]> git.proxmox.com Git - rustc.git/blame - src/librustc/ty/mod.rs
New upstream version 1.12.0+dfsg1
[rustc.git] / src / librustc / ty / mod.rs
CommitLineData
e9174d1e
SL
1// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11pub use self::ImplOrTraitItemId::*;
e9174d1e
SL
12pub use self::Variance::*;
13pub use self::DtorKind::*;
e9174d1e
SL
14pub use self::ImplOrTraitItemContainer::*;
15pub use self::BorrowKind::*;
16pub use self::ImplOrTraitItem::*;
17pub use self::IntVarValue::*;
18pub use self::LvaluePreference::*;
9cc50fc6 19pub use self::fold::TypeFoldable;
e9174d1e 20
9cc50fc6 21use dep_graph::{self, DepNode};
54a0048b 22use hir::map as ast_map;
e9174d1e 23use middle;
a7813a04 24use middle::cstore::{self, LOCAL_CRATE};
3157f602 25use hir::def::{Def, PathResolution, ExportMap};
54a0048b 26use hir::def_id::DefId;
e9174d1e 27use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
a7813a04 28use middle::region::{CodeExtent, ROOT_CODE_EXTENT};
54a0048b
SL
29use traits;
30use ty;
54a0048b
SL
31use ty::subst::{Subst, Substs, VecPerParamSpace};
32use ty::walk::TypeWalker;
9cc50fc6 33use util::common::MemoizationMap;
54a0048b 34use util::nodemap::NodeSet;
e9174d1e
SL
35use util::nodemap::FnvHashMap;
36
9cc50fc6 37use serialize::{Encodable, Encoder, Decodable, Decoder};
a7813a04 38use std::borrow::Cow;
9cc50fc6 39use std::cell::Cell;
e9174d1e
SL
40use std::hash::{Hash, Hasher};
41use std::iter;
42use std::rc::Rc;
43use std::slice;
44use std::vec::IntoIter;
e9174d1e 45use syntax::ast::{self, CrateNum, Name, NodeId};
b039eaaf 46use syntax::attr::{self, AttrMetaMethods};
9cc50fc6 47use syntax::parse::token::InternedString;
3157f602 48use syntax_pos::{DUMMY_SP, Span};
e9174d1e 49
54a0048b
SL
50use rustc_const_math::ConstInt;
51
52use hir;
53use hir::{ItemImpl, ItemTrait, PatKind};
54use hir::intravisit::Visitor;
e9174d1e
SL
55
56pub use self::sty::{Binder, DebruijnIndex};
57pub use self::sty::{BuiltinBound, BuiltinBounds, ExistentialBounds};
5bcae85e 58pub use self::sty::{BareFnTy, FnSig, PolyFnSig};
e9174d1e
SL
59pub use self::sty::{ClosureTy, InferTy, ParamTy, ProjectionTy, TraitTy};
60pub use self::sty::{ClosureSubsts, TypeAndMut};
61pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
62pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
3157f602 63pub use self::sty::Issue32330;
e9174d1e
SL
64pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid, SkolemizedRegionVid};
65pub use self::sty::BoundRegion::*;
e9174d1e
SL
66pub use self::sty::InferTy::*;
67pub use self::sty::Region::*;
68pub use self::sty::TypeVariants::*;
69
70pub use self::sty::BuiltinBound::Send as BoundSend;
71pub use self::sty::BuiltinBound::Sized as BoundSized;
72pub use self::sty::BuiltinBound::Copy as BoundCopy;
73pub use self::sty::BuiltinBound::Sync as BoundSync;
74
75pub use self::contents::TypeContents;
54a0048b 76pub use self::context::{TyCtxt, tls};
e9174d1e
SL
77pub use self::context::{CtxtArenas, Lift, Tables};
78
9cc50fc6
SL
79pub use self::trait_def::{TraitDef, TraitFlags};
80
e9174d1e
SL
81pub mod adjustment;
82pub mod cast;
83pub mod error;
84pub mod fast_reject;
85pub mod fold;
54a0048b
SL
86pub mod item_path;
87pub mod layout;
e9174d1e 88pub mod _match;
9cc50fc6 89pub mod maps;
e9174d1e
SL
90pub mod outlives;
91pub mod relate;
54a0048b 92pub mod subst;
9cc50fc6 93pub mod trait_def;
e9174d1e
SL
94pub mod walk;
95pub mod wf;
96pub mod util;
97
98mod contents;
99mod context;
100mod flags;
101mod ivar;
102mod structural_impls;
103mod sty;
104
54a0048b 105pub type Disr = ConstInt;
e9174d1e
SL
106
107// Data types
108
109/// The complete set of all analyses described in this module. This is
110/// produced by the driver and fed to trans and later passes.
a7813a04 111#[derive(Clone)]
b039eaaf 112pub struct CrateAnalysis<'a> {
e9174d1e 113 pub export_map: ExportMap,
92a42be0 114 pub access_levels: middle::privacy::AccessLevels,
e9174d1e 115 pub reachable: NodeSet,
b039eaaf 116 pub name: &'a str,
54a0048b 117 pub glob_map: Option<hir::GlobMap>,
e9174d1e
SL
118}
119
e9174d1e
SL
120#[derive(Copy, Clone)]
121pub enum DtorKind {
122 NoDtor,
123 TraitDtor(bool)
124}
125
126impl DtorKind {
127 pub fn is_present(&self) -> bool {
128 match *self {
129 TraitDtor(..) => true,
130 _ => false
131 }
132 }
133
134 pub fn has_drop_flag(&self) -> bool {
135 match self {
136 &NoDtor => false,
137 &TraitDtor(flag) => flag
138 }
139 }
140}
141
142#[derive(Clone, Copy, PartialEq, Eq, Debug)]
143pub enum ImplOrTraitItemContainer {
144 TraitContainer(DefId),
145 ImplContainer(DefId),
146}
147
148impl ImplOrTraitItemContainer {
149 pub fn id(&self) -> DefId {
150 match *self {
151 TraitContainer(id) => id,
152 ImplContainer(id) => id,
153 }
154 }
155}
156
54a0048b
SL
157/// The "header" of an impl is everything outside the body: a Self type, a trait
158/// ref (in the case of a trait impl), and a set of predicates (from the
159/// bounds/where clauses).
160#[derive(Clone, PartialEq, Eq, Hash, Debug)]
161pub struct ImplHeader<'tcx> {
162 pub impl_def_id: DefId,
163 pub self_ty: Ty<'tcx>,
164 pub trait_ref: Option<TraitRef<'tcx>>,
165 pub predicates: Vec<Predicate<'tcx>>,
166}
167
a7813a04
XL
168impl<'a, 'gcx, 'tcx> ImplHeader<'tcx> {
169 pub fn with_fresh_ty_vars(selcx: &mut traits::SelectionContext<'a, 'gcx, 'tcx>,
170 impl_def_id: DefId)
171 -> ImplHeader<'tcx>
54a0048b
SL
172 {
173 let tcx = selcx.tcx();
174 let impl_generics = tcx.lookup_item_type(impl_def_id).generics;
175 let impl_substs = selcx.infcx().fresh_substs_for_generics(DUMMY_SP, &impl_generics);
176
177 let header = ImplHeader {
178 impl_def_id: impl_def_id,
179 self_ty: tcx.lookup_item_type(impl_def_id).ty,
180 trait_ref: tcx.impl_trait_ref(impl_def_id),
181 predicates: tcx.lookup_predicates(impl_def_id).predicates.into_vec(),
182 }.subst(tcx, &impl_substs);
183
184 let traits::Normalized { value: mut header, obligations } =
185 traits::normalize(selcx, traits::ObligationCause::dummy(), &header);
186
187 header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
188 header
189 }
190}
191
e9174d1e
SL
192#[derive(Clone)]
193pub enum ImplOrTraitItem<'tcx> {
194 ConstTraitItem(Rc<AssociatedConst<'tcx>>),
195 MethodTraitItem(Rc<Method<'tcx>>),
196 TypeTraitItem(Rc<AssociatedType<'tcx>>),
197}
198
199impl<'tcx> ImplOrTraitItem<'tcx> {
200 fn id(&self) -> ImplOrTraitItemId {
201 match *self {
202 ConstTraitItem(ref associated_const) => {
203 ConstTraitItemId(associated_const.def_id)
204 }
205 MethodTraitItem(ref method) => MethodTraitItemId(method.def_id),
206 TypeTraitItem(ref associated_type) => {
207 TypeTraitItemId(associated_type.def_id)
208 }
209 }
210 }
211
54a0048b
SL
212 pub fn def(&self) -> Def {
213 match *self {
214 ConstTraitItem(ref associated_const) => Def::AssociatedConst(associated_const.def_id),
215 MethodTraitItem(ref method) => Def::Method(method.def_id),
216 TypeTraitItem(ref ty) => Def::AssociatedTy(ty.container.id(), ty.def_id),
217 }
218 }
219
e9174d1e
SL
220 pub fn def_id(&self) -> DefId {
221 match *self {
222 ConstTraitItem(ref associated_const) => associated_const.def_id,
223 MethodTraitItem(ref method) => method.def_id,
224 TypeTraitItem(ref associated_type) => associated_type.def_id,
225 }
226 }
227
228 pub fn name(&self) -> Name {
229 match *self {
230 ConstTraitItem(ref associated_const) => associated_const.name,
231 MethodTraitItem(ref method) => method.name,
232 TypeTraitItem(ref associated_type) => associated_type.name,
233 }
234 }
235
54a0048b 236 pub fn vis(&self) -> Visibility {
e9174d1e
SL
237 match *self {
238 ConstTraitItem(ref associated_const) => associated_const.vis,
239 MethodTraitItem(ref method) => method.vis,
240 TypeTraitItem(ref associated_type) => associated_type.vis,
241 }
242 }
243
244 pub fn container(&self) -> ImplOrTraitItemContainer {
245 match *self {
246 ConstTraitItem(ref associated_const) => associated_const.container,
247 MethodTraitItem(ref method) => method.container,
248 TypeTraitItem(ref associated_type) => associated_type.container,
249 }
250 }
251
252 pub fn as_opt_method(&self) -> Option<Rc<Method<'tcx>>> {
253 match *self {
254 MethodTraitItem(ref m) => Some((*m).clone()),
255 _ => None,
256 }
257 }
258}
259
260#[derive(Clone, Copy, Debug)]
261pub enum ImplOrTraitItemId {
262 ConstTraitItemId(DefId),
263 MethodTraitItemId(DefId),
264 TypeTraitItemId(DefId),
265}
266
267impl ImplOrTraitItemId {
268 pub fn def_id(&self) -> DefId {
269 match *self {
270 ConstTraitItemId(def_id) => def_id,
271 MethodTraitItemId(def_id) => def_id,
272 TypeTraitItemId(def_id) => def_id,
273 }
274 }
275}
276
54a0048b
SL
277#[derive(Clone, Debug, PartialEq, Eq, Copy)]
278pub enum Visibility {
279 /// Visible everywhere (including in other crates).
280 Public,
281 /// Visible only in the given crate-local module.
282 Restricted(NodeId),
283 /// Not visible anywhere in the local crate. This is the visibility of private external items.
284 PrivateExternal,
285}
286
a7813a04
XL
287pub trait NodeIdTree {
288 fn is_descendant_of(&self, node: NodeId, ancestor: NodeId) -> bool;
289}
290
291impl<'a> NodeIdTree for ast_map::Map<'a> {
292 fn is_descendant_of(&self, node: NodeId, ancestor: NodeId) -> bool {
293 let mut node_ancestor = node;
294 while node_ancestor != ancestor {
295 let node_ancestor_parent = self.get_module_parent(node_ancestor);
296 if node_ancestor_parent == node_ancestor {
297 return false;
298 }
299 node_ancestor = node_ancestor_parent;
300 }
301 true
302 }
303}
304
54a0048b 305impl Visibility {
a7813a04 306 pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
54a0048b
SL
307 match *visibility {
308 hir::Public => Visibility::Public,
a7813a04 309 hir::Visibility::Crate => Visibility::Restricted(ast::CRATE_NODE_ID),
3157f602 310 hir::Visibility::Restricted { id, .. } => match tcx.expect_def(id) {
a7813a04
XL
311 // If there is no resolution, `resolve` will have already reported an error, so
312 // assume that the visibility is public to avoid reporting more privacy errors.
3157f602
XL
313 Def::Err => Visibility::Public,
314 def => Visibility::Restricted(tcx.map.as_local_node_id(def.def_id()).unwrap()),
a7813a04 315 },
54a0048b
SL
316 hir::Inherited => Visibility::Restricted(tcx.map.get_module_parent(id)),
317 }
318 }
319
320 /// Returns true if an item with this visibility is accessible from the given block.
a7813a04 321 pub fn is_accessible_from<T: NodeIdTree>(self, block: NodeId, tree: &T) -> bool {
54a0048b
SL
322 let restriction = match self {
323 // Public items are visible everywhere.
324 Visibility::Public => return true,
325 // Private items from other crates are visible nowhere.
326 Visibility::PrivateExternal => return false,
327 // Restricted items are visible in an arbitrary local module.
328 Visibility::Restricted(module) => module,
329 };
330
a7813a04 331 tree.is_descendant_of(block, restriction)
54a0048b
SL
332 }
333
334 /// Returns true if this visibility is at least as accessible as the given visibility
a7813a04 335 pub fn is_at_least<T: NodeIdTree>(self, vis: Visibility, tree: &T) -> bool {
54a0048b
SL
336 let vis_restriction = match vis {
337 Visibility::Public => return self == Visibility::Public,
338 Visibility::PrivateExternal => return true,
339 Visibility::Restricted(module) => module,
340 };
341
a7813a04 342 self.is_accessible_from(vis_restriction, tree)
54a0048b
SL
343 }
344}
345
e9174d1e
SL
346#[derive(Clone, Debug)]
347pub struct Method<'tcx> {
348 pub name: Name,
349 pub generics: Generics<'tcx>,
350 pub predicates: GenericPredicates<'tcx>,
a7813a04 351 pub fty: &'tcx BareFnTy<'tcx>,
e9174d1e 352 pub explicit_self: ExplicitSelfCategory,
54a0048b
SL
353 pub vis: Visibility,
354 pub defaultness: hir::Defaultness,
e9174d1e
SL
355 pub def_id: DefId,
356 pub container: ImplOrTraitItemContainer,
e9174d1e
SL
357}
358
359impl<'tcx> Method<'tcx> {
360 pub fn new(name: Name,
361 generics: ty::Generics<'tcx>,
362 predicates: GenericPredicates<'tcx>,
a7813a04 363 fty: &'tcx BareFnTy<'tcx>,
e9174d1e 364 explicit_self: ExplicitSelfCategory,
54a0048b
SL
365 vis: Visibility,
366 defaultness: hir::Defaultness,
e9174d1e 367 def_id: DefId,
b039eaaf 368 container: ImplOrTraitItemContainer)
e9174d1e 369 -> Method<'tcx> {
54a0048b 370 Method {
e9174d1e
SL
371 name: name,
372 generics: generics,
373 predicates: predicates,
374 fty: fty,
375 explicit_self: explicit_self,
376 vis: vis,
54a0048b 377 defaultness: defaultness,
e9174d1e
SL
378 def_id: def_id,
379 container: container,
e9174d1e
SL
380 }
381 }
382
383 pub fn container_id(&self) -> DefId {
384 match self.container {
385 TraitContainer(id) => id,
386 ImplContainer(id) => id,
387 }
388 }
389}
390
391impl<'tcx> PartialEq for Method<'tcx> {
392 #[inline]
393 fn eq(&self, other: &Self) -> bool { self.def_id == other.def_id }
394}
395
396impl<'tcx> Eq for Method<'tcx> {}
397
398impl<'tcx> Hash for Method<'tcx> {
399 #[inline]
400 fn hash<H: Hasher>(&self, s: &mut H) {
401 self.def_id.hash(s)
402 }
403}
404
405#[derive(Clone, Copy, Debug)]
406pub struct AssociatedConst<'tcx> {
407 pub name: Name,
408 pub ty: Ty<'tcx>,
54a0048b
SL
409 pub vis: Visibility,
410 pub defaultness: hir::Defaultness,
e9174d1e
SL
411 pub def_id: DefId,
412 pub container: ImplOrTraitItemContainer,
b039eaaf 413 pub has_value: bool
e9174d1e
SL
414}
415
416#[derive(Clone, Copy, Debug)]
417pub struct AssociatedType<'tcx> {
418 pub name: Name,
419 pub ty: Option<Ty<'tcx>>,
54a0048b
SL
420 pub vis: Visibility,
421 pub defaultness: hir::Defaultness,
e9174d1e
SL
422 pub def_id: DefId,
423 pub container: ImplOrTraitItemContainer,
424}
425
426#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable)]
427pub struct ItemVariances {
428 pub types: VecPerParamSpace<Variance>,
429 pub regions: VecPerParamSpace<Variance>,
430}
431
432#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
433pub enum Variance {
434 Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
435 Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
436 Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
437 Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
438}
439
440#[derive(Clone, Copy, Debug)]
441pub struct MethodCallee<'tcx> {
442 /// Impl method ID, for inherent methods, or trait method ID, otherwise.
443 pub def_id: DefId,
444 pub ty: Ty<'tcx>,
445 pub substs: &'tcx subst::Substs<'tcx>
446}
447
448/// With method calls, we store some extra information in
449/// side tables (i.e method_map). We use
450/// MethodCall as a key to index into these tables instead of
451/// just directly using the expression's NodeId. The reason
452/// for this being that we may apply adjustments (coercions)
453/// with the resulting expression also needing to use the
454/// side tables. The problem with this is that we don't
455/// assign a separate NodeId to this new expression
456/// and so it would clash with the base expression if both
457/// needed to add to the side tables. Thus to disambiguate
458/// we also keep track of whether there's an adjustment in
459/// our key.
460#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
461pub struct MethodCall {
462 pub expr_id: NodeId,
463 pub autoderef: u32
464}
465
466impl MethodCall {
467 pub fn expr(id: NodeId) -> MethodCall {
468 MethodCall {
469 expr_id: id,
470 autoderef: 0
471 }
472 }
473
474 pub fn autoderef(expr_id: NodeId, autoderef: u32) -> MethodCall {
475 MethodCall {
476 expr_id: expr_id,
477 autoderef: 1 + autoderef
478 }
479 }
480}
481
482// maps from an expression id that corresponds to a method call to the details
483// of the method to be invoked
484pub type MethodMap<'tcx> = FnvHashMap<MethodCall, MethodCallee<'tcx>>;
485
486// Contains information needed to resolve types and (in the future) look up
487// the types of AST nodes.
488#[derive(Copy, Clone, PartialEq, Eq, Hash)]
489pub struct CReaderCacheKey {
490 pub cnum: CrateNum,
491 pub pos: usize,
e9174d1e
SL
492}
493
e9174d1e
SL
494/// Describes the fragment-state associated with a NodeId.
495///
496/// Currently only unfragmented paths have entries in the table,
497/// but longer-term this enum is expected to expand to also
498/// include data for fragmented paths.
499#[derive(Copy, Clone, Debug)]
500pub enum FragmentInfo {
501 Moved { var: NodeId, move_expr: NodeId },
502 Assigned { var: NodeId, assign_expr: NodeId, assignee_id: NodeId },
503}
504
505// Flags that we track on types. These flags are propagated upwards
506// through the type during type construction, so that we can quickly
507// check whether the type has various kinds of types in it without
508// recursing over the type itself.
509bitflags! {
510 flags TypeFlags: u32 {
511 const HAS_PARAMS = 1 << 0,
512 const HAS_SELF = 1 << 1,
513 const HAS_TY_INFER = 1 << 2,
514 const HAS_RE_INFER = 1 << 3,
3157f602
XL
515 const HAS_RE_SKOL = 1 << 4,
516 const HAS_RE_EARLY_BOUND = 1 << 5,
517 const HAS_FREE_REGIONS = 1 << 6,
518 const HAS_TY_ERR = 1 << 7,
519 const HAS_PROJECTION = 1 << 8,
520 const HAS_TY_CLOSURE = 1 << 9,
e9174d1e
SL
521
522 // true if there are "names" of types and regions and so forth
523 // that are local to a particular fn
3157f602 524 const HAS_LOCAL_NAMES = 1 << 10,
e9174d1e 525
a7813a04
XL
526 // Present if the type belongs in a local type context.
527 // Only set for TyInfer other than Fresh.
3157f602 528 const KEEP_IN_LOCAL_TCX = 1 << 11,
a7813a04 529
e9174d1e
SL
530 const NEEDS_SUBST = TypeFlags::HAS_PARAMS.bits |
531 TypeFlags::HAS_SELF.bits |
532 TypeFlags::HAS_RE_EARLY_BOUND.bits,
533
534 // Flags representing the nominal content of a type,
535 // computed by FlagsComputation. If you add a new nominal
536 // flag, it should be added here too.
537 const NOMINAL_FLAGS = TypeFlags::HAS_PARAMS.bits |
538 TypeFlags::HAS_SELF.bits |
539 TypeFlags::HAS_TY_INFER.bits |
540 TypeFlags::HAS_RE_INFER.bits |
541 TypeFlags::HAS_RE_EARLY_BOUND.bits |
542 TypeFlags::HAS_FREE_REGIONS.bits |
543 TypeFlags::HAS_TY_ERR.bits |
544 TypeFlags::HAS_PROJECTION.bits |
545 TypeFlags::HAS_TY_CLOSURE.bits |
a7813a04
XL
546 TypeFlags::HAS_LOCAL_NAMES.bits |
547 TypeFlags::KEEP_IN_LOCAL_TCX.bits,
e9174d1e
SL
548
549 // Caches for type_is_sized, type_moves_by_default
550 const SIZEDNESS_CACHED = 1 << 16,
551 const IS_SIZED = 1 << 17,
552 const MOVENESS_CACHED = 1 << 18,
553 const MOVES_BY_DEFAULT = 1 << 19,
554 }
555}
556
557pub struct TyS<'tcx> {
558 pub sty: TypeVariants<'tcx>,
559 pub flags: Cell<TypeFlags>,
560
561 // the maximal depth of any bound regions appearing in this type.
562 region_depth: u32,
563}
564
565impl<'tcx> PartialEq for TyS<'tcx> {
566 #[inline]
567 fn eq(&self, other: &TyS<'tcx>) -> bool {
568 // (self as *const _) == (other as *const _)
569 (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
570 }
571}
572impl<'tcx> Eq for TyS<'tcx> {}
573
574impl<'tcx> Hash for TyS<'tcx> {
575 fn hash<H: Hasher>(&self, s: &mut H) {
576 (self as *const TyS).hash(s)
577 }
578}
579
580pub type Ty<'tcx> = &'tcx TyS<'tcx>;
581
9cc50fc6
SL
582impl<'tcx> Encodable for Ty<'tcx> {
583 fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
584 cstore::tls::with_encoding_context(s, |ecx, rbml_w| {
585 ecx.encode_ty(rbml_w, *self);
586 Ok(())
587 })
588 }
589}
590
591impl<'tcx> Decodable for Ty<'tcx> {
592 fn decode<D: Decoder>(d: &mut D) -> Result<Ty<'tcx>, D::Error> {
593 cstore::tls::with_decoding_context(d, |dcx, rbml_r| {
594 Ok(dcx.decode_ty(rbml_r))
595 })
596 }
597}
598
599
e9174d1e
SL
600/// Upvars do not get their own node-id. Instead, we use the pair of
601/// the original var id (that is, the root variable that is referenced
602/// by the upvar) and the id of the closure expression.
603#[derive(Clone, Copy, PartialEq, Eq, Hash)]
604pub struct UpvarId {
605 pub var_id: NodeId,
606 pub closure_expr_id: NodeId,
607}
608
609#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
610pub enum BorrowKind {
611 /// Data must be immutable and is aliasable.
612 ImmBorrow,
613
614 /// Data must be immutable but not aliasable. This kind of borrow
615 /// cannot currently be expressed by the user and is used only in
616 /// implicit closure bindings. It is needed when you the closure
617 /// is borrowing or mutating a mutable referent, e.g.:
618 ///
619 /// let x: &mut isize = ...;
620 /// let y = || *x += 5;
621 ///
622 /// If we were to try to translate this closure into a more explicit
623 /// form, we'd encounter an error with the code as written:
624 ///
625 /// struct Env { x: & &mut isize }
626 /// let x: &mut isize = ...;
627 /// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
628 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
629 ///
630 /// This is then illegal because you cannot mutate a `&mut` found
631 /// in an aliasable location. To solve, you'd have to translate with
632 /// an `&mut` borrow:
633 ///
634 /// struct Env { x: & &mut isize }
635 /// let x: &mut isize = ...;
636 /// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
637 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
638 ///
639 /// Now the assignment to `**env.x` is legal, but creating a
640 /// mutable pointer to `x` is not because `x` is not mutable. We
641 /// could fix this by declaring `x` as `let mut x`. This is ok in
642 /// user code, if awkward, but extra weird for closures, since the
643 /// borrow is hidden.
644 ///
645 /// So we introduce a "unique imm" borrow -- the referent is
646 /// immutable, but not aliasable. This solves the problem. For
647 /// simplicity, we don't give users the way to express this
648 /// borrow, it's just used when translating closures.
649 UniqueImmBorrow,
650
651 /// Data is mutable and not aliasable.
652 MutBorrow
653}
654
655/// Information describing the capture of an upvar. This is computed
656/// during `typeck`, specifically by `regionck`.
657#[derive(PartialEq, Clone, Debug, Copy)]
658pub enum UpvarCapture {
659 /// Upvar is captured by value. This is always true when the
660 /// closure is labeled `move`, but can also be true in other cases
661 /// depending on inference.
662 ByValue,
663
664 /// Upvar is captured by reference.
665 ByRef(UpvarBorrow),
666}
667
668#[derive(PartialEq, Clone, Copy)]
669pub struct UpvarBorrow {
670 /// The kind of borrow: by-ref upvars have access to shared
671 /// immutable borrows, which are not part of the normal language
672 /// syntax.
673 pub kind: BorrowKind,
674
675 /// Region of the resulting reference.
676 pub region: ty::Region,
677}
678
679pub type UpvarCaptureMap = FnvHashMap<UpvarId, UpvarCapture>;
680
681#[derive(Copy, Clone)]
682pub struct ClosureUpvar<'tcx> {
7453a54e 683 pub def: Def,
e9174d1e
SL
684 pub span: Span,
685 pub ty: Ty<'tcx>,
686}
687
688#[derive(Clone, Copy, PartialEq)]
689pub enum IntVarValue {
b039eaaf
SL
690 IntType(ast::IntTy),
691 UintType(ast::UintTy),
e9174d1e
SL
692}
693
694/// Default region to use for the bound of objects that are
695/// supplied as the value for this type parameter. This is derived
696/// from `T:'a` annotations appearing in the type definition. If
697/// this is `None`, then the default is inherited from the
698/// surrounding context. See RFC #599 for details.
699#[derive(Copy, Clone)]
700pub enum ObjectLifetimeDefault {
701 /// Require an explicit annotation. Occurs when multiple
702 /// `T:'a` constraints are found.
703 Ambiguous,
704
705 /// Use the base default, typically 'static, but in a fn body it is a fresh variable
706 BaseDefault,
707
708 /// Use the given region as the default.
709 Specific(Region),
710}
711
712#[derive(Clone)]
713pub struct TypeParameterDef<'tcx> {
714 pub name: Name,
715 pub def_id: DefId,
716 pub space: subst::ParamSpace,
717 pub index: u32,
718 pub default_def_id: DefId, // for use in error reporing about defaults
719 pub default: Option<Ty<'tcx>>,
720 pub object_lifetime_default: ObjectLifetimeDefault,
721}
722
723#[derive(Clone)]
724pub struct RegionParameterDef {
725 pub name: Name,
726 pub def_id: DefId,
727 pub space: subst::ParamSpace,
728 pub index: u32,
729 pub bounds: Vec<ty::Region>,
730}
731
732impl RegionParameterDef {
733 pub fn to_early_bound_region(&self) -> ty::Region {
734 ty::ReEarlyBound(ty::EarlyBoundRegion {
e9174d1e
SL
735 space: self.space,
736 index: self.index,
737 name: self.name,
738 })
739 }
740 pub fn to_bound_region(&self) -> ty::BoundRegion {
3157f602
XL
741 // this is an early bound region, so unaffected by #32330
742 ty::BoundRegion::BrNamed(self.def_id, self.name, Issue32330::WontChange)
e9174d1e
SL
743 }
744}
745
746/// Information about the formal type/lifetime parameters associated
747/// with an item or method. Analogous to hir::Generics.
748#[derive(Clone, Debug)]
749pub struct Generics<'tcx> {
750 pub types: VecPerParamSpace<TypeParameterDef<'tcx>>,
751 pub regions: VecPerParamSpace<RegionParameterDef>,
752}
753
754impl<'tcx> Generics<'tcx> {
755 pub fn empty() -> Generics<'tcx> {
756 Generics {
757 types: VecPerParamSpace::empty(),
758 regions: VecPerParamSpace::empty(),
759 }
760 }
761
762 pub fn is_empty(&self) -> bool {
763 self.types.is_empty() && self.regions.is_empty()
764 }
765
766 pub fn has_type_params(&self, space: subst::ParamSpace) -> bool {
767 !self.types.is_empty_in(space)
768 }
769
770 pub fn has_region_params(&self, space: subst::ParamSpace) -> bool {
771 !self.regions.is_empty_in(space)
772 }
773}
774
775/// Bounds on generics.
776#[derive(Clone)]
777pub struct GenericPredicates<'tcx> {
778 pub predicates: VecPerParamSpace<Predicate<'tcx>>,
779}
780
a7813a04 781impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
e9174d1e
SL
782 pub fn empty() -> GenericPredicates<'tcx> {
783 GenericPredicates {
784 predicates: VecPerParamSpace::empty(),
785 }
786 }
787
a7813a04 788 pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
e9174d1e
SL
789 -> InstantiatedPredicates<'tcx> {
790 InstantiatedPredicates {
791 predicates: self.predicates.subst(tcx, substs),
792 }
793 }
794
a7813a04 795 pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
e9174d1e
SL
796 poly_trait_ref: &ty::PolyTraitRef<'tcx>)
797 -> InstantiatedPredicates<'tcx>
798 {
799 InstantiatedPredicates {
a7813a04
XL
800 predicates: self.predicates.map(|pred| {
801 pred.subst_supertrait(tcx, poly_trait_ref)
802 })
e9174d1e
SL
803 }
804 }
805}
806
807#[derive(Clone, PartialEq, Eq, Hash)]
808pub enum Predicate<'tcx> {
809 /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
810 /// the `Self` type of the trait reference and `A`, `B`, and `C`
811 /// would be the parameters in the `TypeSpace`.
812 Trait(PolyTraitPredicate<'tcx>),
813
a7813a04
XL
814 /// A predicate created by RFC1592
815 Rfc1592(Box<Predicate<'tcx>>),
816
e9174d1e
SL
817 /// where `T1 == T2`.
818 Equate(PolyEquatePredicate<'tcx>),
819
820 /// where 'a : 'b
821 RegionOutlives(PolyRegionOutlivesPredicate),
822
823 /// where T : 'a
824 TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
825
826 /// where <T as TraitRef>::Name == X, approximately.
827 /// See `ProjectionPredicate` struct for details.
828 Projection(PolyProjectionPredicate<'tcx>),
829
830 /// no syntax: T WF
831 WellFormed(Ty<'tcx>),
832
833 /// trait must be object-safe
834 ObjectSafe(DefId),
a7813a04
XL
835
836 /// No direct syntax. May be thought of as `where T : FnFoo<...>` for some 'TypeSpace'
837 /// substitutions `...` and T being a closure type. Satisfied (or refuted) once we know the
838 /// closure's kind.
839 ClosureKind(DefId, ClosureKind),
e9174d1e
SL
840}
841
a7813a04 842impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
e9174d1e
SL
843 /// Performs a substitution suitable for going from a
844 /// poly-trait-ref to supertraits that must hold if that
845 /// poly-trait-ref holds. This is slightly different from a normal
846 /// substitution in terms of what happens with bound regions. See
847 /// lengthy comment below for details.
a7813a04 848 pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
e9174d1e
SL
849 trait_ref: &ty::PolyTraitRef<'tcx>)
850 -> ty::Predicate<'tcx>
851 {
852 // The interaction between HRTB and supertraits is not entirely
853 // obvious. Let me walk you (and myself) through an example.
854 //
855 // Let's start with an easy case. Consider two traits:
856 //
857 // trait Foo<'a> : Bar<'a,'a> { }
858 // trait Bar<'b,'c> { }
859 //
860 // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
861 // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
862 // knew that `Foo<'x>` (for any 'x) then we also know that
863 // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
864 // normal substitution.
865 //
866 // In terms of why this is sound, the idea is that whenever there
867 // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
868 // holds. So if there is an impl of `T:Foo<'a>` that applies to
869 // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
870 // `'a`.
871 //
872 // Another example to be careful of is this:
873 //
874 // trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
875 // trait Bar1<'b,'c> { }
876 //
877 // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
878 // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
879 // reason is similar to the previous example: any impl of
880 // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`. So
881 // basically we would want to collapse the bound lifetimes from
882 // the input (`trait_ref`) and the supertraits.
883 //
884 // To achieve this in practice is fairly straightforward. Let's
885 // consider the more complicated scenario:
886 //
887 // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
888 // has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
889 // where both `'x` and `'b` would have a DB index of 1.
890 // The substitution from the input trait-ref is therefore going to be
891 // `'a => 'x` (where `'x` has a DB index of 1).
892 // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
893 // early-bound parameter and `'b' is a late-bound parameter with a
894 // DB index of 1.
895 // - If we replace `'a` with `'x` from the input, it too will have
896 // a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
897 // just as we wanted.
898 //
899 // There is only one catch. If we just apply the substitution `'a
900 // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
901 // adjust the DB index because we substituting into a binder (it
902 // tries to be so smart...) resulting in `for<'x> for<'b>
903 // Bar1<'x,'b>` (we have no syntax for this, so use your
904 // imagination). Basically the 'x will have DB index of 2 and 'b
905 // will have DB index of 1. Not quite what we want. So we apply
906 // the substitution to the *contents* of the trait reference,
907 // rather than the trait reference itself (put another way, the
908 // substitution code expects equal binding levels in the values
909 // from the substitution and the value being substituted into, and
910 // this trick achieves that).
911
912 let substs = &trait_ref.0.substs;
913 match *self {
914 Predicate::Trait(ty::Binder(ref data)) =>
915 Predicate::Trait(ty::Binder(data.subst(tcx, substs))),
a7813a04
XL
916 Predicate::Rfc1592(ref pi) =>
917 Predicate::Rfc1592(Box::new(pi.subst_supertrait(tcx, trait_ref))),
e9174d1e
SL
918 Predicate::Equate(ty::Binder(ref data)) =>
919 Predicate::Equate(ty::Binder(data.subst(tcx, substs))),
920 Predicate::RegionOutlives(ty::Binder(ref data)) =>
921 Predicate::RegionOutlives(ty::Binder(data.subst(tcx, substs))),
922 Predicate::TypeOutlives(ty::Binder(ref data)) =>
923 Predicate::TypeOutlives(ty::Binder(data.subst(tcx, substs))),
924 Predicate::Projection(ty::Binder(ref data)) =>
925 Predicate::Projection(ty::Binder(data.subst(tcx, substs))),
926 Predicate::WellFormed(data) =>
927 Predicate::WellFormed(data.subst(tcx, substs)),
928 Predicate::ObjectSafe(trait_def_id) =>
929 Predicate::ObjectSafe(trait_def_id),
a7813a04
XL
930 Predicate::ClosureKind(closure_def_id, kind) =>
931 Predicate::ClosureKind(closure_def_id, kind),
e9174d1e
SL
932 }
933 }
934}
935
936#[derive(Clone, PartialEq, Eq, Hash)]
937pub struct TraitPredicate<'tcx> {
938 pub trait_ref: TraitRef<'tcx>
939}
940pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;
941
942impl<'tcx> TraitPredicate<'tcx> {
943 pub fn def_id(&self) -> DefId {
944 self.trait_ref.def_id
945 }
946
7453a54e 947 /// Creates the dep-node for selecting/evaluating this trait reference.
54a0048b 948 fn dep_node(&self) -> DepNode<DefId> {
3157f602
XL
949 // Ideally, the dep-node would just have all the input types
950 // in it. But they are limited to including def-ids. So as an
951 // approximation we include the def-ids for all nominal types
952 // found somewhere. This means that we will e.g. conflate the
953 // dep-nodes for `u32: SomeTrait` and `u64: SomeTrait`, but we
954 // would have distinct dep-nodes for `Vec<u32>: SomeTrait`,
955 // `Rc<u32>: SomeTrait`, and `(Vec<u32>, Rc<u32>): SomeTrait`.
956 // Note that it's always sound to conflate dep-nodes, it just
957 // leads to more recompilation.
958 let def_ids: Vec<_> =
959 self.input_types()
960 .iter()
961 .flat_map(|t| t.walk())
962 .filter_map(|t| match t.sty {
963 ty::TyStruct(adt_def, _) |
964 ty::TyEnum(adt_def, _) =>
965 Some(adt_def.did),
966 _ =>
967 None
968 })
969 .collect();
970 DepNode::TraitSelect(self.def_id(), def_ids)
7453a54e
SL
971 }
972
e9174d1e
SL
973 pub fn input_types(&self) -> &[Ty<'tcx>] {
974 self.trait_ref.substs.types.as_slice()
975 }
976
977 pub fn self_ty(&self) -> Ty<'tcx> {
978 self.trait_ref.self_ty()
979 }
980}
981
982impl<'tcx> PolyTraitPredicate<'tcx> {
983 pub fn def_id(&self) -> DefId {
7453a54e 984 // ok to skip binder since trait def-id does not care about regions
e9174d1e
SL
985 self.0.def_id()
986 }
7453a54e 987
54a0048b 988 pub fn dep_node(&self) -> DepNode<DefId> {
7453a54e
SL
989 // ok to skip binder since depnode does not care about regions
990 self.0.dep_node()
991 }
e9174d1e
SL
992}
993
994#[derive(Clone, PartialEq, Eq, Hash, Debug)]
995pub struct EquatePredicate<'tcx>(pub Ty<'tcx>, pub Ty<'tcx>); // `0 == 1`
996pub type PolyEquatePredicate<'tcx> = ty::Binder<EquatePredicate<'tcx>>;
997
998#[derive(Clone, PartialEq, Eq, Hash, Debug)]
999pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
1000pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
1001pub type PolyRegionOutlivesPredicate = PolyOutlivesPredicate<ty::Region, ty::Region>;
1002pub type PolyTypeOutlivesPredicate<'tcx> = PolyOutlivesPredicate<Ty<'tcx>, ty::Region>;
1003
1004/// This kind of predicate has no *direct* correspondent in the
1005/// syntax, but it roughly corresponds to the syntactic forms:
1006///
1007/// 1. `T : TraitRef<..., Item=Type>`
1008/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
1009///
1010/// In particular, form #1 is "desugared" to the combination of a
1011/// normal trait predicate (`T : TraitRef<...>`) and one of these
1012/// predicates. Form #2 is a broader form in that it also permits
1013/// equality between arbitrary types. Processing an instance of Form
1014/// #2 eventually yields one of these `ProjectionPredicate`
1015/// instances to normalize the LHS.
3157f602 1016#[derive(Copy, Clone, PartialEq, Eq, Hash)]
e9174d1e
SL
1017pub struct ProjectionPredicate<'tcx> {
1018 pub projection_ty: ProjectionTy<'tcx>,
1019 pub ty: Ty<'tcx>,
1020}
1021
1022pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;
1023
1024impl<'tcx> PolyProjectionPredicate<'tcx> {
1025 pub fn item_name(&self) -> Name {
1026 self.0.projection_ty.item_name // safe to skip the binder to access a name
1027 }
1028
1029 pub fn sort_key(&self) -> (DefId, Name) {
1030 self.0.projection_ty.sort_key()
1031 }
1032}
1033
1034pub trait ToPolyTraitRef<'tcx> {
1035 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
1036}
1037
1038impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1039 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1040 assert!(!self.has_escaping_regions());
1041 ty::Binder(self.clone())
1042 }
1043}
1044
1045impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
1046 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
7453a54e 1047 self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
e9174d1e
SL
1048 }
1049}
1050
1051impl<'tcx> ToPolyTraitRef<'tcx> for PolyProjectionPredicate<'tcx> {
1052 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1053 // Note: unlike with TraitRef::to_poly_trait_ref(),
1054 // self.0.trait_ref is permitted to have escaping regions.
1055 // This is because here `self` has a `Binder` and so does our
1056 // return value, so we are preserving the number of binding
1057 // levels.
7453a54e 1058 ty::Binder(self.0.projection_ty.trait_ref)
e9174d1e
SL
1059 }
1060}
1061
1062pub trait ToPredicate<'tcx> {
1063 fn to_predicate(&self) -> Predicate<'tcx>;
1064}
1065
1066impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
1067 fn to_predicate(&self) -> Predicate<'tcx> {
1068 // we're about to add a binder, so let's check that we don't
1069 // accidentally capture anything, or else that might be some
1070 // weird debruijn accounting.
1071 assert!(!self.has_escaping_regions());
1072
1073 ty::Predicate::Trait(ty::Binder(ty::TraitPredicate {
1074 trait_ref: self.clone()
1075 }))
1076 }
1077}
1078
1079impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
1080 fn to_predicate(&self) -> Predicate<'tcx> {
1081 ty::Predicate::Trait(self.to_poly_trait_predicate())
1082 }
1083}
1084
1085impl<'tcx> ToPredicate<'tcx> for PolyEquatePredicate<'tcx> {
1086 fn to_predicate(&self) -> Predicate<'tcx> {
1087 Predicate::Equate(self.clone())
1088 }
1089}
1090
1091impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate {
1092 fn to_predicate(&self) -> Predicate<'tcx> {
1093 Predicate::RegionOutlives(self.clone())
1094 }
1095}
1096
1097impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
1098 fn to_predicate(&self) -> Predicate<'tcx> {
1099 Predicate::TypeOutlives(self.clone())
1100 }
1101}
1102
1103impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
1104 fn to_predicate(&self) -> Predicate<'tcx> {
1105 Predicate::Projection(self.clone())
1106 }
1107}
1108
1109impl<'tcx> Predicate<'tcx> {
1110 /// Iterates over the types in this predicate. Note that in all
1111 /// cases this is skipping over a binder, so late-bound regions
1112 /// with depth 0 are bound by the predicate.
1113 pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
1114 let vec: Vec<_> = match *self {
1115 ty::Predicate::Trait(ref data) => {
1116 data.0.trait_ref.substs.types.as_slice().to_vec()
1117 }
a7813a04
XL
1118 ty::Predicate::Rfc1592(ref data) => {
1119 return data.walk_tys()
1120 }
e9174d1e
SL
1121 ty::Predicate::Equate(ty::Binder(ref data)) => {
1122 vec![data.0, data.1]
1123 }
1124 ty::Predicate::TypeOutlives(ty::Binder(ref data)) => {
1125 vec![data.0]
1126 }
1127 ty::Predicate::RegionOutlives(..) => {
1128 vec![]
1129 }
1130 ty::Predicate::Projection(ref data) => {
1131 let trait_inputs = data.0.projection_ty.trait_ref.substs.types.as_slice();
1132 trait_inputs.iter()
1133 .cloned()
1134 .chain(Some(data.0.ty))
1135 .collect()
1136 }
1137 ty::Predicate::WellFormed(data) => {
1138 vec![data]
1139 }
1140 ty::Predicate::ObjectSafe(_trait_def_id) => {
1141 vec![]
1142 }
a7813a04
XL
1143 ty::Predicate::ClosureKind(_closure_def_id, _kind) => {
1144 vec![]
1145 }
e9174d1e
SL
1146 };
1147
1148 // The only reason to collect into a vector here is that I was
1149 // too lazy to make the full (somewhat complicated) iterator
1150 // type that would be needed here. But I wanted this fn to
1151 // return an iterator conceptually, rather than a `Vec`, so as
1152 // to be closer to `Ty::walk`.
1153 vec.into_iter()
1154 }
1155
1156 pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1157 match *self {
1158 Predicate::Trait(ref t) => {
1159 Some(t.to_poly_trait_ref())
1160 }
a7813a04 1161 Predicate::Rfc1592(..) |
e9174d1e
SL
1162 Predicate::Projection(..) |
1163 Predicate::Equate(..) |
1164 Predicate::RegionOutlives(..) |
1165 Predicate::WellFormed(..) |
1166 Predicate::ObjectSafe(..) |
a7813a04 1167 Predicate::ClosureKind(..) |
e9174d1e
SL
1168 Predicate::TypeOutlives(..) => {
1169 None
1170 }
1171 }
1172 }
1173}
1174
1175/// Represents the bounds declared on a particular set of type
1176/// parameters. Should eventually be generalized into a flag list of
1177/// where clauses. You can obtain a `InstantiatedPredicates` list from a
1178/// `GenericPredicates` by using the `instantiate` method. Note that this method
1179/// reflects an important semantic invariant of `InstantiatedPredicates`: while
1180/// the `GenericPredicates` are expressed in terms of the bound type
1181/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
1182/// represented a set of bounds for some particular instantiation,
1183/// meaning that the generic parameters have been substituted with
1184/// their values.
1185///
1186/// Example:
1187///
1188/// struct Foo<T,U:Bar<T>> { ... }
1189///
1190/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
1191/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
1192/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
1193/// [usize:Bar<isize>]]`.
1194#[derive(Clone)]
1195pub struct InstantiatedPredicates<'tcx> {
1196 pub predicates: VecPerParamSpace<Predicate<'tcx>>,
1197}
1198
1199impl<'tcx> InstantiatedPredicates<'tcx> {
1200 pub fn empty() -> InstantiatedPredicates<'tcx> {
1201 InstantiatedPredicates { predicates: VecPerParamSpace::empty() }
1202 }
1203
1204 pub fn is_empty(&self) -> bool {
1205 self.predicates.is_empty()
1206 }
1207}
1208
1209impl<'tcx> TraitRef<'tcx> {
1210 pub fn new(def_id: DefId, substs: &'tcx Substs<'tcx>) -> TraitRef<'tcx> {
1211 TraitRef { def_id: def_id, substs: substs }
1212 }
1213
1214 pub fn self_ty(&self) -> Ty<'tcx> {
1215 self.substs.self_ty().unwrap()
1216 }
1217
1218 pub fn input_types(&self) -> &[Ty<'tcx>] {
1219 // Select only the "input types" from a trait-reference. For
1220 // now this is all the types that appear in the
1221 // trait-reference, but it should eventually exclude
1222 // associated types.
1223 self.substs.types.as_slice()
1224 }
1225}
1226
1227/// When type checking, we use the `ParameterEnvironment` to track
1228/// details about the type/lifetime parameters that are in scope.
1229/// It primarily stores the bounds information.
1230///
1231/// Note: This information might seem to be redundant with the data in
1232/// `tcx.ty_param_defs`, but it is not. That table contains the
1233/// parameter definitions from an "outside" perspective, but this
1234/// struct will contain the bounds for a parameter as seen from inside
1235/// the function body. Currently the only real distinction is that
1236/// bound lifetime parameters are replaced with free ones, but in the
1237/// future I hope to refine the representation of types so as to make
1238/// more distinctions clearer.
1239#[derive(Clone)]
a7813a04 1240pub struct ParameterEnvironment<'tcx> {
e9174d1e 1241 /// See `construct_free_substs` for details.
a7813a04 1242 pub free_substs: &'tcx Substs<'tcx>,
e9174d1e
SL
1243
1244 /// Each type parameter has an implicit region bound that
1245 /// indicates it must outlive at least the function body (the user
1246 /// may specify stronger requirements). This field indicates the
1247 /// region of the callee.
1248 pub implicit_region_bound: ty::Region,
1249
1250 /// Obligations that the caller must satisfy. This is basically
1251 /// the set of bounds on the in-scope type parameters, translated
1252 /// into Obligations, and elaborated and normalized.
1253 pub caller_bounds: Vec<ty::Predicate<'tcx>>,
1254
e9174d1e
SL
1255 /// Scope that is attached to free regions for this scope. This
1256 /// is usually the id of the fn body, but for more abstract scopes
1257 /// like structs we often use the node-id of the struct.
1258 ///
1259 /// FIXME(#3696). It would be nice to refactor so that free
1260 /// regions don't have this implicit scope and instead introduce
1261 /// relationships in the environment.
9cc50fc6 1262 pub free_id_outlive: CodeExtent,
e9174d1e
SL
1263}
1264
a7813a04 1265impl<'a, 'tcx> ParameterEnvironment<'tcx> {
e9174d1e
SL
1266 pub fn with_caller_bounds(&self,
1267 caller_bounds: Vec<ty::Predicate<'tcx>>)
a7813a04 1268 -> ParameterEnvironment<'tcx>
e9174d1e
SL
1269 {
1270 ParameterEnvironment {
a7813a04 1271 free_substs: self.free_substs,
e9174d1e
SL
1272 implicit_region_bound: self.implicit_region_bound,
1273 caller_bounds: caller_bounds,
9cc50fc6 1274 free_id_outlive: self.free_id_outlive,
e9174d1e
SL
1275 }
1276 }
1277
54a0048b 1278 /// Construct a parameter environment given an item, impl item, or trait item
a7813a04
XL
1279 pub fn for_item(tcx: TyCtxt<'a, 'tcx, 'tcx>, id: NodeId)
1280 -> ParameterEnvironment<'tcx> {
1281 match tcx.map.find(id) {
e9174d1e
SL
1282 Some(ast_map::NodeImplItem(ref impl_item)) => {
1283 match impl_item.node {
a7813a04 1284 hir::ImplItemKind::Type(_) | hir::ImplItemKind::Const(_, _) => {
e9174d1e
SL
1285 // associated types don't have their own entry (for some reason),
1286 // so for now just grab environment for the impl
a7813a04
XL
1287 let impl_id = tcx.map.get_parent(id);
1288 let impl_def_id = tcx.map.local_def_id(impl_id);
1289 let scheme = tcx.lookup_item_type(impl_def_id);
1290 let predicates = tcx.lookup_predicates(impl_def_id);
1291 tcx.construct_parameter_environment(impl_item.span,
1292 &scheme.generics,
1293 &predicates,
1294 tcx.region_maps.item_extent(id))
e9174d1e 1295 }
92a42be0 1296 hir::ImplItemKind::Method(_, ref body) => {
a7813a04
XL
1297 let method_def_id = tcx.map.local_def_id(id);
1298 match tcx.impl_or_trait_item(method_def_id) {
e9174d1e
SL
1299 MethodTraitItem(ref method_ty) => {
1300 let method_generics = &method_ty.generics;
1301 let method_bounds = &method_ty.predicates;
a7813a04 1302 tcx.construct_parameter_environment(
e9174d1e
SL
1303 impl_item.span,
1304 method_generics,
1305 method_bounds,
a7813a04 1306 tcx.region_maps.call_site_extent(id, body.id))
e9174d1e
SL
1307 }
1308 _ => {
54a0048b
SL
1309 bug!("ParameterEnvironment::for_item(): \
1310 got non-method item from impl method?!")
e9174d1e
SL
1311 }
1312 }
1313 }
1314 }
1315 }
1316 Some(ast_map::NodeTraitItem(trait_item)) => {
1317 match trait_item.node {
a7813a04 1318 hir::TypeTraitItem(..) | hir::ConstTraitItem(..) => {
e9174d1e
SL
1319 // associated types don't have their own entry (for some reason),
1320 // so for now just grab environment for the trait
a7813a04
XL
1321 let trait_id = tcx.map.get_parent(id);
1322 let trait_def_id = tcx.map.local_def_id(trait_id);
1323 let trait_def = tcx.lookup_trait_def(trait_def_id);
1324 let predicates = tcx.lookup_predicates(trait_def_id);
1325 tcx.construct_parameter_environment(trait_item.span,
1326 &trait_def.generics,
1327 &predicates,
1328 tcx.region_maps.item_extent(id))
e9174d1e
SL
1329 }
1330 hir::MethodTraitItem(_, ref body) => {
9cc50fc6
SL
1331 // Use call-site for extent (unless this is a
1332 // trait method with no default; then fallback
1333 // to the method id).
a7813a04
XL
1334 let method_def_id = tcx.map.local_def_id(id);
1335 match tcx.impl_or_trait_item(method_def_id) {
e9174d1e
SL
1336 MethodTraitItem(ref method_ty) => {
1337 let method_generics = &method_ty.generics;
1338 let method_bounds = &method_ty.predicates;
9cc50fc6
SL
1339 let extent = if let Some(ref body) = *body {
1340 // default impl: use call_site extent as free_id_outlive bound.
a7813a04 1341 tcx.region_maps.call_site_extent(id, body.id)
9cc50fc6
SL
1342 } else {
1343 // no default impl: use item extent as free_id_outlive bound.
a7813a04 1344 tcx.region_maps.item_extent(id)
9cc50fc6 1345 };
a7813a04 1346 tcx.construct_parameter_environment(
e9174d1e
SL
1347 trait_item.span,
1348 method_generics,
1349 method_bounds,
9cc50fc6 1350 extent)
e9174d1e
SL
1351 }
1352 _ => {
54a0048b
SL
1353 bug!("ParameterEnvironment::for_item(): \
1354 got non-method item from provided \
1355 method?!")
e9174d1e
SL
1356 }
1357 }
1358 }
1359 }
1360 }
1361 Some(ast_map::NodeItem(item)) => {
1362 match item.node {
1363 hir::ItemFn(_, _, _, _, _, ref body) => {
1364 // We assume this is a function.
a7813a04
XL
1365 let fn_def_id = tcx.map.local_def_id(id);
1366 let fn_scheme = tcx.lookup_item_type(fn_def_id);
1367 let fn_predicates = tcx.lookup_predicates(fn_def_id);
1368
1369 tcx.construct_parameter_environment(
1370 item.span,
1371 &fn_scheme.generics,
1372 &fn_predicates,
1373 tcx.region_maps.call_site_extent(id, body.id))
e9174d1e
SL
1374 }
1375 hir::ItemEnum(..) |
1376 hir::ItemStruct(..) |
a7813a04 1377 hir::ItemTy(..) |
e9174d1e
SL
1378 hir::ItemImpl(..) |
1379 hir::ItemConst(..) |
1380 hir::ItemStatic(..) => {
a7813a04
XL
1381 let def_id = tcx.map.local_def_id(id);
1382 let scheme = tcx.lookup_item_type(def_id);
1383 let predicates = tcx.lookup_predicates(def_id);
1384 tcx.construct_parameter_environment(item.span,
1385 &scheme.generics,
1386 &predicates,
1387 tcx.region_maps.item_extent(id))
e9174d1e
SL
1388 }
1389 hir::ItemTrait(..) => {
a7813a04
XL
1390 let def_id = tcx.map.local_def_id(id);
1391 let trait_def = tcx.lookup_trait_def(def_id);
1392 let predicates = tcx.lookup_predicates(def_id);
1393 tcx.construct_parameter_environment(item.span,
1394 &trait_def.generics,
1395 &predicates,
1396 tcx.region_maps.item_extent(id))
e9174d1e
SL
1397 }
1398 _ => {
54a0048b
SL
1399 span_bug!(item.span,
1400 "ParameterEnvironment::for_item():
1401 can't create a parameter \
1402 environment for this kind of item")
e9174d1e
SL
1403 }
1404 }
1405 }
5bcae85e 1406 Some(ast_map::NodeExpr(expr)) => {
e9174d1e 1407 // This is a convenience to allow closures to work.
5bcae85e
SL
1408 if let hir::ExprClosure(..) = expr.node {
1409 ParameterEnvironment::for_item(tcx, tcx.map.get_parent(id))
1410 } else {
1411 tcx.empty_parameter_environment()
1412 }
a7813a04
XL
1413 }
1414 Some(ast_map::NodeForeignItem(item)) => {
1415 let def_id = tcx.map.local_def_id(id);
1416 let scheme = tcx.lookup_item_type(def_id);
1417 let predicates = tcx.lookup_predicates(def_id);
1418 tcx.construct_parameter_environment(item.span,
1419 &scheme.generics,
1420 &predicates,
1421 ROOT_CODE_EXTENT)
e9174d1e
SL
1422 }
1423 _ => {
54a0048b
SL
1424 bug!("ParameterEnvironment::from_item(): \
1425 `{}` is not an item",
a7813a04 1426 tcx.map.node_to_string(id))
e9174d1e
SL
1427 }
1428 }
1429 }
1430}
1431
1432/// A "type scheme", in ML terminology, is a type combined with some
1433/// set of generic types that the type is, well, generic over. In Rust
1434/// terms, it is the "type" of a fn item or struct -- this type will
1435/// include various generic parameters that must be substituted when
1436/// the item/struct is referenced. That is called converting the type
1437/// scheme to a monotype.
1438///
1439/// - `generics`: the set of type parameters and their bounds
1440/// - `ty`: the base types, which may reference the parameters defined
1441/// in `generics`
1442///
1443/// Note that TypeSchemes are also sometimes called "polytypes" (and
1444/// in fact this struct used to carry that name, so you may find some
1445/// stray references in a comment or something). We try to reserve the
1446/// "poly" prefix to refer to higher-ranked things, as in
1447/// `PolyTraitRef`.
1448///
1449/// Note that each item also comes with predicates, see
1450/// `lookup_predicates`.
1451#[derive(Clone, Debug)]
1452pub struct TypeScheme<'tcx> {
1453 pub generics: Generics<'tcx>,
1454 pub ty: Ty<'tcx>,
1455}
1456
e9174d1e
SL
1457bitflags! {
1458 flags AdtFlags: u32 {
1459 const NO_ADT_FLAGS = 0,
1460 const IS_ENUM = 1 << 0,
1461 const IS_DTORCK = 1 << 1, // is this a dtorck type?
1462 const IS_DTORCK_VALID = 1 << 2,
1463 const IS_PHANTOM_DATA = 1 << 3,
1464 const IS_SIMD = 1 << 4,
1465 const IS_FUNDAMENTAL = 1 << 5,
1466 const IS_NO_DROP_FLAG = 1 << 6,
1467 }
1468}
1469
1470pub type AdtDef<'tcx> = &'tcx AdtDefData<'tcx, 'static>;
1471pub type VariantDef<'tcx> = &'tcx VariantDefData<'tcx, 'static>;
1472pub type FieldDef<'tcx> = &'tcx FieldDefData<'tcx, 'static>;
1473
1474// See comment on AdtDefData for explanation
1475pub type AdtDefMaster<'tcx> = &'tcx AdtDefData<'tcx, 'tcx>;
1476pub type VariantDefMaster<'tcx> = &'tcx VariantDefData<'tcx, 'tcx>;
1477pub type FieldDefMaster<'tcx> = &'tcx FieldDefData<'tcx, 'tcx>;
1478
1479pub struct VariantDefData<'tcx, 'container: 'tcx> {
b039eaaf
SL
1480 /// The variant's DefId. If this is a tuple-like struct,
1481 /// this is the DefId of the struct's ctor.
e9174d1e
SL
1482 pub did: DefId,
1483 pub name: Name, // struct's name if this is a struct
1484 pub disr_val: Disr,
b039eaaf 1485 pub fields: Vec<FieldDefData<'tcx, 'container>>,
9cc50fc6 1486 pub kind: VariantKind,
e9174d1e
SL
1487}
1488
1489pub struct FieldDefData<'tcx, 'container: 'tcx> {
1490 /// The field's DefId. NOTE: the fields of tuple-like enum variants
1491 /// are not real items, and don't have entries in tcache etc.
1492 pub did: DefId,
e9174d1e 1493 pub name: Name,
54a0048b 1494 pub vis: Visibility,
e9174d1e
SL
1495 /// TyIVar is used here to allow for variance (see the doc at
1496 /// AdtDefData).
9cc50fc6
SL
1497 ///
1498 /// Note: direct accesses to `ty` must also add dep edges.
e9174d1e
SL
1499 ty: ivar::TyIVar<'tcx, 'container>
1500}
1501
1502/// The definition of an abstract data type - a struct or enum.
1503///
1504/// These are all interned (by intern_adt_def) into the adt_defs
1505/// table.
1506///
1507/// Because of the possibility of nested tcx-s, this type
1508/// needs 2 lifetimes: the traditional variant lifetime ('tcx)
1509/// bounding the lifetime of the inner types is of course necessary.
1510/// However, it is not sufficient - types from a child tcx must
1511/// not be leaked into the master tcx by being stored in an AdtDefData.
1512///
1513/// The 'container lifetime ensures that by outliving the container
1514/// tcx and preventing shorter-lived types from being inserted. When
1515/// write access is not needed, the 'container lifetime can be
1516/// erased to 'static, which can be done by the AdtDef wrapper.
1517pub struct AdtDefData<'tcx, 'container: 'tcx> {
1518 pub did: DefId,
1519 pub variants: Vec<VariantDefData<'tcx, 'container>>,
1520 destructor: Cell<Option<DefId>>,
1521 flags: Cell<AdtFlags>,
a7813a04 1522 sized_constraint: ivar::TyIVar<'tcx, 'container>,
e9174d1e
SL
1523}
1524
1525impl<'tcx, 'container> PartialEq for AdtDefData<'tcx, 'container> {
1526 // AdtDefData are always interned and this is part of TyS equality
1527 #[inline]
1528 fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
1529}
1530
1531impl<'tcx, 'container> Eq for AdtDefData<'tcx, 'container> {}
1532
1533impl<'tcx, 'container> Hash for AdtDefData<'tcx, 'container> {
1534 #[inline]
1535 fn hash<H: Hasher>(&self, s: &mut H) {
1536 (self as *const AdtDefData).hash(s)
1537 }
1538}
1539
9cc50fc6
SL
1540impl<'tcx> Encodable for AdtDef<'tcx> {
1541 fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1542 self.did.encode(s)
1543 }
1544}
1545
1546impl<'tcx> Decodable for AdtDef<'tcx> {
1547 fn decode<D: Decoder>(d: &mut D) -> Result<AdtDef<'tcx>, D::Error> {
54a0048b 1548 let def_id: DefId = Decodable::decode(d)?;
9cc50fc6
SL
1549
1550 cstore::tls::with_decoding_context(d, |dcx, _| {
1551 let def_id = dcx.translate_def_id(def_id);
1552 Ok(dcx.tcx().lookup_adt_def(def_id))
1553 })
1554 }
1555}
1556
e9174d1e
SL
1557
1558#[derive(Copy, Clone, Debug, Eq, PartialEq)]
1559pub enum AdtKind { Struct, Enum }
1560
7453a54e 1561#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
b039eaaf 1562pub enum VariantKind { Struct, Tuple, Unit }
e9174d1e 1563
7453a54e
SL
1564impl VariantKind {
1565 pub fn from_variant_data(vdata: &hir::VariantData) -> Self {
1566 match *vdata {
1567 hir::VariantData::Struct(..) => VariantKind::Struct,
1568 hir::VariantData::Tuple(..) => VariantKind::Tuple,
1569 hir::VariantData::Unit(..) => VariantKind::Unit,
1570 }
1571 }
1572}
1573
a7813a04
XL
1574impl<'a, 'gcx, 'tcx, 'container> AdtDefData<'gcx, 'container> {
1575 fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>,
e9174d1e
SL
1576 did: DefId,
1577 kind: AdtKind,
a7813a04 1578 variants: Vec<VariantDefData<'gcx, 'container>>) -> Self {
e9174d1e
SL
1579 let mut flags = AdtFlags::NO_ADT_FLAGS;
1580 let attrs = tcx.get_attrs(did);
1581 if attr::contains_name(&attrs, "fundamental") {
1582 flags = flags | AdtFlags::IS_FUNDAMENTAL;
1583 }
1584 if attr::contains_name(&attrs, "unsafe_no_drop_flag") {
1585 flags = flags | AdtFlags::IS_NO_DROP_FLAG;
1586 }
1587 if tcx.lookup_simd(did) {
1588 flags = flags | AdtFlags::IS_SIMD;
1589 }
1590 if Some(did) == tcx.lang_items.phantom_data() {
1591 flags = flags | AdtFlags::IS_PHANTOM_DATA;
1592 }
1593 if let AdtKind::Enum = kind {
1594 flags = flags | AdtFlags::IS_ENUM;
1595 }
1596 AdtDefData {
1597 did: did,
1598 variants: variants,
1599 flags: Cell::new(flags),
a7813a04
XL
1600 destructor: Cell::new(None),
1601 sized_constraint: ivar::TyIVar::new(),
e9174d1e
SL
1602 }
1603 }
1604
a7813a04 1605 fn calculate_dtorck(&'gcx self, tcx: TyCtxt) {
e9174d1e
SL
1606 if tcx.is_adt_dtorck(self) {
1607 self.flags.set(self.flags.get() | AdtFlags::IS_DTORCK);
1608 }
1609 self.flags.set(self.flags.get() | AdtFlags::IS_DTORCK_VALID)
1610 }
1611
1612 /// Returns the kind of the ADT - Struct or Enum.
1613 #[inline]
1614 pub fn adt_kind(&self) -> AdtKind {
1615 if self.flags.get().intersects(AdtFlags::IS_ENUM) {
1616 AdtKind::Enum
1617 } else {
1618 AdtKind::Struct
1619 }
1620 }
1621
1622 /// Returns whether this is a dtorck type. If this returns
1623 /// true, this type being safe for destruction requires it to be
1624 /// alive; Otherwise, only the contents are required to be.
1625 #[inline]
a7813a04 1626 pub fn is_dtorck(&'gcx self, tcx: TyCtxt) -> bool {
e9174d1e
SL
1627 if !self.flags.get().intersects(AdtFlags::IS_DTORCK_VALID) {
1628 self.calculate_dtorck(tcx)
1629 }
1630 self.flags.get().intersects(AdtFlags::IS_DTORCK)
1631 }
1632
1633 /// Returns whether this type is #[fundamental] for the purposes
1634 /// of coherence checking.
1635 #[inline]
1636 pub fn is_fundamental(&self) -> bool {
1637 self.flags.get().intersects(AdtFlags::IS_FUNDAMENTAL)
1638 }
1639
1640 #[inline]
1641 pub fn is_simd(&self) -> bool {
1642 self.flags.get().intersects(AdtFlags::IS_SIMD)
1643 }
1644
1645 /// Returns true if this is PhantomData<T>.
1646 #[inline]
1647 pub fn is_phantom_data(&self) -> bool {
1648 self.flags.get().intersects(AdtFlags::IS_PHANTOM_DATA)
1649 }
1650
1651 /// Returns whether this type has a destructor.
1652 pub fn has_dtor(&self) -> bool {
1653 match self.dtor_kind() {
1654 NoDtor => false,
1655 TraitDtor(..) => true
1656 }
1657 }
1658
1659 /// Asserts this is a struct and returns the struct's unique
1660 /// variant.
a7813a04 1661 pub fn struct_variant(&self) -> &VariantDefData<'gcx, 'container> {
54a0048b 1662 assert_eq!(self.adt_kind(), AdtKind::Struct);
e9174d1e
SL
1663 &self.variants[0]
1664 }
1665
1666 #[inline]
a7813a04 1667 pub fn type_scheme(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> TypeScheme<'gcx> {
e9174d1e
SL
1668 tcx.lookup_item_type(self.did)
1669 }
1670
1671 #[inline]
a7813a04 1672 pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
e9174d1e
SL
1673 tcx.lookup_predicates(self.did)
1674 }
1675
1676 /// Returns an iterator over all fields contained
1677 /// by this ADT.
1678 #[inline]
1679 pub fn all_fields(&self) ->
1680 iter::FlatMap<
a7813a04
XL
1681 slice::Iter<VariantDefData<'gcx, 'container>>,
1682 slice::Iter<FieldDefData<'gcx, 'container>>,
1683 for<'s> fn(&'s VariantDefData<'gcx, 'container>)
1684 -> slice::Iter<'s, FieldDefData<'gcx, 'container>>
e9174d1e
SL
1685 > {
1686 self.variants.iter().flat_map(VariantDefData::fields_iter)
1687 }
1688
1689 #[inline]
1690 pub fn is_empty(&self) -> bool {
1691 self.variants.is_empty()
1692 }
1693
1694 #[inline]
1695 pub fn is_univariant(&self) -> bool {
1696 self.variants.len() == 1
1697 }
1698
1699 pub fn is_payloadfree(&self) -> bool {
1700 !self.variants.is_empty() &&
1701 self.variants.iter().all(|v| v.fields.is_empty())
1702 }
1703
a7813a04 1704 pub fn variant_with_id(&self, vid: DefId) -> &VariantDefData<'gcx, 'container> {
e9174d1e
SL
1705 self.variants
1706 .iter()
1707 .find(|v| v.did == vid)
1708 .expect("variant_with_id: unknown variant")
1709 }
1710
1711 pub fn variant_index_with_id(&self, vid: DefId) -> usize {
1712 self.variants
1713 .iter()
1714 .position(|v| v.did == vid)
1715 .expect("variant_index_with_id: unknown variant")
1716 }
1717
a7813a04 1718 pub fn variant_of_def(&self, def: Def) -> &VariantDefData<'gcx, 'container> {
e9174d1e 1719 match def {
7453a54e 1720 Def::Variant(_, vid) => self.variant_with_id(vid),
5bcae85e 1721 Def::Struct(..) | Def::TyAlias(..) | Def::AssociatedTy(..) => self.struct_variant(),
54a0048b 1722 _ => bug!("unexpected def {:?} in variant_of_def", def)
e9174d1e
SL
1723 }
1724 }
1725
1726 pub fn destructor(&self) -> Option<DefId> {
1727 self.destructor.get()
1728 }
1729
1730 pub fn set_destructor(&self, dtor: DefId) {
1731 self.destructor.set(Some(dtor));
1732 }
1733
1734 pub fn dtor_kind(&self) -> DtorKind {
1735 match self.destructor.get() {
1736 Some(_) => {
1737 TraitDtor(!self.flags.get().intersects(AdtFlags::IS_NO_DROP_FLAG))
1738 }
1739 None => NoDtor,
1740 }
1741 }
1742}
1743
a7813a04
XL
1744impl<'a, 'gcx, 'tcx, 'container> AdtDefData<'tcx, 'container> {
1745 /// Returns a simpler type such that `Self: Sized` if and only
1746 /// if that type is Sized, or `TyErr` if this type is recursive.
1747 ///
1748 /// HACK: instead of returning a list of types, this function can
1749 /// return a tuple. In that case, the result is Sized only if
1750 /// all elements of the tuple are Sized.
1751 ///
1752 /// This is generally the `struct_tail` if this is a struct, or a
1753 /// tuple of them if this is an enum.
1754 ///
1755 /// Oddly enough, checking that the sized-constraint is Sized is
1756 /// actually more expressive than checking all members:
1757 /// the Sized trait is inductive, so an associated type that references
1758 /// Self would prevent its containing ADT from being Sized.
1759 ///
1760 /// Due to normalization being eager, this applies even if
1761 /// the associated type is behind a pointer, e.g. issue #31299.
1762 pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
5bcae85e 1763 match self.sized_constraint.get(DepNode::SizedConstraint(self.did)) {
a7813a04
XL
1764 None => {
1765 let global_tcx = tcx.global_tcx();
1766 let this = global_tcx.lookup_adt_def_master(self.did);
1767 this.calculate_sized_constraint_inner(global_tcx, &mut Vec::new());
1768 self.sized_constraint(tcx)
1769 }
1770 Some(ty) => ty
1771 }
1772 }
1773}
1774
1775impl<'a, 'tcx> AdtDefData<'tcx, 'tcx> {
1776 /// Calculates the Sized-constraint.
1777 ///
1778 /// As the Sized-constraint of enums can be a *set* of types,
1779 /// the Sized-constraint may need to be a set also. Because introducing
1780 /// a new type of IVar is currently a complex affair, the Sized-constraint
1781 /// may be a tuple.
1782 ///
1783 /// In fact, there are only a few options for the constraint:
1784 /// - `bool`, if the type is always Sized
1785 /// - an obviously-unsized type
1786 /// - a type parameter or projection whose Sizedness can't be known
1787 /// - a tuple of type parameters or projections, if there are multiple
1788 /// such.
1789 /// - a TyError, if a type contained itself. The representability
1790 /// check should catch this case.
5bcae85e
SL
1791 fn calculate_sized_constraint_inner(&'tcx self,
1792 tcx: TyCtxt<'a, 'tcx, 'tcx>,
a7813a04
XL
1793 stack: &mut Vec<AdtDefMaster<'tcx>>)
1794 {
3157f602 1795 let dep_node = || DepNode::SizedConstraint(self.did);
5bcae85e
SL
1796
1797 // Follow the memoization pattern: push the computation of
1798 // DepNode::SizedConstraint as our current task.
1799 let _task = tcx.dep_graph.in_task(dep_node());
1800 if self.sized_constraint.untracked_get().is_some() {
1801 // ---------------
1802 // can skip the dep-graph read since we just pushed the task
a7813a04
XL
1803 return;
1804 }
1805
1806 if stack.contains(&self) {
1807 debug!("calculate_sized_constraint: {:?} is recursive", self);
1808 // This should be reported as an error by `check_representable`.
1809 //
1810 // Consider the type as Sized in the meanwhile to avoid
1811 // further errors.
3157f602 1812 self.sized_constraint.fulfill(dep_node(), tcx.types.err);
a7813a04
XL
1813 return;
1814 }
1815
1816 stack.push(self);
1817
1818 let tys : Vec<_> =
1819 self.variants.iter().flat_map(|v| {
1820 v.fields.last()
1821 }).flat_map(|f| {
1822 self.sized_constraint_for_ty(tcx, stack, f.unsubst_ty())
1823 }).collect();
1824
1825 let self_ = stack.pop().unwrap();
1826 assert_eq!(self_, self);
1827
1828 let ty = match tys.len() {
1829 _ if tys.references_error() => tcx.types.err,
1830 0 => tcx.types.bool,
1831 1 => tys[0],
1832 _ => tcx.mk_tup(tys)
1833 };
1834
3157f602 1835 match self.sized_constraint.get(dep_node()) {
a7813a04
XL
1836 Some(old_ty) => {
1837 debug!("calculate_sized_constraint: {:?} recurred", self);
1838 assert_eq!(old_ty, tcx.types.err)
1839 }
1840 None => {
1841 debug!("calculate_sized_constraint: {:?} => {:?}", self, ty);
3157f602 1842 self.sized_constraint.fulfill(dep_node(), ty)
a7813a04
XL
1843 }
1844 }
1845 }
1846
1847 fn sized_constraint_for_ty(
1848 &'tcx self,
1849 tcx: TyCtxt<'a, 'tcx, 'tcx>,
1850 stack: &mut Vec<AdtDefMaster<'tcx>>,
1851 ty: Ty<'tcx>
1852 ) -> Vec<Ty<'tcx>> {
1853 let result = match ty.sty {
1854 TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
1855 TyBox(..) | TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
5bcae85e 1856 TyArray(..) | TyClosure(..) | TyNever => {
a7813a04
XL
1857 vec![]
1858 }
1859
1860 TyStr | TyTrait(..) | TySlice(_) | TyError => {
1861 // these are never sized - return the target type
1862 vec![ty]
1863 }
1864
1865 TyTuple(ref tys) => {
1866 // FIXME(#33242) we only need to constrain the last field
1867 tys.iter().flat_map(|ty| {
1868 self.sized_constraint_for_ty(tcx, stack, ty)
1869 }).collect()
1870 }
1871
1872 TyEnum(adt, substs) | TyStruct(adt, substs) => {
1873 // recursive case
1874 let adt = tcx.lookup_adt_def_master(adt.did);
1875 adt.calculate_sized_constraint_inner(tcx, stack);
1876 let adt_ty =
1877 adt.sized_constraint
1878 .unwrap(DepNode::SizedConstraint(adt.did))
1879 .subst(tcx, substs);
1880 debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
1881 ty, adt_ty);
1882 if let ty::TyTuple(ref tys) = adt_ty.sty {
1883 tys.iter().flat_map(|ty| {
1884 self.sized_constraint_for_ty(tcx, stack, ty)
1885 }).collect()
1886 } else {
1887 self.sized_constraint_for_ty(tcx, stack, adt_ty)
1888 }
1889 }
1890
5bcae85e 1891 TyProjection(..) | TyAnon(..) => {
a7813a04
XL
1892 // must calculate explicitly.
1893 // FIXME: consider special-casing always-Sized projections
1894 vec![ty]
1895 }
1896
1897 TyParam(..) => {
1898 // perf hack: if there is a `T: Sized` bound, then
1899 // we know that `T` is Sized and do not need to check
1900 // it on the impl.
1901
1902 let sized_trait = match tcx.lang_items.sized_trait() {
1903 Some(x) => x,
1904 _ => return vec![ty]
1905 };
1906 let sized_predicate = Binder(TraitRef {
1907 def_id: sized_trait,
1908 substs: tcx.mk_substs(Substs::new_trait(
1909 vec![], vec![], ty
1910 ))
1911 }).to_predicate();
1912 let predicates = tcx.lookup_predicates(self.did).predicates;
1913 if predicates.into_iter().any(|p| p == sized_predicate) {
1914 vec![]
1915 } else {
1916 vec![ty]
1917 }
1918 }
1919
1920 TyInfer(..) => {
1921 bug!("unexpected type `{:?}` in sized_constraint_for_ty",
1922 ty)
1923 }
1924 };
1925 debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
1926 result
1927 }
1928}
1929
e9174d1e
SL
1930impl<'tcx, 'container> VariantDefData<'tcx, 'container> {
1931 #[inline]
1932 fn fields_iter(&self) -> slice::Iter<FieldDefData<'tcx, 'container>> {
1933 self.fields.iter()
1934 }
1935
e9174d1e
SL
1936 #[inline]
1937 pub fn find_field_named(&self,
1938 name: ast::Name)
1939 -> Option<&FieldDefData<'tcx, 'container>> {
1940 self.fields.iter().find(|f| f.name == name)
1941 }
1942
92a42be0
SL
1943 #[inline]
1944 pub fn index_of_field_named(&self,
1945 name: ast::Name)
1946 -> Option<usize> {
1947 self.fields.iter().position(|f| f.name == name)
1948 }
1949
e9174d1e
SL
1950 #[inline]
1951 pub fn field_named(&self, name: ast::Name) -> &FieldDefData<'tcx, 'container> {
1952 self.find_field_named(name).unwrap()
1953 }
1954}
1955
a7813a04 1956impl<'a, 'gcx, 'tcx, 'container> FieldDefData<'tcx, 'container> {
e9174d1e
SL
1957 pub fn new(did: DefId,
1958 name: Name,
54a0048b 1959 vis: Visibility) -> Self {
e9174d1e
SL
1960 FieldDefData {
1961 did: did,
1962 name: name,
1963 vis: vis,
1964 ty: ivar::TyIVar::new()
1965 }
1966 }
1967
a7813a04 1968 pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
e9174d1e
SL
1969 self.unsubst_ty().subst(tcx, subst)
1970 }
1971
1972 pub fn unsubst_ty(&self) -> Ty<'tcx> {
9cc50fc6 1973 self.ty.unwrap(DepNode::FieldTy(self.did))
e9174d1e
SL
1974 }
1975
1976 pub fn fulfill_ty(&self, ty: Ty<'container>) {
9cc50fc6 1977 self.ty.fulfill(DepNode::FieldTy(self.did), ty);
e9174d1e
SL
1978 }
1979}
1980
1981/// Records the substitutions used to translate the polytype for an
1982/// item into the monotype of an item reference.
1983#[derive(Clone)]
1984pub struct ItemSubsts<'tcx> {
a7813a04 1985 pub substs: &'tcx Substs<'tcx>,
e9174d1e
SL
1986}
1987
a7813a04 1988#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
e9174d1e
SL
1989pub enum ClosureKind {
1990 // Warning: Ordering is significant here! The ordering is chosen
1991 // because the trait Fn is a subtrait of FnMut and so in turn, and
1992 // hence we order it so that Fn < FnMut < FnOnce.
54a0048b
SL
1993 Fn,
1994 FnMut,
1995 FnOnce,
e9174d1e
SL
1996}
1997
a7813a04
XL
1998impl<'a, 'tcx> ClosureKind {
1999 pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
e9174d1e 2000 let result = match *self {
a7813a04 2001 ClosureKind::Fn => tcx.lang_items.require(FnTraitLangItem),
54a0048b 2002 ClosureKind::FnMut => {
a7813a04 2003 tcx.lang_items.require(FnMutTraitLangItem)
e9174d1e 2004 }
54a0048b 2005 ClosureKind::FnOnce => {
a7813a04 2006 tcx.lang_items.require(FnOnceTraitLangItem)
e9174d1e
SL
2007 }
2008 };
2009 match result {
2010 Ok(trait_did) => trait_did,
a7813a04 2011 Err(err) => tcx.sess.fatal(&err[..]),
e9174d1e
SL
2012 }
2013 }
2014
2015 /// True if this a type that impls this closure kind
2016 /// must also implement `other`.
2017 pub fn extends(self, other: ty::ClosureKind) -> bool {
2018 match (self, other) {
54a0048b
SL
2019 (ClosureKind::Fn, ClosureKind::Fn) => true,
2020 (ClosureKind::Fn, ClosureKind::FnMut) => true,
2021 (ClosureKind::Fn, ClosureKind::FnOnce) => true,
2022 (ClosureKind::FnMut, ClosureKind::FnMut) => true,
2023 (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
2024 (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
e9174d1e
SL
2025 _ => false,
2026 }
2027 }
2028}
2029
2030impl<'tcx> TyS<'tcx> {
2031 /// Iterator that walks `self` and any types reachable from
2032 /// `self`, in depth-first order. Note that just walks the types
2033 /// that appear in `self`, it does not descend into the fields of
2034 /// structs or variants. For example:
2035 ///
2036 /// ```notrust
2037 /// isize => { isize }
2038 /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
2039 /// [isize] => { [isize], isize }
2040 /// ```
2041 pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
2042 TypeWalker::new(self)
2043 }
2044
2045 /// Iterator that walks the immediate children of `self`. Hence
2046 /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
2047 /// (but not `i32`, like `walk`).
2048 pub fn walk_shallow(&'tcx self) -> IntoIter<Ty<'tcx>> {
2049 walk::walk_shallow(self)
2050 }
2051
2052 /// Walks `ty` and any types appearing within `ty`, invoking the
2053 /// callback `f` on each type. If the callback returns false, then the
2054 /// children of the current type are ignored.
2055 ///
2056 /// Note: prefer `ty.walk()` where possible.
2057 pub fn maybe_walk<F>(&'tcx self, mut f: F)
2058 where F : FnMut(Ty<'tcx>) -> bool
2059 {
2060 let mut walker = self.walk();
2061 while let Some(ty) = walker.next() {
2062 if !f(ty) {
2063 walker.skip_current_subtree();
2064 }
2065 }
2066 }
2067}
2068
2069impl<'tcx> ItemSubsts<'tcx> {
e9174d1e
SL
2070 pub fn is_noop(&self) -> bool {
2071 self.substs.is_noop()
2072 }
2073}
2074
2075#[derive(Copy, Clone, Debug, PartialEq, Eq)]
2076pub enum LvaluePreference {
2077 PreferMutLvalue,
2078 NoPreference
2079}
2080
2081impl LvaluePreference {
2082 pub fn from_mutbl(m: hir::Mutability) -> Self {
2083 match m {
2084 hir::MutMutable => PreferMutLvalue,
2085 hir::MutImmutable => NoPreference,
2086 }
2087 }
2088}
2089
2090/// Helper for looking things up in the various maps that are populated during
a7813a04 2091/// typeck::collect (e.g., `tcx.impl_or_trait_items`, `tcx.tcache`, etc). All of
e9174d1e
SL
2092/// these share the pattern that if the id is local, it should have been loaded
2093/// into the map by the `typeck::collect` phase. If the def-id is external,
2094/// then we have to go consult the crate loading code (and cache the result for
2095/// the future).
9cc50fc6 2096fn lookup_locally_or_in_crate_store<M, F>(descr: &str,
e9174d1e 2097 def_id: DefId,
9cc50fc6
SL
2098 map: &M,
2099 load_external: F)
2100 -> M::Value where
2101 M: MemoizationMap<Key=DefId>,
2102 F: FnOnce() -> M::Value,
e9174d1e 2103{
9cc50fc6
SL
2104 map.memoize(def_id, || {
2105 if def_id.is_local() {
54a0048b 2106 bug!("No def'n found for {:?} in tcx.{}", def_id, descr);
9cc50fc6
SL
2107 }
2108 load_external()
2109 })
e9174d1e
SL
2110}
2111
2112impl BorrowKind {
2113 pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2114 match m {
2115 hir::MutMutable => MutBorrow,
2116 hir::MutImmutable => ImmBorrow,
2117 }
2118 }
2119
2120 /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
2121 /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
2122 /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
2123 /// question.
2124 pub fn to_mutbl_lossy(self) -> hir::Mutability {
2125 match self {
2126 MutBorrow => hir::MutMutable,
2127 ImmBorrow => hir::MutImmutable,
2128
2129 // We have no type corresponding to a unique imm borrow, so
2130 // use `&mut`. It gives all the capabilities of an `&uniq`
2131 // and hence is a safe "over approximation".
2132 UniqueImmBorrow => hir::MutMutable,
2133 }
2134 }
2135
2136 pub fn to_user_str(&self) -> &'static str {
2137 match *self {
2138 MutBorrow => "mutable",
2139 ImmBorrow => "immutable",
2140 UniqueImmBorrow => "uniquely immutable",
2141 }
2142 }
2143}
2144
a7813a04
XL
2145impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2146 pub fn node_id_to_type(self, id: NodeId) -> Ty<'gcx> {
e9174d1e
SL
2147 match self.node_id_to_type_opt(id) {
2148 Some(ty) => ty,
54a0048b
SL
2149 None => bug!("node_id_to_type: no type for node `{}`",
2150 self.map.node_to_string(id))
e9174d1e
SL
2151 }
2152 }
2153
a7813a04 2154 pub fn node_id_to_type_opt(self, id: NodeId) -> Option<Ty<'gcx>> {
e9174d1e
SL
2155 self.tables.borrow().node_types.get(&id).cloned()
2156 }
2157
a7813a04 2158 pub fn node_id_item_substs(self, id: NodeId) -> ItemSubsts<'gcx> {
e9174d1e 2159 match self.tables.borrow().item_substs.get(&id) {
a7813a04
XL
2160 None => ItemSubsts {
2161 substs: self.global_tcx().mk_substs(Substs::empty())
2162 },
e9174d1e
SL
2163 Some(ts) => ts.clone(),
2164 }
2165 }
2166
2167 // Returns the type of a pattern as a monotype. Like @expr_ty, this function
2168 // doesn't provide type parameter substitutions.
a7813a04 2169 pub fn pat_ty(self, pat: &hir::Pat) -> Ty<'gcx> {
e9174d1e
SL
2170 self.node_id_to_type(pat.id)
2171 }
a7813a04 2172 pub fn pat_ty_opt(self, pat: &hir::Pat) -> Option<Ty<'gcx>> {
e9174d1e
SL
2173 self.node_id_to_type_opt(pat.id)
2174 }
2175
2176 // Returns the type of an expression as a monotype.
2177 //
2178 // NB (1): This is the PRE-ADJUSTMENT TYPE for the expression. That is, in
2179 // some cases, we insert `AutoAdjustment` annotations such as auto-deref or
2180 // auto-ref. The type returned by this function does not consider such
2181 // adjustments. See `expr_ty_adjusted()` instead.
2182 //
2183 // NB (2): This type doesn't provide type parameter substitutions; e.g. if you
2184 // ask for the type of "id" in "id(3)", it will return "fn(&isize) -> isize"
2185 // instead of "fn(ty) -> T with T = isize".
a7813a04 2186 pub fn expr_ty(self, expr: &hir::Expr) -> Ty<'gcx> {
e9174d1e
SL
2187 self.node_id_to_type(expr.id)
2188 }
2189
a7813a04 2190 pub fn expr_ty_opt(self, expr: &hir::Expr) -> Option<Ty<'gcx>> {
e9174d1e
SL
2191 self.node_id_to_type_opt(expr.id)
2192 }
2193
2194 /// Returns the type of `expr`, considering any `AutoAdjustment`
2195 /// entry recorded for that expression.
2196 ///
2197 /// It would almost certainly be better to store the adjusted ty in with
2198 /// the `AutoAdjustment`, but I opted not to do this because it would
2199 /// require serializing and deserializing the type and, although that's not
2200 /// hard to do, I just hate that code so much I didn't want to touch it
2201 /// unless it was to fix it properly, which seemed a distraction from the
2202 /// thread at hand! -nmatsakis
a7813a04 2203 pub fn expr_ty_adjusted(self, expr: &hir::Expr) -> Ty<'gcx> {
e9174d1e 2204 self.expr_ty(expr)
a7813a04 2205 .adjust(self.global_tcx(), expr.span, expr.id,
e9174d1e
SL
2206 self.tables.borrow().adjustments.get(&expr.id),
2207 |method_call| {
2208 self.tables.borrow().method_map.get(&method_call).map(|method| method.ty)
2209 })
2210 }
2211
a7813a04
XL
2212 pub fn expr_ty_adjusted_opt(self, expr: &hir::Expr) -> Option<Ty<'gcx>> {
2213 self.expr_ty_opt(expr).map(|t| t.adjust(self.global_tcx(),
7453a54e
SL
2214 expr.span,
2215 expr.id,
2216 self.tables.borrow().adjustments.get(&expr.id),
2217 |method_call| {
2218 self.tables.borrow().method_map.get(&method_call).map(|method| method.ty)
2219 }))
2220 }
2221
a7813a04 2222 pub fn expr_span(self, id: NodeId) -> Span {
e9174d1e
SL
2223 match self.map.find(id) {
2224 Some(ast_map::NodeExpr(e)) => {
2225 e.span
2226 }
2227 Some(f) => {
54a0048b 2228 bug!("Node id {} is not an expr: {:?}", id, f);
e9174d1e
SL
2229 }
2230 None => {
54a0048b 2231 bug!("Node id {} is not present in the node map", id);
e9174d1e
SL
2232 }
2233 }
2234 }
2235
a7813a04 2236 pub fn local_var_name_str(self, id: NodeId) -> InternedString {
e9174d1e
SL
2237 match self.map.find(id) {
2238 Some(ast_map::NodeLocal(pat)) => {
2239 match pat.node {
3157f602 2240 PatKind::Binding(_, ref path1, _) => path1.node.as_str(),
e9174d1e 2241 _ => {
54a0048b 2242 bug!("Variable id {} maps to {:?}, not local", id, pat);
e9174d1e
SL
2243 },
2244 }
2245 },
54a0048b 2246 r => bug!("Variable id {} maps to {:?}, not local", id, r),
e9174d1e
SL
2247 }
2248 }
2249
a7813a04 2250 pub fn expr_is_lval(self, expr: &hir::Expr) -> bool {
e9174d1e
SL
2251 match expr.node {
2252 hir::ExprPath(..) => {
3157f602
XL
2253 // This function can be used during type checking when not all paths are
2254 // fully resolved. Partially resolved paths in expressions can only legally
2255 // refer to associated items which are always rvalues.
2256 match self.expect_resolution(expr.id).base_def {
2257 Def::Local(..) | Def::Upvar(..) | Def::Static(..) | Def::Err => true,
2258 _ => false,
e9174d1e
SL
2259 }
2260 }
2261
9cc50fc6
SL
2262 hir::ExprType(ref e, _) => {
2263 self.expr_is_lval(e)
2264 }
2265
e9174d1e
SL
2266 hir::ExprUnary(hir::UnDeref, _) |
2267 hir::ExprField(..) |
2268 hir::ExprTupField(..) |
2269 hir::ExprIndex(..) => {
2270 true
2271 }
2272
2273 hir::ExprCall(..) |
2274 hir::ExprMethodCall(..) |
2275 hir::ExprStruct(..) |
e9174d1e
SL
2276 hir::ExprTup(..) |
2277 hir::ExprIf(..) |
2278 hir::ExprMatch(..) |
2279 hir::ExprClosure(..) |
2280 hir::ExprBlock(..) |
2281 hir::ExprRepeat(..) |
2282 hir::ExprVec(..) |
2283 hir::ExprBreak(..) |
2284 hir::ExprAgain(..) |
2285 hir::ExprRet(..) |
2286 hir::ExprWhile(..) |
2287 hir::ExprLoop(..) |
2288 hir::ExprAssign(..) |
2289 hir::ExprInlineAsm(..) |
2290 hir::ExprAssignOp(..) |
2291 hir::ExprLit(_) |
2292 hir::ExprUnary(..) |
2293 hir::ExprBox(..) |
2294 hir::ExprAddrOf(..) |
2295 hir::ExprBinary(..) |
2296 hir::ExprCast(..) => {
2297 false
2298 }
e9174d1e
SL
2299 }
2300 }
2301
a7813a04 2302 pub fn provided_trait_methods(self, id: DefId) -> Vec<Rc<Method<'gcx>>> {
b039eaaf
SL
2303 if let Some(id) = self.map.as_local_node_id(id) {
2304 if let ItemTrait(_, _, _, ref ms) = self.map.expect_item(id).node {
e9174d1e
SL
2305 ms.iter().filter_map(|ti| {
2306 if let hir::MethodTraitItem(_, Some(_)) = ti.node {
b039eaaf 2307 match self.impl_or_trait_item(self.map.local_def_id(ti.id)) {
e9174d1e
SL
2308 MethodTraitItem(m) => Some(m),
2309 _ => {
54a0048b
SL
2310 bug!("provided_trait_methods(): \
2311 non-method item found from \
2312 looking up provided method?!")
e9174d1e
SL
2313 }
2314 }
2315 } else {
2316 None
2317 }
2318 }).collect()
2319 } else {
54a0048b 2320 bug!("provided_trait_methods: `{:?}` is not a trait", id)
e9174d1e
SL
2321 }
2322 } else {
a7813a04 2323 self.sess.cstore.provided_trait_methods(self.global_tcx(), id)
e9174d1e
SL
2324 }
2325 }
2326
a7813a04 2327 pub fn associated_consts(self, id: DefId) -> Vec<Rc<AssociatedConst<'gcx>>> {
b039eaaf
SL
2328 if let Some(id) = self.map.as_local_node_id(id) {
2329 match self.map.expect_item(id).node {
e9174d1e
SL
2330 ItemTrait(_, _, _, ref tis) => {
2331 tis.iter().filter_map(|ti| {
2332 if let hir::ConstTraitItem(_, _) = ti.node {
b039eaaf 2333 match self.impl_or_trait_item(self.map.local_def_id(ti.id)) {
e9174d1e
SL
2334 ConstTraitItem(ac) => Some(ac),
2335 _ => {
54a0048b
SL
2336 bug!("associated_consts(): \
2337 non-const item found from \
2338 looking up a constant?!")
e9174d1e
SL
2339 }
2340 }
2341 } else {
2342 None
2343 }
2344 }).collect()
2345 }
2346 ItemImpl(_, _, _, _, _, ref iis) => {
2347 iis.iter().filter_map(|ii| {
92a42be0 2348 if let hir::ImplItemKind::Const(_, _) = ii.node {
b039eaaf 2349 match self.impl_or_trait_item(self.map.local_def_id(ii.id)) {
e9174d1e
SL
2350 ConstTraitItem(ac) => Some(ac),
2351 _ => {
54a0048b
SL
2352 bug!("associated_consts(): \
2353 non-const item found from \
2354 looking up a constant?!")
e9174d1e
SL
2355 }
2356 }
2357 } else {
2358 None
2359 }
2360 }).collect()
2361 }
2362 _ => {
54a0048b 2363 bug!("associated_consts: `{:?}` is not a trait or impl", id)
e9174d1e
SL
2364 }
2365 }
2366 } else {
a7813a04 2367 self.sess.cstore.associated_consts(self.global_tcx(), id)
e9174d1e
SL
2368 }
2369 }
2370
a7813a04 2371 pub fn trait_impl_polarity(self, id: DefId) -> Option<hir::ImplPolarity> {
b039eaaf
SL
2372 if let Some(id) = self.map.as_local_node_id(id) {
2373 match self.map.find(id) {
e9174d1e
SL
2374 Some(ast_map::NodeItem(item)) => {
2375 match item.node {
2376 hir::ItemImpl(_, polarity, _, _, _, _) => Some(polarity),
2377 _ => None
2378 }
2379 }
2380 _ => None
2381 }
2382 } else {
92a42be0 2383 self.sess.cstore.impl_polarity(id)
e9174d1e
SL
2384 }
2385 }
2386
a7813a04 2387 pub fn custom_coerce_unsized_kind(self, did: DefId) -> adjustment::CustomCoerceUnsized {
9cc50fc6 2388 self.custom_coerce_unsized_kinds.memoize(did, || {
e9174d1e 2389 let (kind, src) = if did.krate != LOCAL_CRATE {
92a42be0 2390 (self.sess.cstore.custom_coerce_unsized_kind(did), "external")
e9174d1e
SL
2391 } else {
2392 (None, "local")
2393 };
2394
2395 match kind {
2396 Some(kind) => kind,
2397 None => {
54a0048b
SL
2398 bug!("custom_coerce_unsized_kind: \
2399 {} impl `{}` is missing its kind",
2400 src, self.item_path_str(did));
e9174d1e
SL
2401 }
2402 }
2403 })
2404 }
2405
a7813a04 2406 pub fn impl_or_trait_item(self, id: DefId) -> ImplOrTraitItem<'gcx> {
e9174d1e
SL
2407 lookup_locally_or_in_crate_store(
2408 "impl_or_trait_items", id, &self.impl_or_trait_items,
a7813a04 2409 || self.sess.cstore.impl_or_trait_item(self.global_tcx(), id)
54a0048b 2410 .expect("missing ImplOrTraitItem in metadata"))
e9174d1e
SL
2411 }
2412
a7813a04 2413 pub fn trait_item_def_ids(self, id: DefId) -> Rc<Vec<ImplOrTraitItemId>> {
e9174d1e
SL
2414 lookup_locally_or_in_crate_store(
2415 "trait_item_def_ids", id, &self.trait_item_def_ids,
92a42be0 2416 || Rc::new(self.sess.cstore.trait_item_def_ids(id)))
e9174d1e
SL
2417 }
2418
2419 /// Returns the trait-ref corresponding to a given impl, or None if it is
2420 /// an inherent impl.
a7813a04 2421 pub fn impl_trait_ref(self, id: DefId) -> Option<TraitRef<'gcx>> {
e9174d1e
SL
2422 lookup_locally_or_in_crate_store(
2423 "impl_trait_refs", id, &self.impl_trait_refs,
a7813a04 2424 || self.sess.cstore.impl_trait_ref(self.global_tcx(), id))
e9174d1e
SL
2425 }
2426
2427 /// Returns whether this DefId refers to an impl
a7813a04 2428 pub fn is_impl(self, id: DefId) -> bool {
b039eaaf 2429 if let Some(id) = self.map.as_local_node_id(id) {
e9174d1e 2430 if let Some(ast_map::NodeItem(
b039eaaf 2431 &hir::Item { node: hir::ItemImpl(..), .. })) = self.map.find(id) {
e9174d1e
SL
2432 true
2433 } else {
2434 false
2435 }
2436 } else {
92a42be0 2437 self.sess.cstore.is_impl(id)
e9174d1e
SL
2438 }
2439 }
2440
3157f602
XL
2441 /// Returns a path resolution for node id if it exists, panics otherwise.
2442 pub fn expect_resolution(self, id: NodeId) -> PathResolution {
2443 *self.def_map.borrow().get(&id).expect("no def-map entry for node id")
2444 }
2445
2446 /// Returns a fully resolved definition for node id if it exists, panics otherwise.
2447 pub fn expect_def(self, id: NodeId) -> Def {
2448 self.expect_resolution(id).full_def()
2449 }
2450
2451 /// Returns a fully resolved definition for node id if it exists, or none if no
2452 /// definition exists, panics on partial resolutions to catch errors.
2453 pub fn expect_def_or_none(self, id: NodeId) -> Option<Def> {
2454 self.def_map.borrow().get(&id).map(|resolution| resolution.full_def())
e9174d1e
SL
2455 }
2456
5bcae85e
SL
2457 // Returns `ty::VariantDef` if `def` refers to a struct,
2458 // or variant or their constructors, panics otherwise.
2459 pub fn expect_variant_def(self, def: Def) -> VariantDef<'tcx> {
2460 match def {
2461 Def::Variant(enum_did, did) => {
2462 self.lookup_adt_def(enum_did).variant_with_id(did)
2463 }
2464 Def::Struct(did) => {
2465 self.lookup_adt_def(did).struct_variant()
2466 }
2467 _ => bug!("expect_variant_def used with unexpected def {:?}", def)
2468 }
2469 }
2470
a7813a04 2471 pub fn def_key(self, id: DefId) -> ast_map::DefKey {
b039eaaf 2472 if id.is_local() {
54a0048b 2473 self.map.def_key(id)
b039eaaf 2474 } else {
54a0048b 2475 self.sess.cstore.def_key(id)
b039eaaf
SL
2476 }
2477 }
2478
54a0048b
SL
2479 /// Returns the `DefPath` of an item. Note that if `id` is not
2480 /// local to this crate -- or is inlined into this crate -- the
2481 /// result will be a non-local `DefPath`.
a7813a04 2482 pub fn def_path(self, id: DefId) -> ast_map::DefPath {
54a0048b
SL
2483 if id.is_local() {
2484 self.map.def_path(id)
e9174d1e 2485 } else {
54a0048b 2486 self.sess.cstore.relative_def_path(id)
e9174d1e
SL
2487 }
2488 }
2489
a7813a04 2490 pub fn item_name(self, id: DefId) -> ast::Name {
b039eaaf 2491 if let Some(id) = self.map.as_local_node_id(id) {
54a0048b 2492 self.map.name(id)
e9174d1e 2493 } else {
92a42be0 2494 self.sess.cstore.item_name(id)
e9174d1e
SL
2495 }
2496 }
2497
2498 // Register a given item type
a7813a04 2499 pub fn register_item_type(self, did: DefId, ty: TypeScheme<'gcx>) {
e9174d1e
SL
2500 self.tcache.borrow_mut().insert(did, ty);
2501 }
2502
2503 // If the given item is in an external crate, looks up its type and adds it to
2504 // the type cache. Returns the type parameters and type.
a7813a04 2505 pub fn lookup_item_type(self, did: DefId) -> TypeScheme<'gcx> {
e9174d1e
SL
2506 lookup_locally_or_in_crate_store(
2507 "tcache", did, &self.tcache,
a7813a04 2508 || self.sess.cstore.item_type(self.global_tcx(), did))
e9174d1e
SL
2509 }
2510
3157f602
XL
2511 pub fn opt_lookup_item_type(self, did: DefId) -> Option<TypeScheme<'gcx>> {
2512 if let Some(scheme) = self.tcache.borrow_mut().get(&did) {
2513 return Some(scheme.clone());
2514 }
2515
2516 if did.krate == LOCAL_CRATE {
2517 None
2518 } else {
2519 Some(self.sess.cstore.item_type(self.global_tcx(), did))
2520 }
2521 }
2522
e9174d1e 2523 /// Given the did of a trait, returns its canonical trait ref.
a7813a04 2524 pub fn lookup_trait_def(self, did: DefId) -> &'gcx TraitDef<'gcx> {
e9174d1e
SL
2525 lookup_locally_or_in_crate_store(
2526 "trait_defs", did, &self.trait_defs,
a7813a04 2527 || self.alloc_trait_def(self.sess.cstore.trait_def(self.global_tcx(), did))
e9174d1e
SL
2528 )
2529 }
2530
2531 /// Given the did of an ADT, return a master reference to its
2532 /// definition. Unless you are planning on fulfilling the ADT's fields,
2533 /// use lookup_adt_def instead.
a7813a04 2534 pub fn lookup_adt_def_master(self, did: DefId) -> AdtDefMaster<'gcx> {
e9174d1e
SL
2535 lookup_locally_or_in_crate_store(
2536 "adt_defs", did, &self.adt_defs,
a7813a04 2537 || self.sess.cstore.adt_def(self.global_tcx(), did)
e9174d1e
SL
2538 )
2539 }
2540
2541 /// Given the did of an ADT, return a reference to its definition.
a7813a04 2542 pub fn lookup_adt_def(self, did: DefId) -> AdtDef<'gcx> {
e9174d1e 2543 // when reverse-variance goes away, a transmute::<AdtDefMaster,AdtDef>
7453a54e 2544 // would be needed here.
e9174d1e
SL
2545 self.lookup_adt_def_master(did)
2546 }
2547
2548 /// Given the did of an item, returns its full set of predicates.
a7813a04 2549 pub fn lookup_predicates(self, did: DefId) -> GenericPredicates<'gcx> {
e9174d1e
SL
2550 lookup_locally_or_in_crate_store(
2551 "predicates", did, &self.predicates,
a7813a04 2552 || self.sess.cstore.item_predicates(self.global_tcx(), did))
e9174d1e
SL
2553 }
2554
2555 /// Given the did of a trait, returns its superpredicates.
a7813a04 2556 pub fn lookup_super_predicates(self, did: DefId) -> GenericPredicates<'gcx> {
e9174d1e
SL
2557 lookup_locally_or_in_crate_store(
2558 "super_predicates", did, &self.super_predicates,
a7813a04 2559 || self.sess.cstore.item_super_predicates(self.global_tcx(), did))
e9174d1e
SL
2560 }
2561
9cc50fc6
SL
2562 /// If `type_needs_drop` returns true, then `ty` is definitely
2563 /// non-copy and *might* have a destructor attached; if it returns
2564 /// false, then `ty` definitely has no destructor (i.e. no drop glue).
2565 ///
2566 /// (Note that this implies that if `ty` has a destructor attached,
2567 /// then `type_needs_drop` will definitely return `true` for `ty`.)
a7813a04
XL
2568 pub fn type_needs_drop_given_env(self,
2569 ty: Ty<'gcx>,
2570 param_env: &ty::ParameterEnvironment<'gcx>) -> bool {
9cc50fc6
SL
2571 // Issue #22536: We first query type_moves_by_default. It sees a
2572 // normalized version of the type, and therefore will definitely
2573 // know whether the type implements Copy (and thus needs no
2574 // cleanup/drop/zeroing) ...
a7813a04
XL
2575 let tcx = self.global_tcx();
2576 let implements_copy = !ty.moves_by_default(tcx, param_env, DUMMY_SP);
9cc50fc6
SL
2577
2578 if implements_copy { return false; }
2579
2580 // ... (issue #22536 continued) but as an optimization, still use
2581 // prior logic of asking if the `needs_drop` bit is set; we need
2582 // not zero non-Copy types if they have no destructor.
2583
2584 // FIXME(#22815): Note that calling `ty::type_contents` is a
2585 // conservative heuristic; it may report that `needs_drop` is set
2586 // when actual type does not actually have a destructor associated
2587 // with it. But since `ty` absolutely did not have the `Copy`
2588 // bound attached (see above), it is sound to treat it as having a
2589 // destructor (e.g. zero its memory on move).
2590
a7813a04 2591 let contents = ty.type_contents(tcx);
9cc50fc6 2592 debug!("type_needs_drop ty={:?} contents={:?}", ty, contents);
a7813a04 2593 contents.needs_drop(tcx)
9cc50fc6
SL
2594 }
2595
e9174d1e 2596 /// Get the attributes of a definition.
a7813a04 2597 pub fn get_attrs(self, did: DefId) -> Cow<'gcx, [ast::Attribute]> {
b039eaaf
SL
2598 if let Some(id) = self.map.as_local_node_id(did) {
2599 Cow::Borrowed(self.map.attrs(id))
e9174d1e 2600 } else {
92a42be0 2601 Cow::Owned(self.sess.cstore.item_attrs(did))
e9174d1e
SL
2602 }
2603 }
2604
2605 /// Determine whether an item is annotated with an attribute
a7813a04 2606 pub fn has_attr(self, did: DefId, attr: &str) -> bool {
e9174d1e
SL
2607 self.get_attrs(did).iter().any(|item| item.check_name(attr))
2608 }
2609
2610 /// Determine whether an item is annotated with `#[repr(packed)]`
a7813a04 2611 pub fn lookup_packed(self, did: DefId) -> bool {
e9174d1e
SL
2612 self.lookup_repr_hints(did).contains(&attr::ReprPacked)
2613 }
2614
2615 /// Determine whether an item is annotated with `#[simd]`
a7813a04 2616 pub fn lookup_simd(self, did: DefId) -> bool {
e9174d1e
SL
2617 self.has_attr(did, "simd")
2618 || self.lookup_repr_hints(did).contains(&attr::ReprSimd)
2619 }
2620
a7813a04 2621 pub fn item_variances(self, item_id: DefId) -> Rc<ItemVariances> {
e9174d1e
SL
2622 lookup_locally_or_in_crate_store(
2623 "item_variance_map", item_id, &self.item_variance_map,
92a42be0 2624 || Rc::new(self.sess.cstore.item_variances(item_id)))
e9174d1e
SL
2625 }
2626
a7813a04 2627 pub fn trait_has_default_impl(self, trait_def_id: DefId) -> bool {
e9174d1e
SL
2628 self.populate_implementations_for_trait_if_necessary(trait_def_id);
2629
2630 let def = self.lookup_trait_def(trait_def_id);
2631 def.flags.get().intersects(TraitFlags::HAS_DEFAULT_IMPL)
2632 }
2633
2634 /// Records a trait-to-implementation mapping.
a7813a04 2635 pub fn record_trait_has_default_impl(self, trait_def_id: DefId) {
e9174d1e
SL
2636 let def = self.lookup_trait_def(trait_def_id);
2637 def.flags.set(def.flags.get() | TraitFlags::HAS_DEFAULT_IMPL)
2638 }
2639
2640 /// Load primitive inherent implementations if necessary
a7813a04 2641 pub fn populate_implementations_for_primitive_if_necessary(self,
e9174d1e
SL
2642 primitive_def_id: DefId) {
2643 if primitive_def_id.is_local() {
2644 return
2645 }
2646
9cc50fc6
SL
2647 // The primitive is not local, hence we are reading this out
2648 // of metadata.
2649 let _ignore = self.dep_graph.in_ignore();
2650
e9174d1e
SL
2651 if self.populated_external_primitive_impls.borrow().contains(&primitive_def_id) {
2652 return
2653 }
2654
2655 debug!("populate_implementations_for_primitive_if_necessary: searching for {:?}",
2656 primitive_def_id);
2657
92a42be0 2658 let impl_items = self.sess.cstore.impl_items(primitive_def_id);
e9174d1e
SL
2659
2660 // Store the implementation info.
2661 self.impl_items.borrow_mut().insert(primitive_def_id, impl_items);
2662 self.populated_external_primitive_impls.borrow_mut().insert(primitive_def_id);
2663 }
2664
2665 /// Populates the type context with all the inherent implementations for
2666 /// the given type if necessary.
a7813a04 2667 pub fn populate_inherent_implementations_for_type_if_necessary(self,
e9174d1e
SL
2668 type_id: DefId) {
2669 if type_id.is_local() {
2670 return
2671 }
2672
9cc50fc6
SL
2673 // The type is not local, hence we are reading this out of
2674 // metadata and don't need to track edges.
2675 let _ignore = self.dep_graph.in_ignore();
2676
e9174d1e
SL
2677 if self.populated_external_types.borrow().contains(&type_id) {
2678 return
2679 }
2680
2681 debug!("populate_inherent_implementations_for_type_if_necessary: searching for {:?}",
2682 type_id);
2683
92a42be0
SL
2684 let inherent_impls = self.sess.cstore.inherent_implementations_for_type(type_id);
2685 for &impl_def_id in &inherent_impls {
e9174d1e 2686 // Store the implementation info.
92a42be0 2687 let impl_items = self.sess.cstore.impl_items(impl_def_id);
e9174d1e 2688 self.impl_items.borrow_mut().insert(impl_def_id, impl_items);
92a42be0 2689 }
e9174d1e
SL
2690
2691 self.inherent_impls.borrow_mut().insert(type_id, Rc::new(inherent_impls));
2692 self.populated_external_types.borrow_mut().insert(type_id);
2693 }
2694
2695 /// Populates the type context with all the implementations for the given
2696 /// trait if necessary.
a7813a04 2697 pub fn populate_implementations_for_trait_if_necessary(self, trait_id: DefId) {
e9174d1e
SL
2698 if trait_id.is_local() {
2699 return
2700 }
2701
9cc50fc6
SL
2702 // The type is not local, hence we are reading this out of
2703 // metadata and don't need to track edges.
2704 let _ignore = self.dep_graph.in_ignore();
2705
e9174d1e
SL
2706 let def = self.lookup_trait_def(trait_id);
2707 if def.flags.get().intersects(TraitFlags::IMPLS_VALID) {
2708 return;
2709 }
2710
2711 debug!("populate_implementations_for_trait_if_necessary: searching for {:?}", def);
2712
92a42be0 2713 if self.sess.cstore.is_defaulted_trait(trait_id) {
e9174d1e
SL
2714 self.record_trait_has_default_impl(trait_id);
2715 }
2716
92a42be0
SL
2717 for impl_def_id in self.sess.cstore.implementations_of_trait(trait_id) {
2718 let impl_items = self.sess.cstore.impl_items(impl_def_id);
e9174d1e 2719 let trait_ref = self.impl_trait_ref(impl_def_id).unwrap();
54a0048b 2720
e9174d1e 2721 // Record the trait->implementation mapping.
54a0048b
SL
2722 if let Some(parent) = self.sess.cstore.impl_parent(impl_def_id) {
2723 def.record_remote_impl(self, impl_def_id, trait_ref, parent);
2724 } else {
2725 def.record_remote_impl(self, impl_def_id, trait_ref, trait_id);
2726 }
e9174d1e
SL
2727
2728 // For any methods that use a default implementation, add them to
2729 // the map. This is a bit unfortunate.
2730 for impl_item_def_id in &impl_items {
2731 let method_def_id = impl_item_def_id.def_id();
b039eaaf
SL
2732 // load impl items eagerly for convenience
2733 // FIXME: we may want to load these lazily
2734 self.impl_or_trait_item(method_def_id);
e9174d1e
SL
2735 }
2736
2737 // Store the implementation info.
2738 self.impl_items.borrow_mut().insert(impl_def_id, impl_items);
92a42be0 2739 }
e9174d1e
SL
2740
2741 def.flags.set(def.flags.get() | TraitFlags::IMPLS_VALID);
2742 }
2743
a7813a04
XL
2744 pub fn closure_kind(self, def_id: DefId) -> ty::ClosureKind {
2745 // If this is a local def-id, it should be inserted into the
2746 // tables by typeck; else, it will be retreived from
2747 // the external crate metadata.
2748 if let Some(&kind) = self.tables.borrow().closure_kinds.get(&def_id) {
2749 return kind;
2750 }
2751
2752 let kind = self.sess.cstore.closure_kind(def_id);
2753 self.tables.borrow_mut().closure_kinds.insert(def_id, kind);
2754 kind
b039eaaf
SL
2755 }
2756
a7813a04 2757 pub fn closure_type(self,
b039eaaf 2758 def_id: DefId,
a7813a04 2759 substs: ClosureSubsts<'tcx>)
b039eaaf
SL
2760 -> ty::ClosureTy<'tcx>
2761 {
a7813a04
XL
2762 // If this is a local def-id, it should be inserted into the
2763 // tables by typeck; else, it will be retreived from
2764 // the external crate metadata.
2765 if let Some(ty) = self.tables.borrow().closure_tys.get(&def_id) {
2766 return ty.subst(self, substs.func_substs);
2767 }
2768
2769 let ty = self.sess.cstore.closure_ty(self.global_tcx(), def_id);
2770 self.tables.borrow_mut().closure_tys.insert(def_id, ty.clone());
2771 ty.subst(self, substs.func_substs)
b039eaaf
SL
2772 }
2773
e9174d1e
SL
2774 /// Given the def_id of an impl, return the def_id of the trait it implements.
2775 /// If it implements no trait, return `None`.
a7813a04 2776 pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
e9174d1e
SL
2777 self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2778 }
2779
2780 /// If the given def ID describes a method belonging to an impl, return the
2781 /// ID of the impl that the method belongs to. Otherwise, return `None`.
a7813a04 2782 pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
e9174d1e 2783 if def_id.krate != LOCAL_CRATE {
a7813a04
XL
2784 return self.sess.cstore.impl_or_trait_item(self.global_tcx(), def_id)
2785 .and_then(|item| {
54a0048b
SL
2786 match item.container() {
2787 TraitContainer(_) => None,
2788 ImplContainer(def_id) => Some(def_id),
2789 }
2790 });
e9174d1e
SL
2791 }
2792 match self.impl_or_trait_items.borrow().get(&def_id).cloned() {
2793 Some(trait_item) => {
2794 match trait_item.container() {
2795 TraitContainer(_) => None,
2796 ImplContainer(def_id) => Some(def_id),
2797 }
2798 }
2799 None => None
2800 }
2801 }
2802
2803 /// If the given def ID describes an item belonging to a trait (either a
2804 /// default method or an implementation of a trait method), return the ID of
2805 /// the trait that the method belongs to. Otherwise, return `None`.
a7813a04 2806 pub fn trait_of_item(self, def_id: DefId) -> Option<DefId> {
e9174d1e 2807 if def_id.krate != LOCAL_CRATE {
a7813a04 2808 return self.sess.cstore.trait_of_item(self.global_tcx(), def_id);
e9174d1e
SL
2809 }
2810 match self.impl_or_trait_items.borrow().get(&def_id).cloned() {
2811 Some(impl_or_trait_item) => {
2812 match impl_or_trait_item.container() {
2813 TraitContainer(def_id) => Some(def_id),
2814 ImplContainer(def_id) => self.trait_id_of_impl(def_id),
2815 }
2816 }
2817 None => None
2818 }
2819 }
2820
2821 /// If the given def ID describes an item belonging to a trait, (either a
2822 /// default method or an implementation of a trait method), return the ID of
2823 /// the method inside trait definition (this means that if the given def ID
2824 /// is already that of the original trait method, then the return value is
2825 /// the same).
2826 /// Otherwise, return `None`.
a7813a04 2827 pub fn trait_item_of_item(self, def_id: DefId) -> Option<ImplOrTraitItemId> {
e9174d1e
SL
2828 let impl_item = match self.impl_or_trait_items.borrow().get(&def_id) {
2829 Some(m) => m.clone(),
2830 None => return None,
2831 };
2832 let name = impl_item.name();
2833 match self.trait_of_item(def_id) {
2834 Some(trait_did) => {
2835 self.trait_items(trait_did).iter()
2836 .find(|item| item.name() == name)
2837 .map(|item| item.id())
2838 }
2839 None => None
2840 }
2841 }
2842
2843 /// Construct a parameter environment suitable for static contexts or other contexts where there
2844 /// are no free type/lifetime parameters in scope.
a7813a04 2845 pub fn empty_parameter_environment(self) -> ParameterEnvironment<'tcx> {
9cc50fc6
SL
2846
2847 // for an empty parameter environment, there ARE no free
2848 // regions, so it shouldn't matter what we use for the free id
2849 let free_id_outlive = self.region_maps.node_extent(ast::DUMMY_NODE_ID);
a7813a04
XL
2850 ty::ParameterEnvironment {
2851 free_substs: self.mk_substs(Substs::empty()),
2852 caller_bounds: Vec::new(),
2853 implicit_region_bound: ty::ReEmpty,
2854 free_id_outlive: free_id_outlive
2855 }
e9174d1e
SL
2856 }
2857
2858 /// Constructs and returns a substitution that can be applied to move from
2859 /// the "outer" view of a type or method to the "inner" view.
2860 /// In general, this means converting from bound parameters to
2861 /// free parameters. Since we currently represent bound/free type
2862 /// parameters in the same way, this only has an effect on regions.
a7813a04
XL
2863 pub fn construct_free_substs(self, generics: &Generics<'gcx>,
2864 free_id_outlive: CodeExtent) -> Substs<'gcx> {
e9174d1e
SL
2865 // map T => T
2866 let mut types = VecPerParamSpace::empty();
2867 for def in generics.types.as_slice() {
2868 debug!("construct_parameter_environment(): push_types_from_defs: def={:?}",
2869 def);
a7813a04 2870 types.push(def.space, self.global_tcx().mk_param_from_def(def));
e9174d1e
SL
2871 }
2872
e9174d1e
SL
2873 // map bound 'a => free 'a
2874 let mut regions = VecPerParamSpace::empty();
2875 for def in generics.regions.as_slice() {
2876 let region =
2877 ReFree(FreeRegion { scope: free_id_outlive,
3157f602 2878 bound_region: def.to_bound_region() });
e9174d1e
SL
2879 debug!("push_region_params {:?}", region);
2880 regions.push(def.space, region);
2881 }
2882
2883 Substs {
2884 types: types,
54a0048b 2885 regions: regions,
e9174d1e
SL
2886 }
2887 }
2888
9cc50fc6
SL
2889 /// See `ParameterEnvironment` struct def'n for details.
2890 /// If you were using `free_id: NodeId`, you might try `self.region_maps.item_extent(free_id)`
2891 /// for the `free_id_outlive` parameter. (But note that that is not always quite right.)
a7813a04
XL
2892 pub fn construct_parameter_environment(self,
2893 span: Span,
2894 generics: &ty::Generics<'gcx>,
2895 generic_predicates: &ty::GenericPredicates<'gcx>,
2896 free_id_outlive: CodeExtent)
2897 -> ParameterEnvironment<'gcx>
e9174d1e
SL
2898 {
2899 //
2900 // Construct the free substs.
2901 //
2902
9cc50fc6 2903 let free_substs = self.construct_free_substs(generics, free_id_outlive);
e9174d1e
SL
2904
2905 //
2906 // Compute the bounds on Self and the type parameters.
2907 //
2908
a7813a04
XL
2909 let tcx = self.global_tcx();
2910 let bounds = generic_predicates.instantiate(tcx, &free_substs);
2911 let bounds = tcx.liberate_late_bound_regions(free_id_outlive, &ty::Binder(bounds));
e9174d1e
SL
2912 let predicates = bounds.predicates.into_vec();
2913
e9174d1e
SL
2914 // Finally, we have to normalize the bounds in the environment, in
2915 // case they contain any associated type projections. This process
2916 // can yield errors if the put in illegal associated types, like
2917 // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
2918 // report these errors right here; this doesn't actually feel
2919 // right to me, because constructing the environment feels like a
2920 // kind of a "idempotent" action, but I'm not sure where would be
2921 // a better place. In practice, we construct environments for
2922 // every fn once during type checking, and we'll abort if there
2923 // are any errors at that point, so after type checking you can be
2924 // sure that this will succeed without errors anyway.
2925 //
2926
2927 let unnormalized_env = ty::ParameterEnvironment {
a7813a04 2928 free_substs: tcx.mk_substs(free_substs),
e9174d1e
SL
2929 implicit_region_bound: ty::ReScope(free_id_outlive),
2930 caller_bounds: predicates,
9cc50fc6 2931 free_id_outlive: free_id_outlive,
e9174d1e
SL
2932 };
2933
9cc50fc6 2934 let cause = traits::ObligationCause::misc(span, free_id_outlive.node_id(&self.region_maps));
a7813a04 2935 traits::normalize_param_env_or_error(tcx, unnormalized_env, cause)
e9174d1e
SL
2936 }
2937
a7813a04 2938 pub fn is_method_call(self, expr_id: NodeId) -> bool {
e9174d1e
SL
2939 self.tables.borrow().method_map.contains_key(&MethodCall::expr(expr_id))
2940 }
2941
a7813a04 2942 pub fn is_overloaded_autoderef(self, expr_id: NodeId, autoderefs: u32) -> bool {
e9174d1e
SL
2943 self.tables.borrow().method_map.contains_key(&MethodCall::autoderef(expr_id,
2944 autoderefs))
2945 }
2946
a7813a04 2947 pub fn upvar_capture(self, upvar_id: ty::UpvarId) -> Option<ty::UpvarCapture> {
e9174d1e
SL
2948 Some(self.tables.borrow().upvar_capture_map.get(&upvar_id).unwrap().clone())
2949 }
9cc50fc6 2950
a7813a04 2951 pub fn visit_all_items_in_krate<V,F>(self,
9cc50fc6
SL
2952 dep_node_fn: F,
2953 visitor: &mut V)
a7813a04 2954 where F: FnMut(DefId) -> DepNode<DefId>, V: Visitor<'gcx>
9cc50fc6 2955 {
a7813a04 2956 dep_graph::visit_all_items_in_krate(self.global_tcx(), dep_node_fn, visitor);
9cc50fc6 2957 }
54a0048b
SL
2958
2959 /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
2960 /// with the name of the crate containing the impl.
a7813a04 2961 pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, InternedString> {
54a0048b
SL
2962 if impl_did.is_local() {
2963 let node_id = self.map.as_local_node_id(impl_did).unwrap();
2964 Ok(self.map.span(node_id))
2965 } else {
2966 Err(self.sess.cstore.crate_name(impl_did.krate))
2967 }
2968 }
e9174d1e
SL
2969}
2970
2971/// The category of explicit self.
2972#[derive(Clone, Copy, Eq, PartialEq, Debug)]
2973pub enum ExplicitSelfCategory {
9cc50fc6
SL
2974 Static,
2975 ByValue,
2976 ByReference(Region, hir::Mutability),
2977 ByBox,
e9174d1e
SL
2978}
2979
a7813a04
XL
2980impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2981 pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
54a0048b 2982 F: FnOnce(&[hir::Freevar]) -> T,
e9174d1e
SL
2983 {
2984 match self.freevars.borrow().get(&fid) {
2985 None => f(&[]),
2986 Some(d) => f(&d[..])
2987 }
2988 }
e9174d1e 2989}