]> git.proxmox.com Git - rustc.git/blame - src/librustc/traits/auto_trait.rs
New upstream version 1.42.0+dfsg1
[rustc.git] / src / librustc / traits / auto_trait.rs
CommitLineData
60c5eb7d
XL
1//! Support code for rustdoc and external tools.
2//! You really don't want to be using this unless you need to.
94b46f34
XL
3
4use super::*;
5
9fa01778
XL
6use crate::infer::region_constraints::{Constraint, RegionConstraintData};
7use crate::infer::InferCtxt;
9fa01778
XL
8use crate::ty::fold::TypeFolder;
9use crate::ty::{Region, RegionVid};
94b46f34 10
60c5eb7d
XL
11use rustc_data_structures::fx::{FxHashMap, FxHashSet};
12
13use std::collections::hash_map::Entry;
14use std::collections::VecDeque;
15
94b46f34
XL
16// FIXME(twk): this is obviously not nice to duplicate like that
17#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
18pub enum RegionTarget<'tcx> {
19 Region(Region<'tcx>),
20 RegionVid(RegionVid),
21}
22
23#[derive(Default, Debug, Clone)]
24pub struct RegionDeps<'tcx> {
25 larger: FxHashSet<RegionTarget<'tcx>>,
26 smaller: FxHashSet<RegionTarget<'tcx>>,
27}
28
29pub enum AutoTraitResult<A> {
30 ExplicitImpl,
31 PositiveImpl(A),
32 NegativeImpl,
33}
34
35impl<A> AutoTraitResult<A> {
36 fn is_auto(&self) -> bool {
37 match *self {
38 AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl => true,
39 _ => false,
40 }
41 }
42}
43
44pub struct AutoTraitInfo<'cx> {
45 pub full_user_env: ty::ParamEnv<'cx>,
46 pub region_data: RegionConstraintData<'cx>,
94b46f34
XL
47 pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
48}
49
dc9dc135
XL
50pub struct AutoTraitFinder<'tcx> {
51 tcx: TyCtxt<'tcx>,
94b46f34
XL
52}
53
dc9dc135
XL
54impl<'tcx> AutoTraitFinder<'tcx> {
55 pub fn new(tcx: TyCtxt<'tcx>) -> Self {
94b46f34
XL
56 AutoTraitFinder { tcx }
57 }
58
9fa01778 59 /// Makes a best effort to determine whether and under which conditions an auto trait is
94b46f34
XL
60 /// implemented for a type. For example, if you have
61 ///
62 /// ```
63 /// struct Foo<T> { data: Box<T> }
64 /// ```
0bf4aa26 65 ///
94b46f34
XL
66 /// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
67 /// The analysis attempts to account for custom impls as well as other complex cases. This
68 /// result is intended for use by rustdoc and other such consumers.
0bf4aa26 69 ///
94b46f34
XL
70 /// (Note that due to the coinductive nature of Send, the full and correct result is actually
71 /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
72 /// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
73 /// But this is often not the best way to present to the user.)
0bf4aa26 74 ///
94b46f34
XL
75 /// Warning: The API should be considered highly unstable, and it may be refactored or removed
76 /// in the future.
77 pub fn find_auto_trait_generics<A>(
78 &self,
48663c56
XL
79 ty: Ty<'tcx>,
80 orig_env: ty::ParamEnv<'tcx>,
94b46f34 81 trait_did: DefId,
dc9dc135 82 auto_trait_callback: impl Fn(&InferCtxt<'_, 'tcx>, AutoTraitInfo<'tcx>) -> A,
94b46f34
XL
83 ) -> AutoTraitResult<A> {
84 let tcx = self.tcx;
94b46f34 85
dfeec247 86 let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
94b46f34
XL
87
88 let trait_pred = ty::Binder::bind(trait_ref);
89
90 let bail_out = tcx.infer_ctxt().enter(|infcx| {
91 let mut selcx = SelectionContext::with_negative(&infcx, true);
92 let result = selcx.select(&Obligation::new(
93 ObligationCause::dummy(),
48663c56 94 orig_env,
94b46f34
XL
95 trait_pred.to_poly_trait_predicate(),
96 ));
0bf4aa26 97
94b46f34
XL
98 match result {
99 Ok(Some(Vtable::VtableImpl(_))) => {
100 debug!(
48663c56 101 "find_auto_trait_generics({:?}): \
94b46f34 102 manual impl found, bailing out",
48663c56 103 trait_ref
94b46f34 104 );
0bf4aa26 105 true
94b46f34 106 }
dfeec247 107 _ => false,
0bf4aa26 108 }
94b46f34
XL
109 });
110
111 // If an explicit impl exists, it always takes priority over an auto impl
112 if bail_out {
113 return AutoTraitResult::ExplicitImpl;
114 }
115
116 return tcx.infer_ctxt().enter(|mut infcx| {
0bf4aa26 117 let mut fresh_preds = FxHashSet::default();
94b46f34
XL
118
119 // Due to the way projections are handled by SelectionContext, we need to run
120 // evaluate_predicates twice: once on the original param env, and once on the result of
121 // the first evaluate_predicates call.
122 //
123 // The problem is this: most of rustc, including SelectionContext and traits::project,
0731742a 124 // are designed to work with a concrete usage of a type (e.g., Vec<u8>
94b46f34
XL
125 // fn<T>() { Vec<T> }. This information will generally never change - given
126 // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
127 // If we're unable to prove that 'T' implements a particular trait, we're done -
128 // there's nothing left to do but error out.
129 //
130 // However, synthesizing an auto trait impl works differently. Here, we start out with
131 // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
132 // with - and progressively discover the conditions we need to fulfill for it to
133 // implement a certain auto trait. This ends up breaking two assumptions made by trait
134 // selection and projection:
135 //
136 // * We can always cache the result of a particular trait selection for the lifetime of
137 // an InfCtxt
138 // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
139 // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
140 //
141 // We fix the first assumption by manually clearing out all of the InferCtxt's caches
142 // in between calls to SelectionContext.select. This allows us to keep all of the
143 // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
144 // them between calls.
145 //
146 // We fix the second assumption by reprocessing the result of our first call to
147 // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
148 // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
149 // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
150 // SelectionContext to return it back to us.
151
152 let (new_env, user_env) = match self.evaluate_predicates(
153 &mut infcx,
94b46f34
XL
154 trait_did,
155 ty,
48663c56
XL
156 orig_env,
157 orig_env,
94b46f34
XL
158 &mut fresh_preds,
159 false,
160 ) {
161 Some(e) => e,
162 None => return AutoTraitResult::NegativeImpl,
163 };
164
dfeec247
XL
165 let (full_env, full_user_env) = self
166 .evaluate_predicates(
167 &mut infcx,
168 trait_did,
169 ty,
170 new_env,
171 user_env,
172 &mut fresh_preds,
173 true,
94b46f34 174 )
dfeec247
XL
175 .unwrap_or_else(|| {
176 panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
177 });
94b46f34
XL
178
179 debug!(
48663c56 180 "find_auto_trait_generics({:?}): fulfilling \
94b46f34 181 with {:?}",
48663c56 182 trait_ref, full_env
94b46f34
XL
183 );
184 infcx.clear_caches();
185
186 // At this point, we already have all of the bounds we need. FulfillmentContext is used
187 // to store all of the necessary region/lifetime bounds in the InferContext, as well as
188 // an additional sanity check.
189 let mut fulfill = FulfillmentContext::new();
190 fulfill.register_bound(
191 &infcx,
192 full_env,
193 ty,
194 trait_did,
9fa01778 195 ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID),
94b46f34
XL
196 );
197 fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
dfeec247 198 panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, e)
94b46f34
XL
199 });
200
dfeec247
XL
201 let body_id_map: FxHashMap<_, _> =
202 infcx.region_obligations.borrow().iter().map(|&(id, _)| (id, vec![])).collect();
94b46f34 203
48663c56 204 infcx.process_registered_region_obligations(&body_id_map, None, full_env);
94b46f34 205
dfeec247 206 let region_data = infcx.borrow_region_constraints().region_constraint_data().clone();
94b46f34
XL
207
208 let vid_to_region = self.map_vid_to_region(&region_data);
209
dfeec247 210 let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
94b46f34
XL
211
212 return AutoTraitResult::PositiveImpl(auto_trait_callback(&infcx, info));
213 });
214 }
215}
216
dc9dc135 217impl AutoTraitFinder<'tcx> {
60c5eb7d
XL
218 /// The core logic responsible for computing the bounds for our synthesized impl.
219 ///
220 /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
221 /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
222 /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
223 /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
224 /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
225 ///
226 /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
227 /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
228 /// user code. According, it considers all possible ways that a `Predicate` could be met, which
229 /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
230 /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
231 /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
232 /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
233 /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
234 /// like this:
235 ///
236 /// impl<T> Send for Foo<T> where T: IntoIterator
237 ///
238 /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
239 /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
240 ///
241 /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
242 /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
243 /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
244 /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
245 /// needs to hold.
246 ///
247 /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
248 /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
249 /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
250 /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
251 /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
252 /// else `SelectionContext` will choke on the missing predicates. However, this should never
253 /// show up in the final synthesized generics: we don't want our generated docs page to contain
254 /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
255 /// separate `user_env`, which only holds the predicates that will actually be displayed to the
256 /// user.
dc9dc135 257 fn evaluate_predicates(
94b46f34 258 &self,
dc9dc135 259 infcx: &InferCtxt<'_, 'tcx>,
94b46f34 260 trait_did: DefId,
dc9dc135
XL
261 ty: Ty<'tcx>,
262 param_env: ty::ParamEnv<'tcx>,
263 user_env: ty::ParamEnv<'tcx>,
264 fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
94b46f34 265 only_projections: bool,
dc9dc135 266 ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
94b46f34
XL
267 let tcx = infcx.tcx;
268
a1dfa0c6 269 let mut select = SelectionContext::with_negative(&infcx, true);
94b46f34 270
0bf4aa26 271 let mut already_visited = FxHashSet::default();
94b46f34
XL
272 let mut predicates = VecDeque::new();
273 predicates.push_back(ty::Binder::bind(ty::TraitPredicate {
274 trait_ref: ty::TraitRef {
275 def_id: trait_did,
276 substs: infcx.tcx.mk_substs_trait(ty, &[]),
277 },
278 }));
279
280 let mut computed_preds: FxHashSet<_> = param_env.caller_bounds.iter().cloned().collect();
281 let mut user_computed_preds: FxHashSet<_> =
282 user_env.caller_bounds.iter().cloned().collect();
283
48663c56 284 let mut new_env = param_env;
9fa01778 285 let dummy_cause = ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID);
94b46f34
XL
286
287 while let Some(pred) = predicates.pop_front() {
288 infcx.clear_caches();
289
48663c56 290 if !already_visited.insert(pred) {
94b46f34
XL
291 continue;
292 }
293
60c5eb7d 294 // Call `infcx.resolve_vars_if_possible` to see if we can
69743fb6 295 // get rid of any inference variables.
dfeec247
XL
296 let obligation = infcx.resolve_vars_if_possible(&Obligation::new(
297 dummy_cause.clone(),
298 new_env,
299 pred,
300 ));
69743fb6 301 let result = select.select(&obligation);
94b46f34
XL
302
303 match &result {
304 &Ok(Some(ref vtable)) => {
60c5eb7d 305 // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
a1dfa0c6
XL
306 // we immediately bail out, since it's impossible for us to continue.
307 match vtable {
308 Vtable::VtableImpl(VtableImplData { impl_def_id, .. }) => {
60c5eb7d 309 // Blame 'tidy' for the weird bracket placement.
dfeec247
XL
310 if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
311 debug!(
312 "evaluate_nested_obligations: found explicit negative impl\
313 {:?}, bailing out",
314 impl_def_id
315 );
a1dfa0c6
XL
316 return None;
317 }
dfeec247 318 }
a1dfa0c6
XL
319 _ => {}
320 }
321
94b46f34
XL
322 let obligations = vtable.clone().nested_obligations().into_iter();
323
324 if !self.evaluate_nested_obligations(
325 ty,
326 obligations,
327 &mut user_computed_preds,
328 fresh_preds,
329 &mut predicates,
330 &mut select,
331 only_projections,
332 ) {
333 return None;
334 }
335 }
336 &Ok(None) => {}
337 &Err(SelectionError::Unimplemented) => {
69743fb6 338 if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
94b46f34 339 already_visited.remove(&pred);
0bf4aa26
XL
340 self.add_user_pred(
341 &mut user_computed_preds,
dfeec247 342 ty::Predicate::Trait(pred, ast::Constness::NotConst),
0bf4aa26 343 );
94b46f34
XL
344 predicates.push_back(pred);
345 } else {
346 debug!(
60c5eb7d 347 "evaluate_nested_obligations: `Unimplemented` found, bailing: \
94b46f34
XL
348 {:?} {:?} {:?}",
349 ty,
350 pred,
351 pred.skip_binder().trait_ref.substs
352 );
353 return None;
354 }
355 }
356 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
357 };
358
359 computed_preds.extend(user_computed_preds.iter().cloned());
360 let normalized_preds =
48663c56 361 elaborate_predicates(tcx, computed_preds.iter().cloned().collect());
dfeec247
XL
362 new_env =
363 ty::ParamEnv::new(tcx.mk_predicates(normalized_preds), param_env.reveal, None);
94b46f34
XL
364 }
365
366 let final_user_env = ty::ParamEnv::new(
367 tcx.mk_predicates(user_computed_preds.into_iter()),
368 user_env.reveal,
dfeec247 369 None,
94b46f34
XL
370 );
371 debug!(
48663c56 372 "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
94b46f34 373 '{:?}'",
48663c56 374 ty, trait_did, new_env, final_user_env
94b46f34
XL
375 );
376
377 return Some((new_env, final_user_env));
378 }
379
60c5eb7d
XL
380 /// This method is designed to work around the following issue:
381 /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
382 /// progressively building a `ParamEnv` based on the results we get.
383 /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
384 /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
385 ///
386 /// This can lead to a corner case when dealing with region parameters.
387 /// During our selection loop in `evaluate_predicates`, we might end up with
388 /// two trait predicates that differ only in their region parameters:
389 /// one containing a HRTB lifetime parameter, and one containing a 'normal'
390 /// lifetime parameter. For example:
391 ///
392 /// T as MyTrait<'a>
393 /// T as MyTrait<'static>
394 ///
395 /// If we put both of these predicates in our computed `ParamEnv`, we'll
396 /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
397 ///
398 /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
399 /// Our end goal is to generate a user-visible description of the conditions
400 /// under which a type implements an auto trait. A trait predicate involving
401 /// a HRTB means that the type needs to work with any choice of lifetime,
402 /// not just one specific lifetime (e.g., `'static`).
0bf4aa26
XL
403 fn add_user_pred<'c>(
404 &self,
405 user_computed_preds: &mut FxHashSet<ty::Predicate<'c>>,
406 new_pred: ty::Predicate<'c>,
407 ) {
b7449926
XL
408 let mut should_add_new = true;
409 user_computed_preds.retain(|&old_pred| {
410 match (&new_pred, old_pred) {
dfeec247 411 (&ty::Predicate::Trait(new_trait, _), ty::Predicate::Trait(old_trait, _)) => {
b7449926
XL
412 if new_trait.def_id() == old_trait.def_id() {
413 let new_substs = new_trait.skip_binder().trait_ref.substs;
414 let old_substs = old_trait.skip_binder().trait_ref.substs;
0bf4aa26 415
b7449926
XL
416 if !new_substs.types().eq(old_substs.types()) {
417 // We can't compare lifetimes if the types are different,
60c5eb7d 418 // so skip checking `old_pred`.
0bf4aa26 419 return true;
b7449926
XL
420 }
421
0bf4aa26
XL
422 for (new_region, old_region) in
423 new_substs.regions().zip(old_substs.regions())
424 {
b7449926 425 match (new_region, old_region) {
60c5eb7d
XL
426 // If both predicates have an `ReLateBound` (a HRTB) in the
427 // same spot, we do nothing.
b7449926
XL
428 (
429 ty::RegionKind::ReLateBound(_, _),
0bf4aa26
XL
430 ty::RegionKind::ReLateBound(_, _),
431 ) => {}
b7449926 432
dfeec247
XL
433 (ty::RegionKind::ReLateBound(_, _), _)
434 | (_, ty::RegionKind::ReVar(_)) => {
a1dfa0c6 435 // One of these is true:
b7449926
XL
436 // The new predicate has a HRTB in a spot where the old
437 // predicate does not (if they both had a HRTB, the previous
a1dfa0c6
XL
438 // match arm would have executed). A HRBT is a 'stricter'
439 // bound than anything else, so we want to keep the newer
440 // predicate (with the HRBT) in place of the old predicate.
441 //
442 // OR
443 //
444 // The old predicate has a region variable where the new
445 // predicate has some other kind of region. An region
446 // variable isn't something we can actually display to a user,
60c5eb7d 447 // so we choose their new predicate (which doesn't have a region
a1dfa0c6 448 // varaible).
b7449926 449 //
a1dfa0c6 450 // In both cases, we want to remove the old predicate,
60c5eb7d 451 // from `user_computed_preds`, and replace it with the new
a1dfa0c6 452 // one. Having both the old and the new
60c5eb7d 453 // predicate in a `ParamEnv` would confuse `SelectionContext`.
a1dfa0c6 454 //
b7449926 455 // We're currently in the predicate passed to 'retain',
60c5eb7d
XL
456 // so we return `false` to remove the old predicate from
457 // `user_computed_preds`.
b7449926 458 return false;
0bf4aa26 459 }
dfeec247
XL
460 (_, ty::RegionKind::ReLateBound(_, _))
461 | (ty::RegionKind::ReVar(_), _) => {
a1dfa0c6
XL
462 // This is the opposite situation as the previous arm.
463 // One of these is true:
464 //
465 // The old predicate has a HRTB lifetime in a place where the
466 // new predicate does not.
467 //
468 // OR
469 //
470 // The new predicate has a region variable where the old
471 // predicate has some other type of region.
472 //
473 // We want to leave the old
60c5eb7d
XL
474 // predicate in `user_computed_preds`, and skip adding
475 // new_pred to `user_computed_params`.
b7449926 476 should_add_new = false
dfeec247 477 }
b7449926
XL
478 _ => {}
479 }
480 }
481 }
0bf4aa26 482 }
b7449926
XL
483 _ => {}
484 }
0bf4aa26 485 return true;
b7449926
XL
486 });
487
488 if should_add_new {
489 user_computed_preds.insert(new_pred);
490 }
491 }
492
60c5eb7d
XL
493 /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
494 /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
48663c56 495 fn map_vid_to_region<'cx>(
94b46f34
XL
496 &self,
497 regions: &RegionConstraintData<'cx>,
498 ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
0bf4aa26
XL
499 let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
500 let mut finished_map = FxHashMap::default();
94b46f34
XL
501
502 for constraint in regions.constraints.keys() {
503 match constraint {
504 &Constraint::VarSubVar(r1, r2) => {
505 {
0bf4aa26 506 let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
94b46f34
XL
507 deps1.larger.insert(RegionTarget::RegionVid(r2));
508 }
509
0bf4aa26 510 let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
94b46f34
XL
511 deps2.smaller.insert(RegionTarget::RegionVid(r1));
512 }
513 &Constraint::RegSubVar(region, vid) => {
514 {
0bf4aa26 515 let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
94b46f34
XL
516 deps1.larger.insert(RegionTarget::RegionVid(vid));
517 }
518
0bf4aa26 519 let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
94b46f34
XL
520 deps2.smaller.insert(RegionTarget::Region(region));
521 }
522 &Constraint::VarSubReg(vid, region) => {
523 finished_map.insert(vid, region);
524 }
525 &Constraint::RegSubReg(r1, r2) => {
526 {
0bf4aa26 527 let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
94b46f34
XL
528 deps1.larger.insert(RegionTarget::Region(r2));
529 }
530
0bf4aa26 531 let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
94b46f34
XL
532 deps2.smaller.insert(RegionTarget::Region(r1));
533 }
534 }
535 }
536
537 while !vid_map.is_empty() {
dfeec247 538 let target = *vid_map.keys().next().expect("Keys somehow empty");
94b46f34
XL
539 let deps = vid_map.remove(&target).expect("Entry somehow missing");
540
541 for smaller in deps.smaller.iter() {
542 for larger in deps.larger.iter() {
543 match (smaller, larger) {
544 (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
545 if let Entry::Occupied(v) = vid_map.entry(*smaller) {
546 let smaller_deps = v.into_mut();
547 smaller_deps.larger.insert(*larger);
548 smaller_deps.larger.remove(&target);
549 }
550
551 if let Entry::Occupied(v) = vid_map.entry(*larger) {
552 let larger_deps = v.into_mut();
553 larger_deps.smaller.insert(*smaller);
554 larger_deps.smaller.remove(&target);
555 }
556 }
557 (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
558 finished_map.insert(v1, r1);
559 }
560 (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
60c5eb7d 561 // Do nothing; we don't care about regions that are smaller than vids.
94b46f34
XL
562 }
563 (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
564 if let Entry::Occupied(v) = vid_map.entry(*smaller) {
565 let smaller_deps = v.into_mut();
566 smaller_deps.larger.insert(*larger);
567 smaller_deps.larger.remove(&target);
568 }
569
570 if let Entry::Occupied(v) = vid_map.entry(*larger) {
571 let larger_deps = v.into_mut();
572 larger_deps.smaller.insert(*smaller);
573 larger_deps.smaller.remove(&target);
574 }
575 }
576 }
577 }
578 }
579 }
580 finished_map
581 }
582
532ac7d7 583 fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
dfeec247 584 return self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types());
69743fb6 585 }
94b46f34 586
69743fb6 587 pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
e74abb32 588 return match ty.kind {
b7449926 589 ty::Param(_) => true,
69743fb6 590 ty::Projection(p) => self.is_of_param(p.self_ty()),
94b46f34
XL
591 _ => false,
592 };
593 }
594
69743fb6 595 fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
e74abb32 596 match p.ty().skip_binder().kind {
dfeec247
XL
597 ty::Projection(proj) if proj == p.skip_binder().projection_ty => true,
598 _ => false,
69743fb6
XL
599 }
600 }
601
dc9dc135 602 fn evaluate_nested_obligations(
94b46f34 603 &self,
48663c56 604 ty: Ty<'_>,
dc9dc135
XL
605 nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
606 computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
607 fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
608 predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
609 select: &mut SelectionContext<'_, 'tcx>,
94b46f34
XL
610 only_projections: bool,
611 ) -> bool {
9fa01778 612 let dummy_cause = ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID);
94b46f34 613
dfeec247
XL
614 for (obligation, mut predicate) in nested.map(|o| (o.clone(), o.predicate)) {
615 let is_new_pred = fresh_preds.insert(self.clean_pred(select.infcx(), predicate));
94b46f34 616
69743fb6 617 // Resolve any inference variables that we can, to help selection succeed
dc9dc135 618 predicate = select.infcx().resolve_vars_if_possible(&predicate);
69743fb6
XL
619
620 // We only add a predicate as a user-displayable bound if
621 // it involves a generic parameter, and doesn't contain
622 // any inference variables.
623 //
624 // Displaying a bound involving a concrete type (instead of a generic
625 // parameter) would be pointless, since it's always true
626 // (e.g. u8: Copy)
627 // Displaying an inference variable is impossible, since they're
628 // an internal compiler detail without a defined visual representation
629 //
630 // We check this by calling is_of_param on the relevant types
631 // from the various possible predicates
94b46f34 632 match &predicate {
dfeec247 633 &ty::Predicate::Trait(p, _) => {
69743fb6
XL
634 if self.is_param_no_infer(p.skip_binder().trait_ref.substs)
635 && !only_projections
dfeec247
XL
636 && is_new_pred
637 {
b7449926 638 self.add_user_pred(computed_preds, predicate);
94b46f34 639 }
48663c56 640 predicates.push_back(p);
94b46f34
XL
641 }
642 &ty::Predicate::Projection(p) => {
dfeec247
XL
643 debug!(
644 "evaluate_nested_obligations: examining projection predicate {:?}",
645 predicate
646 );
69743fb6
XL
647
648 // As described above, we only want to display
649 // bounds which include a generic parameter but don't include
650 // an inference variable.
651 // Additionally, we check if we've seen this predicate before,
652 // to avoid rendering duplicate bounds to the user.
653 if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
48663c56 654 && !p.ty().skip_binder().has_infer_types()
dfeec247
XL
655 && is_new_pred
656 {
657 debug!(
658 "evaluate_nested_obligations: adding projection predicate\
659 to computed_preds: {:?}",
660 predicate
661 );
662
663 // Under unusual circumstances, we can end up with a self-refeential
664 // projection predicate. For example:
665 // <T as MyType>::Value == <T as MyType>::Value
666 // Not only is displaying this to the user pointless,
667 // having it in the ParamEnv will cause an issue if we try to call
668 // poly_project_and_unify_type on the predicate, since this kind of
669 // predicate will normally never end up in a ParamEnv.
670 //
671 // For these reasons, we ignore these weird predicates,
672 // ensuring that we're able to properly synthesize an auto trait impl
673 if self.is_self_referential_projection(p) {
674 debug!(
675 "evaluate_nested_obligations: encountered a projection
676 predicate equating a type with itself! Skipping"
677 );
678 } else {
679 self.add_user_pred(computed_preds, predicate);
680 }
69743fb6
XL
681 }
682
dc9dc135
XL
683 // There are three possible cases when we project a predicate:
684 //
685 // 1. We encounter an error. This means that it's impossible for
686 // our current type to implement the auto trait - there's bound
687 // that we could add to our ParamEnv that would 'fix' this kind
688 // of error, as it's not caused by an unimplemented type.
689 //
60c5eb7d 690 // 2. We successfully project the predicate (Ok(Some(_))), generating
dc9dc135
XL
691 // some subobligations. We then process these subobligations
692 // like any other generated sub-obligations.
693 //
694 // 3. We receieve an 'ambiguous' result (Ok(None))
695 // If we were actually trying to compile a crate,
696 // we would need to re-process this obligation later.
697 // However, all we care about is finding out what bounds
698 // are needed for our type to implement a particular auto trait.
699 // We've already added this obligation to our computed ParamEnv
700 // above (if it was necessary). Therefore, we don't need
701 // to do any further processing of the obligation.
702 //
703 // Note that we *must* try to project *all* projection predicates
704 // we encounter, even ones without inference variable.
705 // This ensures that we detect any projection errors,
706 // which indicate that our type can *never* implement the given
707 // auto trait. In that case, we will generate an explicit negative
708 // impl (e.g. 'impl !Send for MyType'). However, we don't
709 // try to process any of the generated subobligations -
710 // they contain no new information, since we already know
711 // that our type implements the projected-through trait,
712 // and can lead to weird region issues.
713 //
714 // Normally, we'll generate a negative impl as a result of encountering
715 // a type with an explicit negative impl of an auto trait
716 // (for example, raw pointers have !Send and !Sync impls)
717 // However, through some **interesting** manipulations of the type
718 // system, it's actually possible to write a type that never
719 // implements an auto trait due to a projection error, not a normal
720 // negative impl error. To properly handle this case, we need
721 // to ensure that we catch any potential projection errors,
722 // and turn them into an explicit negative impl for our type.
dfeec247 723 debug!("Projecting and unifying projection predicate {:?}", predicate);
dc9dc135
XL
724
725 match poly_project_and_unify_type(select, &obligation.with(p)) {
726 Err(e) => {
727 debug!(
728 "evaluate_nested_obligations: Unable to unify predicate \
729 '{:?}' '{:?}', bailing out",
730 ty, e
731 );
732 return false;
733 }
734 Ok(Some(v)) => {
735 // We only care about sub-obligations
736 // when we started out trying to unify
737 // some inference variables. See the comment above
738 // for more infomration
739 if p.ty().skip_binder().has_infer_types() {
94b46f34
XL
740 if !self.evaluate_nested_obligations(
741 ty,
742 v.clone().iter().cloned(),
743 computed_preds,
744 fresh_preds,
745 predicates,
746 select,
747 only_projections,
748 ) {
749 return false;
750 }
751 }
dc9dc135
XL
752 }
753 Ok(None) => {
754 // It's ok not to make progress when hvave no inference variables -
755 // in that case, we were only performing unifcation to check if an
60c5eb7d 756 // error occurred (which would indicate that it's impossible for our
dc9dc135
XL
757 // type to implement the auto trait).
758 // However, we should always make progress (either by generating
759 // subobligations or getting an error) when we started off with
760 // inference variables
761 if p.ty().skip_binder().has_infer_types() {
94b46f34
XL
762 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
763 }
764 }
765 }
766 }
767 &ty::Predicate::RegionOutlives(ref binder) => {
dfeec247 768 if select.infcx().region_outlives_predicate(&dummy_cause, binder).is_err() {
94b46f34
XL
769 return false;
770 }
771 }
772 &ty::Predicate::TypeOutlives(ref binder) => {
773 match (
a1dfa0c6
XL
774 binder.no_bound_vars(),
775 binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
94b46f34
XL
776 ) {
777 (None, Some(t_a)) => {
0bf4aa26
XL
778 select.infcx().register_region_obligation_with_cause(
779 t_a,
48663c56 780 select.infcx().tcx.lifetimes.re_static,
0bf4aa26 781 &dummy_cause,
94b46f34
XL
782 );
783 }
784 (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
0bf4aa26
XL
785 select.infcx().register_region_obligation_with_cause(
786 t_a,
787 r_b,
788 &dummy_cause,
94b46f34
XL
789 );
790 }
791 _ => {}
792 };
793 }
794 _ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
795 };
796 }
797 return true;
798 }
799
dc9dc135 800 pub fn clean_pred(
94b46f34 801 &self,
dc9dc135
XL
802 infcx: &InferCtxt<'_, 'tcx>,
803 p: ty::Predicate<'tcx>,
804 ) -> ty::Predicate<'tcx> {
94b46f34
XL
805 infcx.freshen(p)
806 }
807}
808
809// Replaces all ReVars in a type with ty::Region's, using the provided map
dc9dc135 810pub struct RegionReplacer<'a, 'tcx> {
94b46f34 811 vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
dc9dc135 812 tcx: TyCtxt<'tcx>,
94b46f34
XL
813}
814
dc9dc135
XL
815impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
816 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
94b46f34
XL
817 self.tcx
818 }
819
820 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
821 (match r {
822 &ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
823 _ => None,
dfeec247
XL
824 })
825 .unwrap_or_else(|| r.super_fold_with(self))
94b46f34
XL
826 }
827}