structures the fn bodies into a
280 /// hierarchy based on their lexical mapping. This is used to
281 /// handle the relationships between regions in a fn and in a
282 /// closure defined by that fn. See the "Modeling closures"
54a0048b 283 /// section of the README in infer::region_inference for
c34b1796
AL
284 /// more details.
285 fn_tree: RefCell<NodeMap<ast::NodeId>>,
970d7e83 286}
223e47cc 287
c34b1796 288#[derive(Debug, Copy, Clone)]
970d7e83 289pub struct Context {
c34b1796
AL
290 /// the root of the current region tree. This is typically the id
291 /// of the innermost fn body. Each fn forms its own disjoint tree
292 /// in the region hierarchy. These fn bodies are themselves
293 /// arranged into a tree. See the "Modeling closures" section of
54a0048b 294 /// the README in infer::region_inference for more
c34b1796
AL
295 /// details.
296 root_id: Option<ast::NodeId>,
297
298 /// the scope that contains any new variables declared
e9174d1e 299 var_parent: CodeExtent,
223e47cc 300
c34b1796 301 /// region parent of expressions etc
e9174d1e 302 parent: CodeExtent
1a4d82fc 303}
970d7e83 304
1a4d82fc
JJ
305struct RegionResolutionVisitor<'a> {
306 sess: &'a Session,
970d7e83 307
1a4d82fc
JJ
308 // Generated maps:
309 region_maps: &'a RegionMaps,
310
e9174d1e
SL
311 cx: Context,
312
313 /// `terminating_scopes` is a set containing the ids of each
314 /// statement, or conditional/repeating expression. These scopes
315 /// are calling "terminating scopes" because, when attempting to
316 /// find the scope of a temporary, by default we search up the
317 /// enclosing scopes until we encounter the terminating scope. A
318 /// conditional/repeating expression is one which is not
319 /// guaranteed to execute exactly once upon entering the parent
320 /// scope. This could be because the expression only executes
321 /// conditionally, such as the expression `b` in `a && b`, or
322 /// because the expression may execute many times, such as a loop
323 /// body. The reason that we distinguish such expressions is that,
324 /// upon exiting the parent scope, we cannot statically know how
325 /// many times the expression executed, and thus if the expression
326 /// creates temporaries we cannot know statically how many such
327 /// temporaries we would have to cleanup. Therefore we ensure that
328 /// the temporaries never outlast the conditional/repeating
329 /// expression, preventing the need for dynamic checks and/or
330 /// arbitrary amounts of stack space. Terminating scopes end
331 /// up being contained in a DestructionScope that contains the
332 /// destructor's execution.
333 terminating_scopes: NodeSet
223e47cc
LB
334}
335
1a4d82fc 336
970d7e83 337impl RegionMaps {
e9174d1e
SL
338 /// create a bogus code extent for the regions in astencode types. Nobody
339 /// really cares about the contents of these.
340 pub fn bogus_code_extent(&self, e: CodeExtentData) -> CodeExtent {
341 self.intern_code_extent(e, DUMMY_CODE_EXTENT)
342 }
343 pub fn lookup_code_extent(&self, e: CodeExtentData) -> CodeExtent {
344 match self.code_extent_interner.borrow().get(&e) {
345 Some(&d) => d,
54a0048b 346 None => bug!("unknown code extent {:?}", e)
e9174d1e
SL
347 }
348 }
349 pub fn node_extent(&self, n: ast::NodeId) -> CodeExtent {
350 self.lookup_code_extent(CodeExtentData::Misc(n))
351 }
352 // Returns the code extent for an item - the destruction scope.
353 pub fn item_extent(&self, n: ast::NodeId) -> CodeExtent {
354 self.lookup_code_extent(CodeExtentData::DestructionScope(n))
355 }
9cc50fc6
SL
356 pub fn call_site_extent(&self, fn_id: ast::NodeId, body_id: ast::NodeId) -> CodeExtent {
357 assert!(fn_id != body_id);
358 self.lookup_code_extent(CodeExtentData::CallSiteScope { fn_id: fn_id, body_id: body_id })
359 }
e9174d1e
SL
360 pub fn opt_destruction_extent(&self, n: ast::NodeId) -> Option<CodeExtent> {
361 self.code_extent_interner.borrow().get(&CodeExtentData::DestructionScope(n)).cloned()
362 }
363 pub fn intern_code_extent(&self,
364 e: CodeExtentData,
365 parent: CodeExtent) -> CodeExtent {
366 match self.code_extent_interner.borrow_mut().entry(e) {
367 Entry::Occupied(o) => {
368 // this can happen when the bogus code extents from tydecode
369 // have (bogus) NodeId-s that overlap items created during
370 // inlining.
371 // We probably shouldn't be creating bogus code extents
372 // though.
373 let idx = *o.get();
374 if parent == DUMMY_CODE_EXTENT {
375 info!("CodeExtent({}) = {:?} [parent={}] BOGUS!",
376 idx.0, e, parent.0);
377 } else {
378 assert_eq!(self.scope_map.borrow()[idx.0 as usize],
379 DUMMY_CODE_EXTENT);
380 info!("CodeExtent({}) = {:?} [parent={}] RECLAIMED!",
381 idx.0, e, parent.0);
382 self.scope_map.borrow_mut()[idx.0 as usize] = parent;
383 }
384 idx
385 }
386 Entry::Vacant(v) => {
387 if self.code_extents.borrow().len() > 0xffffffffusize {
54a0048b
SL
388 bug!() // should pass a sess,
389 // but this isn't the only place
e9174d1e
SL
390 }
391 let idx = CodeExtent(self.code_extents.borrow().len() as u32);
392 info!("CodeExtent({}) = {:?} [parent={}]", idx.0, e, parent.0);
393 self.code_extents.borrow_mut().push(e);
394 self.scope_map.borrow_mut().push(parent);
395 *v.insert(idx)
396 }
397 }
398 }
399 pub fn intern_node(&self,
400 n: ast::NodeId,
401 parent: CodeExtent) -> CodeExtent {
402 self.intern_code_extent(CodeExtentData::Misc(n), parent)
403 }
404 pub fn code_extent_data(&self, e: CodeExtent) -> CodeExtentData {
405 self.code_extents.borrow()[e.0 as usize]
406 }
85aaf69f 407 pub fn each_encl_scope<E>(&self, mut e:E) where E: FnMut(&CodeExtent, &CodeExtent) {
b039eaaf 408 for child_id in 1..self.code_extents.borrow().len() {
e9174d1e
SL
409 let child = CodeExtent(child_id as u32);
410 if let Some(parent) = self.opt_encl_scope(child) {
411 e(&child, &parent)
412 }
85aaf69f
SL
413 }
414 }
415 pub fn each_var_scope<E>(&self, mut e:E) where E: FnMut(&ast::NodeId, &CodeExtent) {
416 for (child, parent) in self.var_map.borrow().iter() {
417 e(child, parent)
418 }
419 }
85aaf69f
SL
420 pub fn each_rvalue_scope<E>(&self, mut e:E) where E: FnMut(&ast::NodeId, &CodeExtent) {
421 for (child, parent) in self.rvalue_scopes.borrow().iter() {
422 e(child, parent)
423 }
424 }
c34b1796
AL
425 /// Records that `sub_fn` is defined within `sup_fn`. These ids
426 /// should be the id of the block that is the fn body, which is
427 /// also the root of the region hierarchy for that fn.
428 fn record_fn_parent(&self, sub_fn: ast::NodeId, sup_fn: ast::NodeId) {
429 debug!("record_fn_parent(sub_fn={:?}, sup_fn={:?})", sub_fn, sup_fn);
430 assert!(sub_fn != sup_fn);
431 let previous = self.fn_tree.borrow_mut().insert(sub_fn, sup_fn);
432 assert!(previous.is_none());
433 }
434
435 fn fn_is_enclosed_by(&self, mut sub_fn: ast::NodeId, sup_fn: ast::NodeId) -> bool {
436 let fn_tree = self.fn_tree.borrow();
437 loop {
438 if sub_fn == sup_fn { return true; }
439 match fn_tree.get(&sub_fn) {
440 Some(&s) => { sub_fn = s; }
441 None => { return false; }
442 }
443 }
444 }
445
c34b1796 446 fn record_var_scope(&self, var: ast::NodeId, lifetime: CodeExtent) {
1a4d82fc 447 debug!("record_var_scope(sub={:?}, sup={:?})", var, lifetime);
e9174d1e 448 assert!(var != lifetime.node_id(self));
1a4d82fc 449 self.var_map.borrow_mut().insert(var, lifetime);
970d7e83 450 }
223e47cc 451
c34b1796 452 fn record_rvalue_scope(&self, var: ast::NodeId, lifetime: CodeExtent) {
1a4d82fc 453 debug!("record_rvalue_scope(sub={:?}, sup={:?})", var, lifetime);
e9174d1e 454 assert!(var != lifetime.node_id(self));
1a4d82fc
JJ
455 self.rvalue_scopes.borrow_mut().insert(var, lifetime);
456 }
970d7e83 457
1a4d82fc 458 pub fn opt_encl_scope(&self, id: CodeExtent) -> Option<CodeExtent> {
970d7e83 459 //! Returns the narrowest scope that encloses `id`, if any.
e9174d1e 460 self.scope_map.borrow()[id.0 as usize].into_option()
970d7e83
LB
461 }
462
54a0048b 463 #[allow(dead_code)] // used in cfg
1a4d82fc 464 pub fn encl_scope(&self, id: CodeExtent) -> CodeExtent {
970d7e83 465 //! Returns the narrowest scope that encloses `id`, if any.
e9174d1e 466 self.opt_encl_scope(id).unwrap()
970d7e83
LB
467 }
468
1a4d82fc
JJ
469 /// Returns the lifetime of the local variable `var_id`
470 pub fn var_scope(&self, var_id: ast::NodeId) -> CodeExtent {
471 match self.var_map.borrow().get(&var_id) {
472 Some(&r) => r,
54a0048b 473 None => { bug!("no enclosing scope for id {:?}", var_id); }
1a4d82fc 474 }
970d7e83
LB
475 }
476
1a4d82fc
JJ
477 pub fn temporary_scope(&self, expr_id: ast::NodeId) -> Option<CodeExtent> {
478 //! Returns the scope when temp created by expr_id will be cleaned up
970d7e83 479
1a4d82fc
JJ
480 // check for a designated rvalue scope
481 match self.rvalue_scopes.borrow().get(&expr_id) {
482 Some(&s) => {
483 debug!("temporary_scope({:?}) = {:?} [custom]", expr_id, s);
484 return Some(s);
485 }
486 None => { }
970d7e83 487 }
1a4d82fc 488
e9174d1e
SL
489 let scope_map : &[CodeExtent] = &self.scope_map.borrow();
490 let code_extents: &[CodeExtentData] = &self.code_extents.borrow();
491
1a4d82fc
JJ
492 // else, locate the innermost terminating scope
493 // if there's one. Static items, for instance, won't
494 // have an enclosing scope, hence no scope will be
495 // returned.
e9174d1e
SL
496 let expr_extent = self.node_extent(expr_id);
497 // For some reason, the expr's scope itself is skipped here.
498 let mut id = match scope_map[expr_extent.0 as usize].into_option() {
1a4d82fc 499 Some(i) => i,
e9174d1e 500 _ => return None
1a4d82fc
JJ
501 };
502
e9174d1e
SL
503 while let Some(p) = scope_map[id.0 as usize].into_option() {
504 match code_extents[p.0 as usize] {
505 CodeExtentData::DestructionScope(..) => {
506 debug!("temporary_scope({:?}) = {:?} [enclosing]",
507 expr_id, id);
508 return Some(id);
1a4d82fc 509 }
e9174d1e 510 _ => id = p
1a4d82fc
JJ
511 }
512 }
e9174d1e
SL
513
514 debug!("temporary_scope({:?}) = None", expr_id);
515 return None;
970d7e83
LB
516 }
517
1a4d82fc
JJ
518 pub fn var_region(&self, id: ast::NodeId) -> ty::Region {
519 //! Returns the lifetime of the variable `id`.
970d7e83 520
1a4d82fc
JJ
521 let scope = ty::ReScope(self.var_scope(id));
522 debug!("var_region({:?}) = {:?}", id, scope);
523 scope
970d7e83
LB
524 }
525
1a4d82fc 526 pub fn scopes_intersect(&self, scope1: CodeExtent, scope2: CodeExtent)
970d7e83
LB
527 -> bool {
528 self.is_subscope_of(scope1, scope2) ||
529 self.is_subscope_of(scope2, scope1)
530 }
531
1a4d82fc
JJ
532 /// Returns true if `subscope` is equal to or is lexically nested inside `superscope` and false
533 /// otherwise.
970d7e83 534 pub fn is_subscope_of(&self,
1a4d82fc
JJ
535 subscope: CodeExtent,
536 superscope: CodeExtent)
970d7e83 537 -> bool {
970d7e83 538 let mut s = subscope;
e9174d1e 539 debug!("is_subscope_of({:?}, {:?})", subscope, superscope);
970d7e83 540 while superscope != s {
e9174d1e 541 match self.opt_encl_scope(s) {
970d7e83 542 None => {
1a4d82fc 543 debug!("is_subscope_of({:?}, {:?}, s={:?})=false",
970d7e83 544 subscope, superscope, s);
970d7e83
LB
545 return false;
546 }
e9174d1e 547 Some(scope) => s = scope
223e47cc
LB
548 }
549 }
223e47cc 550
1a4d82fc 551 debug!("is_subscope_of({:?}, {:?})=true",
970d7e83
LB
552 subscope, superscope);
553
554 return true;
555 }
556
1a4d82fc
JJ
557 /// Finds the nearest common ancestor (if any) of two scopes. That is, finds the smallest
558 /// scope which is greater than or equal to both `scope_a` and `scope_b`.
970d7e83 559 pub fn nearest_common_ancestor(&self,
1a4d82fc
JJ
560 scope_a: CodeExtent,
561 scope_b: CodeExtent)
c34b1796
AL
562 -> CodeExtent {
563 if scope_a == scope_b { return scope_a; }
970d7e83 564
e9174d1e
SL
565 let mut a_buf: [CodeExtent; 32] = [ROOT_CODE_EXTENT; 32];
566 let mut a_vec: Vec<CodeExtent> = vec![];
567 let mut b_buf: [CodeExtent; 32] = [ROOT_CODE_EXTENT; 32];
568 let mut b_vec: Vec<CodeExtent> = vec![];
569 let scope_map : &[CodeExtent] = &self.scope_map.borrow();
570 let a_ancestors = ancestors_of(scope_map,
571 scope_a, &mut a_buf, &mut a_vec);
572 let b_ancestors = ancestors_of(scope_map,
573 scope_b, &mut b_buf, &mut b_vec);
85aaf69f
SL
574 let mut a_index = a_ancestors.len() - 1;
575 let mut b_index = b_ancestors.len() - 1;
970d7e83 576
c34b1796 577 // Here, [ab]_ancestors is a vector going from narrow to broad.
970d7e83
LB
578 // The end of each vector will be the item where the scope is
579 // defined; if there are any common ancestors, then the tails of
580 // the vector will be the same. So basically we want to walk
581 // backwards from the tail of each vector and find the first point
582 // where they diverge. If one vector is a suffix of the other,
583 // then the corresponding scope is a superscope of the other.
584
223e47cc 585 if a_ancestors[a_index] != b_ancestors[b_index] {
c34b1796
AL
586 // In this case, the two regions belong to completely
587 // different functions. Compare those fn for lexical
588 // nesting. The reasoning behind this is subtle. See the
589 // "Modeling closures" section of the README in
54a0048b 590 // infer::region_inference for more details.
e9174d1e
SL
591 let a_root_scope = self.code_extent_data(a_ancestors[a_index]);
592 let b_root_scope = self.code_extent_data(a_ancestors[a_index]);
c34b1796 593 return match (a_root_scope, b_root_scope) {
e9174d1e
SL
594 (CodeExtentData::DestructionScope(a_root_id),
595 CodeExtentData::DestructionScope(b_root_id)) => {
c34b1796
AL
596 if self.fn_is_enclosed_by(a_root_id, b_root_id) {
597 // `a` is enclosed by `b`, hence `b` is the ancestor of everything in `a`
598 scope_b
599 } else if self.fn_is_enclosed_by(b_root_id, a_root_id) {
600 // `b` is enclosed by `a`, hence `a` is the ancestor of everything in `b`
601 scope_a
602 } else {
603 // neither fn encloses the other
54a0048b 604 bug!()
c34b1796
AL
605 }
606 }
607 _ => {
608 // root ids are always Misc right now
54a0048b 609 bug!()
c34b1796
AL
610 }
611 };
223e47cc 612 }
223e47cc 613
970d7e83
LB
614 loop {
615 // Loop invariant: a_ancestors[a_index] == b_ancestors[b_index]
616 // for all indices between a_index and the end of the array
c34b1796
AL
617 if a_index == 0 { return scope_a; }
618 if b_index == 0 { return scope_b; }
85aaf69f
SL
619 a_index -= 1;
620 b_index -= 1;
970d7e83 621 if a_ancestors[a_index] != b_ancestors[b_index] {
c34b1796 622 return a_ancestors[a_index + 1];
970d7e83
LB
623 }
624 }
625
e9174d1e
SL
626 fn ancestors_of<'a>(scope_map: &[CodeExtent],
627 scope: CodeExtent,
628 buf: &'a mut [CodeExtent; 32],
629 vec: &'a mut Vec<CodeExtent>) -> &'a [CodeExtent] {
1a4d82fc 630 // debug!("ancestors_of(scope={:?})", scope);
970d7e83 631 let mut scope = scope;
e9174d1e
SL
632
633 let mut i = 0;
634 while i < 32 {
635 buf[i] = scope;
636 match scope_map[scope.0 as usize].into_option() {
637 Some(superscope) => scope = superscope,
638 _ => return &buf[..i+1]
639 }
640 i += 1;
641 }
642
643 *vec = Vec::with_capacity(64);
92a42be0 644 vec.extend_from_slice(buf);
970d7e83 645 loop {
e9174d1e
SL
646 vec.push(scope);
647 match scope_map[scope.0 as usize].into_option() {
648 Some(superscope) => scope = superscope,
649 _ => return &*vec
970d7e83 650 }
970d7e83
LB
651 }
652 }
223e47cc
LB
653 }
654}
655
1a4d82fc
JJ
656/// Records the lifetime of a local variable as `cx.var_parent`
657fn record_var_lifetime(visitor: &mut RegionResolutionVisitor,
658 var_id: ast::NodeId,
659 _sp: Span) {
e9174d1e
SL
660 match visitor.cx.var_parent {
661 ROOT_CODE_EXTENT => {
1a4d82fc
JJ
662 // this can happen in extern fn declarations like
663 //
664 // extern fn isalnum(c: c_int) -> c_int
665 }
e9174d1e
SL
666 parent_scope =>
667 visitor.region_maps.record_var_scope(var_id, parent_scope),
1a4d82fc
JJ
668 }
669}
670
e9174d1e 671fn resolve_block(visitor: &mut RegionResolutionVisitor, blk: &hir::Block) {
1a4d82fc
JJ
672 debug!("resolve_block(blk.id={:?})", blk.id);
673
85aaf69f 674 let prev_cx = visitor.cx;
e9174d1e 675 let block_extent = visitor.new_node_extent_with_dtor(blk.id);
223e47cc 676
1a4d82fc
JJ
677 // We treat the tail expression in the block (if any) somewhat
678 // differently from the statements. The issue has to do with
85aaf69f
SL
679 // temporary lifetimes. Consider the following:
680 //
681 // quux({
682 // let inner = ... (&bar()) ...;
683 //
684 // (... (&foo()) ...) // (the tail expression)
685 // }, other_argument());
1a4d82fc 686 //
85aaf69f
SL
687 // Each of the statements within the block is a terminating
688 // scope, and thus a temporary (e.g. the result of calling
689 // `bar()` in the initalizer expression for `let inner = ...;`)
690 // will be cleaned up immediately after its corresponding
691 // statement (i.e. `let inner = ...;`) executes.
1a4d82fc 692 //
85aaf69f
SL
693 // On the other hand, temporaries associated with evaluating the
694 // tail expression for the block are assigned lifetimes so that
695 // they will be cleaned up as part of the terminating scope
696 // *surrounding* the block expression. Here, the terminating
697 // scope for the block expression is the `quux(..)` call; so
698 // those temporaries will only be cleaned up *after* both
699 // `other_argument()` has run and also the call to `quux(..)`
700 // itself has returned.
701
702 visitor.cx = Context {
c34b1796 703 root_id: prev_cx.root_id,
e9174d1e
SL
704 var_parent: block_extent,
705 parent: block_extent,
85aaf69f
SL
706 };
707
708 {
709 // This block should be kept approximately in sync with
92a42be0 710 // `intravisit::walk_block`. (We manually walk the block, rather
85aaf69f 711 // than call `walk_block`, in order to maintain precise
e9174d1e 712 // index information.)
85aaf69f
SL
713
714 for (i, statement) in blk.stmts.iter().enumerate() {
e9174d1e 715 if let hir::StmtDecl(..) = statement.node {
85aaf69f
SL
716 // Each StmtDecl introduces a subscope for bindings
717 // introduced by the declaration; this subscope covers
718 // a suffix of the block . Each subscope in a block
719 // has the previous subscope in the block as a parent,
720 // except for the first such subscope, which has the
721 // block itself as a parent.
e9174d1e
SL
722 let stmt_extent = visitor.new_code_extent(
723 CodeExtentData::Remainder(BlockRemainder {
724 block: blk.id,
725 first_statement_index: i as u32
726 })
727 );
85aaf69f 728 visitor.cx = Context {
c34b1796 729 root_id: prev_cx.root_id,
e9174d1e
SL
730 var_parent: stmt_extent,
731 parent: stmt_extent,
85aaf69f
SL
732 };
733 }
92a42be0 734 visitor.visit_stmt(statement)
85aaf69f 735 }
b039eaaf 736 walk_list!(visitor, visit_expr, &blk.expr);
85aaf69f 737 }
223e47cc 738
1a4d82fc 739 visitor.cx = prev_cx;
223e47cc
LB
740}
741
e9174d1e
SL
742fn resolve_arm(visitor: &mut RegionResolutionVisitor, arm: &hir::Arm) {
743 visitor.terminating_scopes.insert(arm.body.id);
223e47cc 744
e9174d1e
SL
745 if let Some(ref expr) = arm.guard {
746 visitor.terminating_scopes.insert(expr.id);
223e47cc 747 }
1a4d82fc 748
92a42be0 749 intravisit::walk_arm(visitor, arm);
223e47cc
LB
750}
751
e9174d1e
SL
752fn resolve_pat(visitor: &mut RegionResolutionVisitor, pat: &hir::Pat) {
753 visitor.new_node_extent(pat.id);
223e47cc 754
1a4d82fc
JJ
755 // If this is a binding (or maybe a binding, I'm too lazy to check
756 // the def map) then record the lifetime of that binding.
757 match pat.node {
7453a54e 758 PatKind::Ident(..) => {
1a4d82fc 759 record_var_lifetime(visitor, pat.id, pat.span);
970d7e83 760 }
1a4d82fc
JJ
761 _ => { }
762 }
970d7e83 763
92a42be0 764 intravisit::walk_pat(visitor, pat);
1a4d82fc 765}
970d7e83 766
e9174d1e 767fn resolve_stmt(visitor: &mut RegionResolutionVisitor, stmt: &hir::Stmt) {
54a0048b 768 let stmt_id = stmt.node.id();
1a4d82fc 769 debug!("resolve_stmt(stmt.id={:?})", stmt_id);
223e47cc 770
85aaf69f
SL
771 // Every statement will clean up the temporaries created during
772 // execution of that statement. Therefore each statement has an
773 // associated destruction scope that represents the extent of the
774 // statement plus its destructors, and thus the extent for which
775 // regions referenced by the destructors need to survive.
e9174d1e
SL
776 visitor.terminating_scopes.insert(stmt_id);
777 let stmt_extent = visitor.new_node_extent_with_dtor(stmt_id);
223e47cc 778
1a4d82fc 779 let prev_parent = visitor.cx.parent;
e9174d1e 780 visitor.cx.parent = stmt_extent;
92a42be0 781 intravisit::walk_stmt(visitor, stmt);
1a4d82fc 782 visitor.cx.parent = prev_parent;
223e47cc
LB
783}
784
e9174d1e 785fn resolve_expr(visitor: &mut RegionResolutionVisitor, expr: &hir::Expr) {
1a4d82fc 786 debug!("resolve_expr(expr.id={:?})", expr.id);
223e47cc 787
e9174d1e 788 let expr_extent = visitor.new_node_extent_with_dtor(expr.id);
1a4d82fc 789 let prev_cx = visitor.cx;
e9174d1e 790 visitor.cx.parent = expr_extent;
970d7e83 791
1a4d82fc 792 {
e9174d1e
SL
793 let terminating_scopes = &mut visitor.terminating_scopes;
794 let mut terminating = |id: ast::NodeId| {
795 terminating_scopes.insert(id);
1a4d82fc
JJ
796 };
797 match expr.node {
798 // Conditional or repeating scopes are always terminating
799 // scopes, meaning that temporaries cannot outlive them.
800 // This ensures fixed size stacks.
801
e9174d1e
SL
802 hir::ExprBinary(codemap::Spanned { node: hir::BiAnd, .. }, _, ref r) |
803 hir::ExprBinary(codemap::Spanned { node: hir::BiOr, .. }, _, ref r) => {
1a4d82fc
JJ
804 // For shortcircuiting operators, mark the RHS as a terminating
805 // scope since it only executes conditionally.
e9174d1e 806 terminating(r.id);
1a4d82fc 807 }
223e47cc 808
e9174d1e
SL
809 hir::ExprIf(_, ref then, Some(ref otherwise)) => {
810 terminating(then.id);
811 terminating(otherwise.id);
1a4d82fc 812 }
223e47cc 813
e9174d1e
SL
814 hir::ExprIf(ref expr, ref then, None) => {
815 terminating(expr.id);
816 terminating(then.id);
1a4d82fc 817 }
223e47cc 818
e9174d1e
SL
819 hir::ExprLoop(ref body, _) => {
820 terminating(body.id);
1a4d82fc 821 }
223e47cc 822
e9174d1e
SL
823 hir::ExprWhile(ref expr, ref body, _) => {
824 terminating(expr.id);
825 terminating(body.id);
1a4d82fc 826 }
223e47cc 827
e9174d1e
SL
828 hir::ExprMatch(..) => {
829 visitor.cx.var_parent = expr_extent;
1a4d82fc 830 }
223e47cc 831
e9174d1e
SL
832 hir::ExprAssignOp(..) | hir::ExprIndex(..) |
833 hir::ExprUnary(..) | hir::ExprCall(..) | hir::ExprMethodCall(..) => {
1a4d82fc
JJ
834 // FIXME(#6268) Nested method calls
835 //
836 // The lifetimes for a call or method call look as follows:
837 //
838 // call.id
839 // - arg0.id
840 // - ...
841 // - argN.id
842 // - call.callee_id
843 //
844 // The idea is that call.callee_id represents *the time when
845 // the invoked function is actually running* and call.id
846 // represents *the time to prepare the arguments and make the
c34b1796 847 // call*. See the section "Borrows in Calls" borrowck/README.md
1a4d82fc
JJ
848 // for an extended explanation of why this distinction is
849 // important.
850 //
851 // record_superlifetime(new_cx, expr.callee_id);
852 }
223e47cc 853
1a4d82fc
JJ
854 _ => {}
855 }
223e47cc 856 }
223e47cc 857
92a42be0 858 intravisit::walk_expr(visitor, expr);
1a4d82fc 859 visitor.cx = prev_cx;
223e47cc
LB
860}
861
e9174d1e 862fn resolve_local(visitor: &mut RegionResolutionVisitor, local: &hir::Local) {
1a4d82fc
JJ
863 debug!("resolve_local(local.id={:?},local.init={:?})",
864 local.id,local.init.is_some());
223e47cc 865
1a4d82fc
JJ
866 // For convenience in trans, associate with the local-id the var
867 // scope that will be used for any bindings declared in this
868 // pattern.
e9174d1e
SL
869 let blk_scope = visitor.cx.var_parent;
870 assert!(blk_scope != ROOT_CODE_EXTENT); // locals must be within a block
1a4d82fc 871 visitor.region_maps.record_var_scope(local.id, blk_scope);
223e47cc 872
1a4d82fc
JJ
873 // As an exception to the normal rules governing temporary
874 // lifetimes, initializers in a let have a temporary lifetime
875 // of the enclosing block. This means that e.g. a program
876 // like the following is legal:
223e47cc 877 //
1a4d82fc 878 // let ref x = HashMap::new();
223e47cc 879 //
1a4d82fc 880 // Because the hash map will be freed in the enclosing block.
223e47cc 881 //
1a4d82fc
JJ
882 // We express the rules more formally based on 3 grammars (defined
883 // fully in the helpers below that implement them):
223e47cc 884 //
1a4d82fc
JJ
885 // 1. `E&`, which matches expressions like `&<rvalue>` that
886 // own a pointer into the stack.
223e47cc 887 //
1a4d82fc
JJ
888 // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
889 // y)` that produce ref bindings into the value they are
890 // matched against or something (at least partially) owned by
891 // the value they are matched against. (By partially owned,
892 // I mean that creating a binding into a ref-counted or managed value
893 // would still count.)
223e47cc 894 //
1a4d82fc
JJ
895 // 3. `ET`, which matches both rvalues like `foo()` as well as lvalues
896 // based on rvalues like `foo().x[2].y`.
223e47cc 897 //
1a4d82fc
JJ
898 // A subexpression `<rvalue>` that appears in a let initializer
899 // `let pat [: ty] = expr` has an extended temporary lifetime if
900 // any of the following conditions are met:
901 //
902 // A. `pat` matches `P&` and `expr` matches `ET`
903 // (covers cases where `pat` creates ref bindings into an rvalue
904 // produced by `expr`)
905 // B. `ty` is a borrowed pointer and `expr` matches `ET`
906 // (covers cases where coercion creates a borrow)
907 // C. `expr` matches `E&`
908 // (covers cases `expr` borrows an rvalue that is then assigned
909 // to memory (at least partially) owned by the binding)
910 //
911 // Here are some examples hopefully giving an intuition where each
912 // rule comes into play and why:
913 //
914 // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
915 // would have an extended lifetime, but not `foo()`.
916 //
917 // Rule B. `let x: &[...] = [foo().x]`. The rvalue `[foo().x]`
918 // would have an extended lifetime, but not `foo()`.
919 //
920 // Rule C. `let x = &foo().x`. The rvalue ``foo()` would have extended
921 // lifetime.
922 //
923 // In some cases, multiple rules may apply (though not to the same
924 // rvalue). For example:
925 //
926 // let ref x = [&a(), &b()];
927 //
928 // Here, the expression `[...]` has an extended lifetime due to rule
929 // A, but the inner rvalues `a()` and `b()` have an extended lifetime
930 // due to rule C.
931 //
932 // FIXME(#6308) -- Note that `[]` patterns work more smoothly post-DST.
933
934 match local.init {
935 Some(ref expr) => {
7453a54e 936 record_rvalue_scope_if_borrow_expr(visitor, &expr, blk_scope);
1a4d82fc
JJ
937
938 let is_borrow =
7453a54e 939 if let Some(ref ty) = local.ty { is_borrowed_ty(&ty) } else { false };
1a4d82fc 940
7453a54e
SL
941 if is_binding_pat(&local.pat) || is_borrow {
942 record_rvalue_scope(visitor, &expr, blk_scope);
223e47cc
LB
943 }
944 }
223e47cc 945
1a4d82fc 946 None => { }
223e47cc 947 }
223e47cc 948
92a42be0 949 intravisit::walk_local(visitor, local);
1a4d82fc
JJ
950
951 /// True if `pat` match the `P&` nonterminal:
952 ///
953 /// P& = ref X
954 /// | StructName { ..., P&, ... }
955 /// | VariantName(..., P&, ...)
956 /// | [ ..., P&, ... ]
957 /// | ( ..., P&, ... )
958 /// | box P&
e9174d1e 959 fn is_binding_pat(pat: &hir::Pat) -> bool {
1a4d82fc 960 match pat.node {
7453a54e 961 PatKind::Ident(hir::BindByRef(_), _, _) => true,
223e47cc 962
7453a54e
SL
963 PatKind::Struct(_, ref field_pats, _) => {
964 field_pats.iter().any(|fp| is_binding_pat(&fp.node.pat))
223e47cc 965 }
1a4d82fc 966
7453a54e
SL
967 PatKind::Vec(ref pats1, ref pats2, ref pats3) => {
968 pats1.iter().any(|p| is_binding_pat(&p)) ||
969 pats2.iter().any(|p| is_binding_pat(&p)) ||
970 pats3.iter().any(|p| is_binding_pat(&p))
1a4d82fc
JJ
971 }
972
7453a54e
SL
973 PatKind::TupleStruct(_, Some(ref subpats)) |
974 PatKind::Tup(ref subpats) => {
975 subpats.iter().any(|p| is_binding_pat(&p))
1a4d82fc
JJ
976 }
977
7453a54e
SL
978 PatKind::Box(ref subpat) => {
979 is_binding_pat(&subpat)
1a4d82fc
JJ
980 }
981
982 _ => false,
223e47cc 983 }
223e47cc 984 }
223e47cc 985
1a4d82fc 986 /// True if `ty` is a borrowed pointer type like `&int` or `&[...]`.
e9174d1e 987 fn is_borrowed_ty(ty: &hir::Ty) -> bool {
1a4d82fc 988 match ty.node {
e9174d1e 989 hir::TyRptr(..) => true,
1a4d82fc
JJ
990 _ => false
991 }
223e47cc 992 }
223e47cc 993
1a4d82fc
JJ
994 /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate:
995 ///
996 /// E& = & ET
997 /// | StructName { ..., f: E&, ... }
998 /// | [ ..., E&, ... ]
999 /// | ( ..., E&, ... )
1000 /// | {...; E&}
1001 /// | box E&
1002 /// | E& as ...
1003 /// | ( E& )
1004 fn record_rvalue_scope_if_borrow_expr(visitor: &mut RegionResolutionVisitor,
e9174d1e 1005 expr: &hir::Expr,
1a4d82fc
JJ
1006 blk_id: CodeExtent) {
1007 match expr.node {
e9174d1e 1008 hir::ExprAddrOf(_, ref subexpr) => {
7453a54e
SL
1009 record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id);
1010 record_rvalue_scope(visitor, &subexpr, blk_id);
223e47cc 1011 }
e9174d1e 1012 hir::ExprStruct(_, ref fields, _) => {
85aaf69f 1013 for field in fields {
1a4d82fc 1014 record_rvalue_scope_if_borrow_expr(
7453a54e 1015 visitor, &field.expr, blk_id);
223e47cc 1016 }
1a4d82fc 1017 }
e9174d1e
SL
1018 hir::ExprVec(ref subexprs) |
1019 hir::ExprTup(ref subexprs) => {
85aaf69f 1020 for subexpr in subexprs {
1a4d82fc 1021 record_rvalue_scope_if_borrow_expr(
7453a54e 1022 visitor, &subexpr, blk_id);
1a4d82fc
JJ
1023 }
1024 }
b039eaaf 1025 hir::ExprCast(ref subexpr, _) => {
7453a54e 1026 record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id)
1a4d82fc 1027 }
e9174d1e 1028 hir::ExprBlock(ref block) => {
1a4d82fc
JJ
1029 match block.expr {
1030 Some(ref subexpr) => {
1031 record_rvalue_scope_if_borrow_expr(
7453a54e 1032 visitor, &subexpr, blk_id);
223e47cc 1033 }
1a4d82fc 1034 None => { }
223e47cc
LB
1035 }
1036 }
1a4d82fc
JJ
1037 _ => {
1038 }
223e47cc 1039 }
1a4d82fc 1040 }
223e47cc 1041
1a4d82fc
JJ
1042 /// Applied to an expression `expr` if `expr` -- or something owned or partially owned by
1043 /// `expr` -- is going to be indirectly referenced by a variable in a let statement. In that
1044 /// case, the "temporary lifetime" or `expr` is extended to be the block enclosing the `let`
1045 /// statement.
1046 ///
1047 /// More formally, if `expr` matches the grammar `ET`, record the rvalue scope of the matching
1048 /// `<rvalue>` as `blk_id`:
1049 ///
1050 /// ET = *ET
1051 /// | ET[...]
1052 /// | ET.f
1053 /// | (ET)
1054 /// | <rvalue>
1055 ///
1056 /// Note: ET is intended to match "rvalues or lvalues based on rvalues".
1057 fn record_rvalue_scope<'a>(visitor: &mut RegionResolutionVisitor,
e9174d1e 1058 expr: &'a hir::Expr,
1a4d82fc
JJ
1059 blk_scope: CodeExtent) {
1060 let mut expr = expr;
1061 loop {
1062 // Note: give all the expressions matching `ET` with the
1063 // extended temporary lifetime, not just the innermost rvalue,
1064 // because in trans if we must compile e.g. `*rvalue()`
1065 // into a temporary, we request the temporary scope of the
1066 // outer expression.
1067 visitor.region_maps.record_rvalue_scope(expr.id, blk_scope);
1068
1069 match expr.node {
e9174d1e
SL
1070 hir::ExprAddrOf(_, ref subexpr) |
1071 hir::ExprUnary(hir::UnDeref, ref subexpr) |
1072 hir::ExprField(ref subexpr, _) |
1073 hir::ExprTupField(ref subexpr, _) |
b039eaaf 1074 hir::ExprIndex(ref subexpr, _) => {
7453a54e 1075 expr = &subexpr;
223e47cc 1076 }
1a4d82fc
JJ
1077 _ => {
1078 return;
223e47cc
LB
1079 }
1080 }
223e47cc 1081 }
223e47cc 1082 }
1a4d82fc 1083}
223e47cc 1084
e9174d1e 1085fn resolve_item(visitor: &mut RegionResolutionVisitor, item: &hir::Item) {
1a4d82fc
JJ
1086 // Items create a new outer block scope as far as we're concerned.
1087 let prev_cx = visitor.cx;
e9174d1e 1088 let prev_ts = mem::replace(&mut visitor.terminating_scopes, NodeSet());
85aaf69f 1089 visitor.cx = Context {
c34b1796 1090 root_id: None,
e9174d1e
SL
1091 var_parent: ROOT_CODE_EXTENT,
1092 parent: ROOT_CODE_EXTENT
85aaf69f 1093 };
92a42be0 1094 intravisit::walk_item(visitor, item);
e9174d1e 1095 visitor.create_item_scope_if_needed(item.id);
1a4d82fc 1096 visitor.cx = prev_cx;
e9174d1e 1097 visitor.terminating_scopes = prev_ts;
1a4d82fc 1098}
223e47cc 1099
1a4d82fc 1100fn resolve_fn(visitor: &mut RegionResolutionVisitor,
e9174d1e
SL
1101 kind: FnKind,
1102 decl: &hir::FnDecl,
1103 body: &hir::Block,
1a4d82fc
JJ
1104 sp: Span,
1105 id: ast::NodeId) {
1106 debug!("region::resolve_fn(id={:?}, \
1107 span={:?}, \
1108 body.id={:?}, \
1109 cx.parent={:?})",
1110 id,
1111 visitor.sess.codemap().span_to_string(sp),
1112 body.id,
1113 visitor.cx.parent);
1114
9cc50fc6
SL
1115 visitor.cx.parent = visitor.new_code_extent(
1116 CodeExtentData::CallSiteScope { fn_id: id, body_id: body.id });
1117
e9174d1e
SL
1118 let fn_decl_scope = visitor.new_code_extent(
1119 CodeExtentData::ParameterScope { fn_id: id, body_id: body.id });
1a4d82fc 1120
c34b1796
AL
1121 if let Some(root_id) = visitor.cx.root_id {
1122 visitor.region_maps.record_fn_parent(body.id, root_id);
1123 }
1124
1a4d82fc 1125 let outer_cx = visitor.cx;
e9174d1e
SL
1126 let outer_ts = mem::replace(&mut visitor.terminating_scopes, NodeSet());
1127 visitor.terminating_scopes.insert(body.id);
1a4d82fc 1128
9346a6ac 1129 // The arguments and `self` are parented to the fn.
85aaf69f 1130 visitor.cx = Context {
c34b1796 1131 root_id: Some(body.id),
e9174d1e
SL
1132 parent: ROOT_CODE_EXTENT,
1133 var_parent: fn_decl_scope,
85aaf69f 1134 };
e9174d1e 1135
92a42be0
SL
1136 intravisit::walk_fn_decl(visitor, decl);
1137 intravisit::walk_fn_kind(visitor, kind);
1a4d82fc 1138
c34b1796
AL
1139 // The body of the every fn is a root scope.
1140 visitor.cx = Context {
1141 root_id: Some(body.id),
e9174d1e
SL
1142 parent: fn_decl_scope,
1143 var_parent: fn_decl_scope
c34b1796
AL
1144 };
1145 visitor.visit_block(body);
1146
1147 // Restore context we had at the start.
1148 visitor.cx = outer_cx;
e9174d1e 1149 visitor.terminating_scopes = outer_ts;
1a4d82fc
JJ
1150}
1151
e9174d1e
SL
1152impl<'a> RegionResolutionVisitor<'a> {
1153 /// Records the current parent (if any) as the parent of `child_scope`.
1154 fn new_code_extent(&mut self, child_scope: CodeExtentData) -> CodeExtent {
1155 self.region_maps.intern_code_extent(child_scope, self.cx.parent)
1156 }
1157
1158 fn new_node_extent(&mut self, child_scope: ast::NodeId) -> CodeExtent {
1159 self.new_code_extent(CodeExtentData::Misc(child_scope))
1160 }
1161
1162 fn new_node_extent_with_dtor(&mut self, id: ast::NodeId) -> CodeExtent {
1163 // If node was previously marked as a terminating scope during the
1164 // recursive visit of its parent node in the AST, then we need to
1165 // account for the destruction scope representing the extent of
1166 // the destructors that run immediately after it completes.
1167 if self.terminating_scopes.contains(&id) {
1168 let ds = self.new_code_extent(
1169 CodeExtentData::DestructionScope(id));
1170 self.region_maps.intern_node(id, ds)
1171 } else {
1172 self.new_node_extent(id)
1173 }
1174 }
1175
1176 fn create_item_scope_if_needed(&mut self, id: ast::NodeId) {
1177 // create a region for the destruction scope - this is needed
1178 // for constructing parameter environments based on the item.
1179 // functions put their destruction scopes *inside* their parameter
1180 // scopes.
1181 let scope = CodeExtentData::DestructionScope(id);
1182 if !self.region_maps.code_extent_interner.borrow().contains_key(&scope) {
1183 self.region_maps.intern_code_extent(scope, ROOT_CODE_EXTENT);
1184 }
1185 }
1186}
223e47cc 1187
e9174d1e 1188impl<'a, 'v> Visitor<'v> for RegionResolutionVisitor<'a> {
1a4d82fc
JJ
1189 fn visit_block(&mut self, b: &Block) {
1190 resolve_block(self, b);
223e47cc
LB
1191 }
1192
1a4d82fc
JJ
1193 fn visit_item(&mut self, i: &Item) {
1194 resolve_item(self, i);
223e47cc 1195 }
223e47cc 1196
e9174d1e 1197 fn visit_impl_item(&mut self, ii: &hir::ImplItem) {
92a42be0 1198 intravisit::walk_impl_item(self, ii);
e9174d1e
SL
1199 self.create_item_scope_if_needed(ii.id);
1200 }
1201
1202 fn visit_trait_item(&mut self, ti: &hir::TraitItem) {
92a42be0 1203 intravisit::walk_trait_item(self, ti);
e9174d1e
SL
1204 self.create_item_scope_if_needed(ti.id);
1205 }
1206
1a4d82fc
JJ
1207 fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl,
1208 b: &'v Block, s: Span, n: NodeId) {
1209 resolve_fn(self, fk, fd, b, s, n);
1210 }
1211 fn visit_arm(&mut self, a: &Arm) {
1212 resolve_arm(self, a);
1213 }
1214 fn visit_pat(&mut self, p: &Pat) {
1215 resolve_pat(self, p);
1216 }
1217 fn visit_stmt(&mut self, s: &Stmt) {
1218 resolve_stmt(self, s);
1219 }
1220 fn visit_expr(&mut self, ex: &Expr) {
1221 resolve_expr(self, ex);
1222 }
1223 fn visit_local(&mut self, l: &Local) {
1224 resolve_local(self, l);
1225 }
223e47cc
LB
1226}
1227
7453a54e
SL
1228pub fn resolve_crate(sess: &Session, map: &ast_map::Map) -> RegionMaps {
1229 let _task = map.dep_graph.in_task(DepNode::RegionResolveCrate);
1230 let krate = map.krate();
1231
1a4d82fc 1232 let maps = RegionMaps {
e9174d1e
SL
1233 code_extents: RefCell::new(vec![]),
1234 code_extent_interner: RefCell::new(FnvHashMap()),
1235 scope_map: RefCell::new(vec![]),
85aaf69f 1236 var_map: RefCell::new(NodeMap()),
85aaf69f 1237 rvalue_scopes: RefCell::new(NodeMap()),
c34b1796 1238 fn_tree: RefCell::new(NodeMap()),
223e47cc 1239 };
e9174d1e
SL
1240 let root_extent = maps.bogus_code_extent(
1241 CodeExtentData::DestructionScope(ast::DUMMY_NODE_ID));
1242 assert_eq!(root_extent, ROOT_CODE_EXTENT);
1243 let bogus_extent = maps.bogus_code_extent(
1244 CodeExtentData::Misc(ast::DUMMY_NODE_ID));
1245 assert_eq!(bogus_extent, DUMMY_CODE_EXTENT);
223e47cc 1246 {
1a4d82fc
JJ
1247 let mut visitor = RegionResolutionVisitor {
1248 sess: sess,
1249 region_maps: &maps,
85aaf69f 1250 cx: Context {
c34b1796 1251 root_id: None,
e9174d1e
SL
1252 parent: ROOT_CODE_EXTENT,
1253 var_parent: ROOT_CODE_EXTENT
1254 },
1255 terminating_scopes: NodeSet()
1a4d82fc 1256 };
92a42be0 1257 krate.visit_all_items(&mut visitor);
223e47cc 1258 }
1a4d82fc
JJ
1259 return maps;
1260}
223e47cc 1261
1a4d82fc
JJ
1262pub fn resolve_inlined_item(sess: &Session,
1263 region_maps: &RegionMaps,
e9174d1e 1264 item: &InlinedItem) {
1a4d82fc
JJ
1265 let mut visitor = RegionResolutionVisitor {
1266 sess: sess,
1267 region_maps: region_maps,
85aaf69f 1268 cx: Context {
c34b1796 1269 root_id: None,
e9174d1e
SL
1270 parent: ROOT_CODE_EXTENT,
1271 var_parent: ROOT_CODE_EXTENT
1272 },
1273 terminating_scopes: NodeSet()
1a4d82fc 1274 };
e9174d1e 1275 item.visit(&mut visitor);
223e47cc 1276}