]> git.proxmox.com Git - rustc.git/blame - src/librustc/ty/mod.rs
New upstream version 1.41.1+dfsg1
[rustc.git] / src / librustc / ty / mod.rs
CommitLineData
48663c56
XL
1// ignore-tidy-filelength
2
e9174d1e 3pub use self::Variance::*;
dc9dc135 4pub use self::AssocItemContainer::*;
e9174d1e 5pub use self::BorrowKind::*;
e9174d1e 6pub use self::IntVarValue::*;
e74abb32 7pub use self::fold::{TypeFoldable, TypeVisitor};
e9174d1e 8
dc9dc135 9use crate::hir::{map as hir_map, GlobMap, TraitMap};
48663c56
XL
10use crate::hir::Node;
11use crate::hir::def::{Res, DefKind, CtorOf, CtorKind, ExportMap};
9fa01778 12use crate::hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
b7449926 13use rustc_data_structures::svh::Svh;
532ac7d7 14use rustc_macros::HashStable;
9fa01778
XL
15use crate::ich::Fingerprint;
16use crate::ich::StableHashingContext;
17use crate::infer::canonical::Canonical;
e74abb32 18use crate::middle::cstore::CrateStoreDyn;
9fa01778
XL
19use crate::middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
20use crate::middle::resolve_lifetime::ObjectLifetimeDefault;
60c5eb7d 21use crate::mir::ReadOnlyBodyAndCache;
9fa01778
XL
22use crate::mir::interpret::{GlobalId, ErrorHandled};
23use crate::mir::GeneratorLayout;
24use crate::session::CrateDisambiguator;
25use crate::traits::{self, Reveal};
26use crate::ty;
27use crate::ty::layout::VariantIdx;
532ac7d7 28use crate::ty::subst::{Subst, InternalSubsts, SubstsRef};
9fa01778
XL
29use crate::ty::util::{IntTypeExt, Discr};
30use crate::ty::walk::TypeWalker;
31use crate::util::captures::Captures;
e74abb32 32use crate::util::nodemap::{NodeMap, NodeSet, DefIdMap, FxHashMap};
94b46f34 33use arena::SyncDroplessArena;
9fa01778 34use crate::session::DataTypeKind;
e9174d1e 35
416331ca 36use rustc_serialize::{self, Encodable, Encoder};
e1599b0c 37use rustc_target::abi::Align;
2c00a5a8 38use std::cell::RefCell;
94b46f34 39use std::cmp::{self, Ordering};
7cac9316 40use std::fmt;
e9174d1e 41use std::hash::{Hash, Hasher};
9e0c209e 42use std::ops::Deref;
94b46f34 43use rustc_data_structures::sync::{self, Lrc, ParallelIterator, par_iter};
e9174d1e 44use std::slice;
8faf50e0 45use std::{mem, ptr};
48663c56 46use std::ops::Range;
9fa01778 47use syntax::ast::{self, Name, Ident, NodeId};
9e0c209e 48use syntax::attr;
e74abb32
XL
49use syntax_pos::symbol::{kw, sym, Symbol};
50use syntax_pos::hygiene::ExpnId;
9fa01778 51use syntax_pos::Span;
8bb4bdeb 52
b7449926 53use smallvec;
e74abb32
XL
54use rustc_data_structures::fx::{FxIndexMap};
55use rustc_data_structures::stable_hasher::{StableHasher, HashStable};
56use rustc_index::vec::{Idx, IndexVec};
54a0048b 57
9fa01778 58use crate::hir;
e9174d1e 59
a1dfa0c6 60pub use self::sty::{Binder, BoundTy, BoundTyKind, BoundVar, DebruijnIndex, INNERMOST};
0bf4aa26 61pub use self::sty::{FnSig, GenSig, CanonicalPolyFnSig, PolyFnSig, PolyGenSig};
532ac7d7 62pub use self::sty::{InferTy, ParamTy, ParamConst, InferConst, ProjectionTy, ExistentialPredicate};
94b46f34 63pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
b7449926 64pub use self::sty::{TraitRef, TyKind, PolyTraitRef};
9e0c209e 65pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
60c5eb7d 66pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const, ConstKind};
e9174d1e 67pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
7cac9316 68pub use self::sty::RegionKind;
532ac7d7 69pub use self::sty::{TyVid, IntVid, FloatVid, ConstVid, RegionVid};
e9174d1e 70pub use self::sty::BoundRegion::*;
e9174d1e 71pub use self::sty::InferTy::*;
7cac9316 72pub use self::sty::RegionKind::*;
b7449926 73pub use self::sty::TyKind::*;
60c5eb7d 74pub use crate::ty::diagnostics::*;
e9174d1e 75
3b2f2976
XL
76pub use self::binding::BindingMode;
77pub use self::binding::BindingMode::*;
78
dc9dc135 79pub use self::context::{TyCtxt, FreeRegionInfo, AllArenas, tls, keep_local};
e1599b0c 80pub use self::context::{Lift, GeneratorInteriorTypeCause, TypeckTables, CtxtInterners, GlobalCtxt};
0731742a 81pub use self::context::{
9fa01778
XL
82 UserTypeAnnotationIndex, UserType, CanonicalUserType,
83 CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, ResolvedOpaqueTy,
0731742a 84};
e9174d1e 85
cc61c64b
XL
86pub use self::instance::{Instance, InstanceDef};
87
e74abb32
XL
88pub use self::structural_match::search_for_structural_match_violation;
89pub use self::structural_match::type_marked_structural;
90pub use self::structural_match::NonStructuralMatchTy;
91
7cac9316 92pub use self::trait_def::TraitDef;
9cc50fc6 93
94b46f34 94pub use self::query::queries;
8bb4bdeb 95
e9174d1e 96pub mod adjustment;
3b2f2976 97pub mod binding;
e9174d1e 98pub mod cast;
abe05a73
XL
99#[macro_use]
100pub mod codec;
0bf4aa26 101mod constness;
e9174d1e 102pub mod error;
abe05a73 103mod erase_regions;
e9174d1e 104pub mod fast_reject;
48663c56 105pub mod flags;
e9174d1e 106pub mod fold;
32a655c1 107pub mod inhabitedness;
54a0048b 108pub mod layout;
e9174d1e
SL
109pub mod _match;
110pub mod outlives;
532ac7d7 111pub mod print;
94b46f34 112pub mod query;
e9174d1e 113pub mod relate;
7cac9316 114pub mod steal;
54a0048b 115pub mod subst;
9cc50fc6 116pub mod trait_def;
e9174d1e
SL
117pub mod walk;
118pub mod wf;
119pub mod util;
120
e9174d1e 121mod context;
cc61c64b 122mod instance;
e9174d1e 123mod structural_impls;
e74abb32 124mod structural_match;
e9174d1e 125mod sty;
60c5eb7d 126mod diagnostics;
e9174d1e 127
e9174d1e
SL
128// Data types
129
e74abb32
XL
130pub struct ResolverOutputs {
131 pub definitions: hir_map::Definitions,
132 pub cstore: Box<CrateStoreDyn>,
133 pub extern_crate_map: NodeMap<CrateNum>,
32a655c1
SL
134 pub trait_map: TraitMap,
135 pub maybe_unused_trait_imports: NodeSet,
3b2f2976 136 pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
48663c56 137 pub export_map: ExportMap<NodeId>,
9fa01778 138 pub glob_map: GlobMap,
0bf4aa26
XL
139 /// Extern prelude entries. The value is `true` if the entry was introduced
140 /// via `extern crate` item and not `--extern` option or compiler built-in.
141 pub extern_prelude: FxHashMap<Name, bool>,
e9174d1e
SL
142}
143
532ac7d7 144#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
dc9dc135 145pub enum AssocItemContainer {
e9174d1e
SL
146 TraitContainer(DefId),
147 ImplContainer(DefId),
148}
149
dc9dc135 150impl AssocItemContainer {
9fa01778
XL
151 /// Asserts that this is the `DefId` of an associated item declared
152 /// in a trait, and returns the trait `DefId`.
abe05a73
XL
153 pub fn assert_trait(&self) -> DefId {
154 match *self {
155 TraitContainer(id) => id,
156 _ => bug!("associated item has wrong container type: {:?}", self)
157 }
158 }
159
e9174d1e
SL
160 pub fn id(&self) -> DefId {
161 match *self {
162 TraitContainer(id) => id,
163 ImplContainer(id) => id,
164 }
165 }
166}
167
54a0048b
SL
168/// The "header" of an impl is everything outside the body: a Self type, a trait
169/// ref (in the case of a trait impl), and a set of predicates (from the
9fa01778 170/// bounds / where-clauses).
60c5eb7d 171#[derive(Clone, Debug, TypeFoldable)]
54a0048b
SL
172pub struct ImplHeader<'tcx> {
173 pub impl_def_id: DefId,
174 pub self_ty: Ty<'tcx>,
175 pub trait_ref: Option<TraitRef<'tcx>>,
176 pub predicates: Vec<Predicate<'tcx>>,
177}
178
e74abb32
XL
179#[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, HashStable)]
180pub enum ImplPolarity {
181 /// `impl Trait for Type`
182 Positive,
183 /// `impl !Trait for Type`
184 Negative,
185 /// `#[rustc_reservation_impl] impl Trait for Type`
186 ///
187 /// This is a "stability hack", not a real Rust feature.
188 /// See #64631 for details.
189 Reservation,
190}
191
532ac7d7 192#[derive(Copy, Clone, Debug, PartialEq, HashStable)]
dc9dc135 193pub struct AssocItem {
476ff2be 194 pub def_id: DefId,
532ac7d7 195 #[stable_hasher(project(name))]
8faf50e0 196 pub ident: Ident,
dc9dc135 197 pub kind: AssocKind,
476ff2be
SL
198 pub vis: Visibility,
199 pub defaultness: hir::Defaultness,
dc9dc135 200 pub container: AssocItemContainer,
e9174d1e 201
476ff2be
SL
202 /// Whether this is a method with an explicit self
203 /// as its first argument, allowing method calls.
204 pub method_has_self_argument: bool,
205}
e9174d1e 206
e74abb32 207#[derive(Copy, Clone, PartialEq, Debug, HashStable)]
dc9dc135 208pub enum AssocKind {
476ff2be
SL
209 Const,
210 Method,
416331ca 211 OpaqueTy,
476ff2be
SL
212 Type
213}
e9174d1e 214
dc9dc135 215impl AssocItem {
48663c56 216 pub fn def_kind(&self) -> DefKind {
476ff2be 217 match self.kind {
dc9dc135
XL
218 AssocKind::Const => DefKind::AssocConst,
219 AssocKind::Method => DefKind::Method,
220 AssocKind::Type => DefKind::AssocTy,
416331ca 221 AssocKind::OpaqueTy => DefKind::AssocOpaqueTy,
e9174d1e
SL
222 }
223 }
8bb4bdeb
XL
224
225 /// Tests whether the associated item admits a non-trivial implementation
226 /// for !
dc9dc135 227 pub fn relevant_for_never(&self) -> bool {
8bb4bdeb 228 match self.kind {
416331ca 229 AssocKind::OpaqueTy |
dc9dc135
XL
230 AssocKind::Const |
231 AssocKind::Type => true,
8bb4bdeb 232 // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
dc9dc135 233 AssocKind::Method => !self.method_has_self_argument,
8bb4bdeb
XL
234 }
235 }
7cac9316 236
dc9dc135 237 pub fn signature(&self, tcx: TyCtxt<'_>) -> String {
7cac9316 238 match self.kind {
dc9dc135 239 ty::AssocKind::Method => {
7cac9316
XL
240 // We skip the binder here because the binder would deanonymize all
241 // late-bound regions, and we don't want method signatures to show up
242 // `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
243 // regions just fine, showing `fn(&MyType)`.
8faf50e0 244 tcx.fn_sig(self.def_id).skip_binder().to_string()
7cac9316 245 }
dc9dc135 246 ty::AssocKind::Type => format!("type {};", self.ident),
416331ca
XL
247 // FIXME(type_alias_impl_trait): we should print bounds here too.
248 ty::AssocKind::OpaqueTy => format!("type {};", self.ident),
dc9dc135 249 ty::AssocKind::Const => {
8faf50e0 250 format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
7cac9316
XL
251 }
252 }
253 }
e9174d1e
SL
254}
255
532ac7d7 256#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable, HashStable)]
54a0048b
SL
257pub enum Visibility {
258 /// Visible everywhere (including in other crates).
259 Public,
260 /// Visible only in the given crate-local module.
32a655c1 261 Restricted(DefId),
54a0048b 262 /// Not visible anywhere in the local crate. This is the visibility of private external items.
32a655c1 263 Invisible,
54a0048b
SL
264}
265
32a655c1
SL
266pub trait DefIdTree: Copy {
267 fn parent(self, id: DefId) -> Option<DefId>;
a7813a04 268
32a655c1
SL
269 fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
270 if descendant.krate != ancestor.krate {
271 return false;
272 }
273
274 while descendant != ancestor {
275 match self.parent(descendant) {
276 Some(parent) => descendant = parent,
277 None => return false,
a7813a04 278 }
a7813a04
XL
279 }
280 true
281 }
282}
283
dc9dc135 284impl<'tcx> DefIdTree for TyCtxt<'tcx> {
32a655c1
SL
285 fn parent(self, id: DefId) -> Option<DefId> {
286 self.def_key(id).parent.map(|index| DefId { index: index, ..id })
287 }
288}
289
54a0048b 290impl Visibility {
dc9dc135 291 pub fn from_hir(visibility: &hir::Visibility, id: hir::HirId, tcx: TyCtxt<'_>) -> Self {
8faf50e0
XL
292 match visibility.node {
293 hir::VisibilityKind::Public => Visibility::Public,
294 hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
48663c56 295 hir::VisibilityKind::Restricted { ref path, .. } => match path.res {
a7813a04
XL
296 // If there is no resolution, `resolve` will have already reported an error, so
297 // assume that the visibility is public to avoid reporting more privacy errors.
48663c56 298 Res::Err => Visibility::Public,
32a655c1 299 def => Visibility::Restricted(def.def_id()),
a7813a04 300 },
8faf50e0 301 hir::VisibilityKind::Inherited => {
dc9dc135 302 Visibility::Restricted(tcx.hir().get_module_parent(id))
32a655c1 303 }
54a0048b
SL
304 }
305 }
306
a1dfa0c6 307 /// Returns `true` if an item with this visibility is accessible from the given block.
32a655c1 308 pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
54a0048b
SL
309 let restriction = match self {
310 // Public items are visible everywhere.
311 Visibility::Public => return true,
312 // Private items from other crates are visible nowhere.
32a655c1 313 Visibility::Invisible => return false,
54a0048b 314 // Restricted items are visible in an arbitrary local module.
32a655c1 315 Visibility::Restricted(other) if other.krate != module.krate => return false,
54a0048b
SL
316 Visibility::Restricted(module) => module,
317 };
318
32a655c1 319 tree.is_descendant_of(module, restriction)
54a0048b
SL
320 }
321
a1dfa0c6 322 /// Returns `true` if this visibility is at least as accessible as the given visibility
32a655c1 323 pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
54a0048b
SL
324 let vis_restriction = match vis {
325 Visibility::Public => return self == Visibility::Public,
32a655c1 326 Visibility::Invisible => return true,
54a0048b
SL
327 Visibility::Restricted(module) => module,
328 };
329
a7813a04 330 self.is_accessible_from(vis_restriction, tree)
54a0048b 331 }
ff7c6d11 332
a1dfa0c6 333 // Returns `true` if this item is visible anywhere in the local crate.
ff7c6d11
XL
334 pub fn is_visible_locally(self) -> bool {
335 match self {
336 Visibility::Public => true,
337 Visibility::Restricted(def_id) => def_id.is_local(),
338 Visibility::Invisible => false,
339 }
340 }
54a0048b
SL
341}
342
e74abb32 343#[derive(Copy, Clone, PartialEq, RustcDecodable, RustcEncodable, HashStable)]
e9174d1e
SL
344pub enum Variance {
345 Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
346 Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
347 Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
348 Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
349}
350
7cac9316
XL
351/// The crate variances map is computed during typeck and contains the
352/// variance of every item in the local crate. You should not use it
353/// directly, because to do so will make your pass dependent on the
354/// HIR of every item in the local crate. Instead, use
355/// `tcx.variances_of()` to get the variance for a *particular*
356/// item.
532ac7d7 357#[derive(HashStable)]
48663c56 358pub struct CrateVariancesMap<'tcx> {
7cac9316 359 /// For each item with generics, maps to a vector of the variance
9fa01778 360 /// of its generics. If an item has no generics, it will have no
7cac9316 361 /// entry.
48663c56 362 pub variances: FxHashMap<DefId, &'tcx [ty::Variance]>,
7cac9316
XL
363}
364
cc61c64b
XL
365impl Variance {
366 /// `a.xform(b)` combines the variance of a context with the
9fa01778 367 /// variance of a type with the following meaning. If we are in a
cc61c64b
XL
368 /// context with variance `a`, and we encounter a type argument in
369 /// a position with variance `b`, then `a.xform(b)` is the new
370 /// variance with which the argument appears.
371 ///
372 /// Example 1:
373 ///
374 /// *mut Vec<i32>
375 ///
376 /// Here, the "ambient" variance starts as covariant. `*mut T` is
377 /// invariant with respect to `T`, so the variance in which the
378 /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
379 /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
380 /// respect to its type argument `T`, and hence the variance of
381 /// the `i32` here is `Invariant.xform(Covariant)`, which results
382 /// (again) in `Invariant`.
383 ///
384 /// Example 2:
385 ///
386 /// fn(*const Vec<i32>, *mut Vec<i32)
387 ///
388 /// The ambient variance is covariant. A `fn` type is
389 /// contravariant with respect to its parameters, so the variance
390 /// within which both pointer types appear is
9fa01778 391 /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
cc61c64b
XL
392 /// T` is covariant with respect to `T`, so the variance within
393 /// which the first `Vec<i32>` appears is
9fa01778 394 /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
cc61c64b
XL
395 /// is true for its `i32` argument. In the `*mut T` case, the
396 /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
397 /// and hence the outermost type is `Invariant` with respect to
398 /// `Vec<i32>` (and its `i32` argument).
399 ///
400 /// Source: Figure 1 of "Taming the Wildcards:
401 /// Combining Definition- and Use-Site Variance" published in PLDI'11.
402 pub fn xform(self, v: ty::Variance) -> ty::Variance {
403 match (self, v) {
404 // Figure 1, column 1.
405 (ty::Covariant, ty::Covariant) => ty::Covariant,
406 (ty::Covariant, ty::Contravariant) => ty::Contravariant,
407 (ty::Covariant, ty::Invariant) => ty::Invariant,
408 (ty::Covariant, ty::Bivariant) => ty::Bivariant,
409
410 // Figure 1, column 2.
411 (ty::Contravariant, ty::Covariant) => ty::Contravariant,
412 (ty::Contravariant, ty::Contravariant) => ty::Covariant,
413 (ty::Contravariant, ty::Invariant) => ty::Invariant,
414 (ty::Contravariant, ty::Bivariant) => ty::Bivariant,
415
416 // Figure 1, column 3.
417 (ty::Invariant, _) => ty::Invariant,
418
419 // Figure 1, column 4.
420 (ty::Bivariant, _) => ty::Bivariant,
421 }
422 }
423}
424
e9174d1e
SL
425// Contains information needed to resolve types and (in the future) look up
426// the types of AST nodes.
427#[derive(Copy, Clone, PartialEq, Eq, Hash)]
428pub struct CReaderCacheKey {
429 pub cnum: CrateNum,
430 pub pos: usize,
e9174d1e
SL
431}
432
e9174d1e
SL
433// Flags that we track on types. These flags are propagated upwards
434// through the type during type construction, so that we can quickly
435// check whether the type has various kinds of types in it without
436// recursing over the type itself.
437bitflags! {
ea8adc8c
XL
438 pub struct TypeFlags: u32 {
439 const HAS_PARAMS = 1 << 0;
e1599b0c
XL
440 const HAS_TY_INFER = 1 << 1;
441 const HAS_RE_INFER = 1 << 2;
442 const HAS_RE_PLACEHOLDER = 1 << 3;
ff7c6d11
XL
443
444 /// Does this have any `ReEarlyBound` regions? Used to
445 /// determine whether substitition is required, since those
446 /// represent regions that are bound in a `ty::Generics` and
447 /// hence may be substituted.
e1599b0c 448 const HAS_RE_EARLY_BOUND = 1 << 4;
ff7c6d11
XL
449
450 /// Does this have any region that "appears free" in the type?
451 /// Basically anything but `ReLateBound` and `ReErased`.
e1599b0c 452 const HAS_FREE_REGIONS = 1 << 5;
ff7c6d11
XL
453
454 /// Is an error type reachable?
e1599b0c
XL
455 const HAS_TY_ERR = 1 << 6;
456 const HAS_PROJECTION = 1 << 7;
ea8adc8c
XL
457
458 // FIXME: Rename this to the actual property since it's used for generators too
e1599b0c 459 const HAS_TY_CLOSURE = 1 << 8;
e9174d1e 460
48663c56
XL
461 /// `true` if there are "names" of types and regions and so forth
462 /// that are local to a particular fn
e74abb32 463 const HAS_FREE_LOCAL_NAMES = 1 << 9;
e9174d1e 464
48663c56
XL
465 /// Present if the type belongs in a local type context.
466 /// Only set for Infer other than Fresh.
e1599b0c 467 const KEEP_IN_LOCAL_TCX = 1 << 10;
1bb2cb6e 468
94b46f34
XL
469 /// Does this have any `ReLateBound` regions? Used to check
470 /// if a global bound is safe to evaluate.
e74abb32 471 const HAS_RE_LATE_BOUND = 1 << 11;
a1dfa0c6 472
e1599b0c 473 const HAS_TY_PLACEHOLDER = 1 << 12;
94b46f34 474
e74abb32 475 const HAS_CT_INFER = 1 << 13;
e1599b0c 476 const HAS_CT_PLACEHOLDER = 1 << 14;
532ac7d7 477
e9174d1e 478 const NEEDS_SUBST = TypeFlags::HAS_PARAMS.bits |
ea8adc8c 479 TypeFlags::HAS_RE_EARLY_BOUND.bits;
e9174d1e 480
48663c56
XL
481 /// Flags representing the nominal content of a type,
482 /// computed by FlagsComputation. If you add a new nominal
483 /// flag, it should be added here too.
e9174d1e 484 const NOMINAL_FLAGS = TypeFlags::HAS_PARAMS.bits |
e9174d1e
SL
485 TypeFlags::HAS_TY_INFER.bits |
486 TypeFlags::HAS_RE_INFER.bits |
a1dfa0c6 487 TypeFlags::HAS_RE_PLACEHOLDER.bits |
e9174d1e
SL
488 TypeFlags::HAS_RE_EARLY_BOUND.bits |
489 TypeFlags::HAS_FREE_REGIONS.bits |
490 TypeFlags::HAS_TY_ERR.bits |
491 TypeFlags::HAS_PROJECTION.bits |
492 TypeFlags::HAS_TY_CLOSURE.bits |
94b46f34 493 TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
0531ce1d 494 TypeFlags::KEEP_IN_LOCAL_TCX.bits |
a1dfa0c6 495 TypeFlags::HAS_RE_LATE_BOUND.bits |
48663c56 496 TypeFlags::HAS_TY_PLACEHOLDER.bits |
e1599b0c 497 TypeFlags::HAS_CT_INFER.bits |
48663c56 498 TypeFlags::HAS_CT_PLACEHOLDER.bits;
e9174d1e
SL
499 }
500}
501
e1599b0c 502#[allow(rustc::usage_of_ty_tykind)]
e9174d1e 503pub struct TyS<'tcx> {
e74abb32 504 pub kind: TyKind<'tcx>,
7cac9316 505 pub flags: TypeFlags,
e9174d1e 506
94b46f34
XL
507 /// This is a kind of confusing thing: it stores the smallest
508 /// binder such that
509 ///
510 /// (a) the binder itself captures nothing but
511 /// (b) all the late-bound things within the type are captured
512 /// by some sub-binder.
513 ///
514 /// So, for a type without any late-bound things, like `u32`, this
0731742a 515 /// will be *innermost*, because that is the innermost binder that
94b46f34 516 /// captures nothing. But for a type `&'D u32`, where `'D` is a
9fa01778 517 /// late-bound region with De Bruijn index `D`, this would be `D + 1`
0731742a
XL
518 /// -- the binder itself does not capture `D`, but `D` is captured
519 /// by an inner binder.
94b46f34 520 ///
0731742a 521 /// We call this concept an "exclusive" binder `D` because all
9fa01778 522 /// De Bruijn indices within the type are contained within `0..D`
0731742a 523 /// (exclusive).
94b46f34
XL
524 outer_exclusive_binder: ty::DebruijnIndex,
525}
526
a1dfa0c6
XL
527// `TyS` is used a lot. Make sure it doesn't unintentionally get bigger.
528#[cfg(target_arch = "x86_64")]
48663c56 529static_assert_size!(TyS<'_>, 32);
a1dfa0c6 530
94b46f34
XL
531impl<'tcx> Ord for TyS<'tcx> {
532 fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
e74abb32 533 self.kind.cmp(&other.kind)
94b46f34
XL
534 }
535}
536
537impl<'tcx> PartialOrd for TyS<'tcx> {
538 fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
e74abb32 539 Some(self.kind.cmp(&other.kind))
94b46f34 540 }
e9174d1e
SL
541}
542
543impl<'tcx> PartialEq for TyS<'tcx> {
544 #[inline]
545 fn eq(&self, other: &TyS<'tcx>) -> bool {
8faf50e0 546 ptr::eq(self, other)
e9174d1e
SL
547 }
548}
549impl<'tcx> Eq for TyS<'tcx> {}
550
551impl<'tcx> Hash for TyS<'tcx> {
552 fn hash<H: Hasher>(&self, s: &mut H) {
0bf4aa26 553 (self as *const TyS<'_>).hash(s)
e9174d1e
SL
554 }
555}
556
dc9dc135 557impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for ty::TyS<'tcx> {
e74abb32 558 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
cc61c64b 559 let ty::TyS {
e74abb32 560 ref kind,
cc61c64b
XL
561
562 // The other fields just provide fast access to information that is
e74abb32 563 // also contained in `kind`, so no need to hash them.
cc61c64b 564 flags: _,
94b46f34
XL
565
566 outer_exclusive_binder: _,
cc61c64b
XL
567 } = *self;
568
e74abb32 569 kind.hash_stable(hcx, hasher);
cc61c64b
XL
570 }
571}
572
e74abb32 573#[rustc_diagnostic_item = "Ty"]
e9174d1e
SL
574pub type Ty<'tcx> = &'tcx TyS<'tcx>;
575
416331ca
XL
576impl<'tcx> rustc_serialize::UseSpecializedEncodable for Ty<'tcx> {}
577impl<'tcx> rustc_serialize::UseSpecializedDecodable for Ty<'tcx> {}
9e0c209e 578
dc9dc135 579pub type CanonicalTy<'tcx> = Canonical<'tcx, Ty<'tcx>>;
0531ce1d 580
94b46f34 581extern {
e74abb32
XL
582 /// A dummy type used to force `List` to be unsized while not requiring references to it be wide
583 /// pointers.
b7449926 584 type OpaqueListContents;
94b46f34
XL
585}
586
c30ab7b3 587/// A wrapper for slices with the additional invariant
9e0c209e
SL
588/// that the slice is interned and no other slice with
589/// the same contents can exist in the same context.
94b46f34 590/// This means we can use pointer for both
9e0c209e 591/// equality comparisons and hashing.
b7449926 592/// Note: `Slice` was already taken by the `Ty`.
94b46f34 593#[repr(C)]
b7449926 594pub struct List<T> {
94b46f34
XL
595 len: usize,
596 data: [T; 0],
b7449926 597 opaque: OpaqueListContents,
94b46f34
XL
598}
599
b7449926 600unsafe impl<T: Sync> Sync for List<T> {}
9e0c209e 601
b7449926 602impl<T: Copy> List<T> {
94b46f34 603 #[inline]
b7449926 604 fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx List<T> {
94b46f34
XL
605 assert!(!mem::needs_drop::<T>());
606 assert!(mem::size_of::<T>() != 0);
607 assert!(slice.len() != 0);
608
609 // Align up the size of the len (usize) field
610 let align = mem::align_of::<T>();
611 let align_mask = align - 1;
612 let offset = mem::size_of::<usize>();
613 let offset = (offset + align_mask) & !align_mask;
614
615 let size = offset + slice.len() * mem::size_of::<T>();
616
617 let mem = arena.alloc_raw(
618 size,
619 cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
620 unsafe {
b7449926 621 let result = &mut *(mem.as_mut_ptr() as *mut List<T>);
94b46f34
XL
622 // Write the length
623 result.len = slice.len();
624
625 // Write the elements
626 let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
627 arena_slice.copy_from_slice(slice);
628
629 result
630 }
631 }
632}
633
b7449926 634impl<T: fmt::Debug> fmt::Debug for List<T> {
0bf4aa26 635 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
94b46f34
XL
636 (**self).fmt(f)
637 }
638}
639
b7449926 640impl<T: Encodable> Encodable for List<T> {
94b46f34
XL
641 #[inline]
642 fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
643 (**self).encode(s)
644 }
645}
646
b7449926
XL
647impl<T> Ord for List<T> where T: Ord {
648 fn cmp(&self, other: &List<T>) -> Ordering {
94b46f34
XL
649 if self == other { Ordering::Equal } else {
650 <[T] as Ord>::cmp(&**self, &**other)
651 }
652 }
653}
654
b7449926
XL
655impl<T> PartialOrd for List<T> where T: PartialOrd {
656 fn partial_cmp(&self, other: &List<T>) -> Option<Ordering> {
94b46f34
XL
657 if self == other { Some(Ordering::Equal) } else {
658 <[T] as PartialOrd>::partial_cmp(&**self, &**other)
659 }
660 }
661}
662
b7449926 663impl<T: PartialEq> PartialEq for List<T> {
9e0c209e 664 #[inline]
b7449926 665 fn eq(&self, other: &List<T>) -> bool {
8faf50e0 666 ptr::eq(self, other)
9cc50fc6
SL
667 }
668}
b7449926 669impl<T: Eq> Eq for List<T> {}
9cc50fc6 670
b7449926 671impl<T> Hash for List<T> {
94b46f34 672 #[inline]
9e0c209e 673 fn hash<H: Hasher>(&self, s: &mut H) {
b7449926 674 (self as *const List<T>).hash(s)
9e0c209e
SL
675 }
676}
677
b7449926 678impl<T> Deref for List<T> {
9e0c209e 679 type Target = [T];
94b46f34 680 #[inline(always)]
9e0c209e 681 fn deref(&self) -> &[T] {
e74abb32
XL
682 self.as_ref()
683 }
684}
685
686impl<T> AsRef<[T]> for List<T> {
687 #[inline(always)]
688 fn as_ref(&self) -> &[T] {
94b46f34
XL
689 unsafe {
690 slice::from_raw_parts(self.data.as_ptr(), self.len)
691 }
9e0c209e
SL
692 }
693}
694
b7449926 695impl<'a, T> IntoIterator for &'a List<T> {
9e0c209e
SL
696 type Item = &'a T;
697 type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
94b46f34 698 #[inline(always)]
9e0c209e
SL
699 fn into_iter(self) -> Self::IntoIter {
700 self[..].iter()
9cc50fc6
SL
701 }
702}
703
416331ca 704impl<'tcx> rustc_serialize::UseSpecializedDecodable for &'tcx List<Ty<'tcx>> {}
9cc50fc6 705
b7449926 706impl<T> List<T> {
94b46f34 707 #[inline(always)]
b7449926 708 pub fn empty<'a>() -> &'a List<T> {
94b46f34
XL
709 #[repr(align(64), C)]
710 struct EmptySlice([u8; 64]);
711 static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
712 assert!(mem::align_of::<T>() <= 64);
c30ab7b3 713 unsafe {
b7449926 714 &*(&EMPTY_SLICE as *const _ as *const List<T>)
c30ab7b3
SL
715 }
716 }
717}
718
532ac7d7 719#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
a1dfa0c6
XL
720pub struct UpvarPath {
721 pub hir_id: hir::HirId,
722}
723
9fa01778
XL
724/// Upvars do not get their own `NodeId`. Instead, we use the pair of
725/// the original var ID (that is, the root variable that is referenced
726/// by the upvar) and the ID of the closure expression.
532ac7d7 727#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, HashStable)]
e9174d1e 728pub struct UpvarId {
a1dfa0c6 729 pub var_path: UpvarPath,
abe05a73 730 pub closure_expr_id: LocalDefId,
e9174d1e
SL
731}
732
e74abb32 733#[derive(Clone, PartialEq, Debug, RustcEncodable, RustcDecodable, Copy, HashStable)]
e9174d1e
SL
734pub enum BorrowKind {
735 /// Data must be immutable and is aliasable.
736 ImmBorrow,
737
9fa01778 738 /// Data must be immutable but not aliasable. This kind of borrow
e9174d1e 739 /// cannot currently be expressed by the user and is used only in
32a655c1 740 /// implicit closure bindings. It is needed when the closure
e9174d1e
SL
741 /// is borrowing or mutating a mutable referent, e.g.:
742 ///
743 /// let x: &mut isize = ...;
744 /// let y = || *x += 5;
745 ///
746 /// If we were to try to translate this closure into a more explicit
747 /// form, we'd encounter an error with the code as written:
748 ///
749 /// struct Env { x: & &mut isize }
750 /// let x: &mut isize = ...;
751 /// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
752 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
753 ///
754 /// This is then illegal because you cannot mutate a `&mut` found
755 /// in an aliasable location. To solve, you'd have to translate with
756 /// an `&mut` borrow:
757 ///
758 /// struct Env { x: & &mut isize }
759 /// let x: &mut isize = ...;
760 /// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
761 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
762 ///
763 /// Now the assignment to `**env.x` is legal, but creating a
764 /// mutable pointer to `x` is not because `x` is not mutable. We
765 /// could fix this by declaring `x` as `let mut x`. This is ok in
766 /// user code, if awkward, but extra weird for closures, since the
767 /// borrow is hidden.
768 ///
769 /// So we introduce a "unique imm" borrow -- the referent is
770 /// immutable, but not aliasable. This solves the problem. For
771 /// simplicity, we don't give users the way to express this
772 /// borrow, it's just used when translating closures.
773 UniqueImmBorrow,
774
775 /// Data is mutable and not aliasable.
776 MutBorrow
777}
778
779/// Information describing the capture of an upvar. This is computed
780/// during `typeck`, specifically by `regionck`.
532ac7d7 781#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable, HashStable)]
9e0c209e 782pub enum UpvarCapture<'tcx> {
e9174d1e
SL
783 /// Upvar is captured by value. This is always true when the
784 /// closure is labeled `move`, but can also be true in other cases
785 /// depending on inference.
786 ByValue,
787
788 /// Upvar is captured by reference.
9e0c209e 789 ByRef(UpvarBorrow<'tcx>),
e9174d1e
SL
790}
791
532ac7d7 792#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable, HashStable)]
9e0c209e 793pub struct UpvarBorrow<'tcx> {
e9174d1e
SL
794 /// The kind of borrow: by-ref upvars have access to shared
795 /// immutable borrows, which are not part of the normal language
796 /// syntax.
797 pub kind: BorrowKind,
798
799 /// Region of the resulting reference.
7cac9316 800 pub region: ty::Region<'tcx>,
e9174d1e
SL
801}
802
dc9dc135 803pub type UpvarListMap = FxHashMap<DefId, FxIndexMap<hir::HirId, UpvarId>>;
476ff2be 804pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
e9174d1e 805
60c5eb7d 806#[derive(Copy, Clone, TypeFoldable)]
e9174d1e 807pub struct ClosureUpvar<'tcx> {
48663c56 808 pub res: Res,
e9174d1e
SL
809 pub span: Span,
810 pub ty: Ty<'tcx>,
811}
812
0531ce1d 813#[derive(Clone, Copy, PartialEq, Eq)]
e9174d1e 814pub enum IntVarValue {
b039eaaf
SL
815 IntType(ast::IntTy),
816 UintType(ast::UintTy),
e9174d1e
SL
817}
818
0531ce1d
XL
819#[derive(Clone, Copy, PartialEq, Eq)]
820pub struct FloatVarValue(pub ast::FloatTy);
821
94b46f34
XL
822impl ty::EarlyBoundRegion {
823 pub fn to_bound_region(&self) -> ty::BoundRegion {
824 ty::BoundRegion::BrNamed(self.def_id, self.name)
825 }
b7449926
XL
826
827 /// Does this early bound region have a name? Early bound regions normally
828 /// always have names except when using anonymous lifetimes (`'_`).
829 pub fn has_name(&self) -> bool {
e74abb32 830 self.name != kw::UnderscoreLifetime
b7449926 831 }
94b46f34 832}
ea8adc8c 833
532ac7d7 834#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
94b46f34
XL
835pub enum GenericParamDefKind {
836 Lifetime,
837 Type {
838 has_default: bool,
839 object_lifetime_default: ObjectLifetimeDefault,
840 synthetic: Option<hir::SyntheticTyParamKind>,
532ac7d7
XL
841 },
842 Const,
e9174d1e
SL
843}
844
532ac7d7 845#[derive(Clone, RustcEncodable, RustcDecodable, HashStable)]
94b46f34 846pub struct GenericParamDef {
e74abb32 847 pub name: Symbol,
e9174d1e 848 pub def_id: DefId,
e9174d1e 849 pub index: u32,
c30ab7b3
SL
850
851 /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
94b46f34
XL
852 /// on generic parameter `'a`/`T`, asserts data behind the parameter
853 /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
c30ab7b3 854 pub pure_wrt_drop: bool,
94b46f34
XL
855
856 pub kind: GenericParamDefKind,
e9174d1e
SL
857}
858
94b46f34 859impl GenericParamDef {
9e0c209e 860 pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
0bf4aa26
XL
861 if let GenericParamDefKind::Lifetime = self.kind {
862 ty::EarlyBoundRegion {
863 def_id: self.def_id,
864 index: self.index,
865 name: self.name,
94b46f34 866 }
0bf4aa26
XL
867 } else {
868 bug!("cannot convert a non-lifetime parameter def to an early bound region")
9e0c209e 869 }
e9174d1e 870 }
9e0c209e 871
7cac9316 872 pub fn to_bound_region(&self) -> ty::BoundRegion {
0bf4aa26
XL
873 if let GenericParamDefKind::Lifetime = self.kind {
874 self.to_early_bound_region_data().to_bound_region()
875 } else {
876 bug!("cannot convert a non-lifetime parameter def to an early bound region")
94b46f34 877 }
7cac9316
XL
878 }
879}
880
b7449926 881#[derive(Default)]
94b46f34
XL
882pub struct GenericParamCount {
883 pub lifetimes: usize,
884 pub types: usize,
532ac7d7 885 pub consts: usize,
e9174d1e
SL
886}
887
888/// Information about the formal type/lifetime parameters associated
0731742a 889/// with an item or method. Analogous to `hir::Generics`.
ea8adc8c 890///
0731742a
XL
891/// The ordering of parameters is the same as in `Subst` (excluding child generics):
892/// `Self` (optionally), `Lifetime` params..., `Type` params...
532ac7d7 893#[derive(Clone, Debug, RustcEncodable, RustcDecodable, HashStable)]
8bb4bdeb 894pub struct Generics {
9e0c209e 895 pub parent: Option<DefId>,
94b46f34
XL
896 pub parent_count: usize,
897 pub params: Vec<GenericParamDef>,
8bb4bdeb 898
416331ca 899 /// Reverse map to the `index` field of each `GenericParamDef`.
532ac7d7 900 #[stable_hasher(ignore)]
94b46f34 901 pub param_def_id_to_index: FxHashMap<DefId, u32>,
8bb4bdeb 902
9e0c209e 903 pub has_self: bool,
3b2f2976 904 pub has_late_bound_regions: Option<Span>,
e9174d1e
SL
905}
906
dc9dc135 907impl<'tcx> Generics {
94b46f34
XL
908 pub fn count(&self) -> usize {
909 self.parent_count + self.params.len()
e9174d1e
SL
910 }
911
94b46f34
XL
912 pub fn own_counts(&self) -> GenericParamCount {
913 // We could cache this as a property of `GenericParamCount`, but
914 // the aim is to refactor this away entirely eventually and the
915 // presence of this method will be a constant reminder.
b7449926 916 let mut own_counts: GenericParamCount = Default::default();
94b46f34
XL
917
918 for param in &self.params {
919 match param.kind {
920 GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
b7449926 921 GenericParamDefKind::Type { .. } => own_counts.types += 1,
532ac7d7 922 GenericParamDefKind::Const => own_counts.consts += 1,
94b46f34
XL
923 };
924 }
925
926 own_counts
e9174d1e
SL
927 }
928
dc9dc135 929 pub fn requires_monomorphization(&self, tcx: TyCtxt<'tcx>) -> bool {
48663c56
XL
930 if self.own_requires_monomorphization() {
931 return true;
94b46f34 932 }
48663c56 933
94b46f34
XL
934 if let Some(parent_def_id) = self.parent {
935 let parent = tcx.generics_of(parent_def_id);
936 parent.requires_monomorphization(tcx)
937 } else {
938 false
939 }
e9174d1e 940 }
c30ab7b3 941
48663c56
XL
942 pub fn own_requires_monomorphization(&self) -> bool {
943 for param in &self.params {
944 match param.kind {
945 GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => return true,
946 GenericParamDefKind::Lifetime => {}
947 }
948 }
949 false
950 }
951
dc9dc135
XL
952 pub fn region_param(
953 &'tcx self,
954 param: &EarlyBoundRegion,
955 tcx: TyCtxt<'tcx>,
956 ) -> &'tcx GenericParamDef {
94b46f34
XL
957 if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
958 let param = &self.params[index as usize];
959 match param.kind {
532ac7d7 960 GenericParamDefKind::Lifetime => param,
94b46f34
XL
961 _ => bug!("expected lifetime parameter, but found another generic parameter")
962 }
ea8adc8c 963 } else {
a1dfa0c6 964 tcx.generics_of(self.parent.expect("parent_count > 0 but no parent?"))
0bf4aa26 965 .region_param(param, tcx)
ea8adc8c
XL
966 }
967 }
968
94b46f34 969 /// Returns the `GenericParamDef` associated with this `ParamTy`.
dc9dc135 970 pub fn type_param(&'tcx self, param: &ParamTy, tcx: TyCtxt<'tcx>) -> &'tcx GenericParamDef {
48663c56 971 if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
94b46f34
XL
972 let param = &self.params[index as usize];
973 match param.kind {
532ac7d7 974 GenericParamDefKind::Type { .. } => param,
94b46f34 975 _ => bug!("expected type parameter, but found another generic parameter")
ea8adc8c
XL
976 }
977 } else {
a1dfa0c6 978 tcx.generics_of(self.parent.expect("parent_count > 0 but no parent?"))
0bf4aa26 979 .type_param(param, tcx)
ea8adc8c 980 }
c30ab7b3 981 }
532ac7d7
XL
982
983 /// Returns the `ConstParameterDef` associated with this `ParamConst`.
dc9dc135 984 pub fn const_param(&'tcx self, param: &ParamConst, tcx: TyCtxt<'tcx>) -> &GenericParamDef {
532ac7d7
XL
985 if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
986 let param = &self.params[index as usize];
987 match param.kind {
988 GenericParamDefKind::Const => param,
989 _ => bug!("expected const parameter, but found another generic parameter")
990 }
991 } else {
992 tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
993 .const_param(param, tcx)
994 }
995 }
e9174d1e
SL
996}
997
998/// Bounds on generics.
e74abb32 999#[derive(Copy, Clone, Default, Debug, RustcEncodable, RustcDecodable, HashStable)]
e9174d1e 1000pub struct GenericPredicates<'tcx> {
9e0c209e 1001 pub parent: Option<DefId>,
e74abb32 1002 pub predicates: &'tcx [(Predicate<'tcx>, Span)],
e9174d1e
SL
1003}
1004
dc9dc135
XL
1005impl<'tcx> GenericPredicates<'tcx> {
1006 pub fn instantiate(
1007 &self,
1008 tcx: TyCtxt<'tcx>,
1009 substs: SubstsRef<'tcx>,
1010 ) -> InstantiatedPredicates<'tcx> {
9e0c209e
SL
1011 let mut instantiated = InstantiatedPredicates::empty();
1012 self.instantiate_into(tcx, &mut instantiated, substs);
1013 instantiated
1014 }
a1dfa0c6 1015
dc9dc135
XL
1016 pub fn instantiate_own(
1017 &self,
1018 tcx: TyCtxt<'tcx>,
1019 substs: SubstsRef<'tcx>,
1020 ) -> InstantiatedPredicates<'tcx> {
e9174d1e 1021 InstantiatedPredicates {
0bf4aa26 1022 predicates: self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)).collect(),
e9174d1e
SL
1023 }
1024 }
1025
dc9dc135
XL
1026 fn instantiate_into(
1027 &self,
1028 tcx: TyCtxt<'tcx>,
1029 instantiated: &mut InstantiatedPredicates<'tcx>,
1030 substs: SubstsRef<'tcx>,
1031 ) {
9e0c209e 1032 if let Some(def_id) = self.parent {
7cac9316 1033 tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
9e0c209e 1034 }
0bf4aa26
XL
1035 instantiated.predicates.extend(
1036 self.predicates.iter().map(|(p, _)| p.subst(tcx, substs)),
1037 );
9e0c209e
SL
1038 }
1039
dc9dc135 1040 pub fn instantiate_identity(&self, tcx: TyCtxt<'tcx>) -> InstantiatedPredicates<'tcx> {
7cac9316
XL
1041 let mut instantiated = InstantiatedPredicates::empty();
1042 self.instantiate_identity_into(tcx, &mut instantiated);
1043 instantiated
1044 }
1045
dc9dc135
XL
1046 fn instantiate_identity_into(
1047 &self,
1048 tcx: TyCtxt<'tcx>,
1049 instantiated: &mut InstantiatedPredicates<'tcx>,
1050 ) {
7cac9316
XL
1051 if let Some(def_id) = self.parent {
1052 tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
1053 }
0bf4aa26 1054 instantiated.predicates.extend(self.predicates.iter().map(|&(p, _)| p))
7cac9316
XL
1055 }
1056
dc9dc135
XL
1057 pub fn instantiate_supertrait(
1058 &self,
1059 tcx: TyCtxt<'tcx>,
1060 poly_trait_ref: &ty::PolyTraitRef<'tcx>,
1061 ) -> InstantiatedPredicates<'tcx> {
9e0c209e 1062 assert_eq!(self.parent, None);
e9174d1e 1063 InstantiatedPredicates {
0bf4aa26 1064 predicates: self.predicates.iter().map(|(pred, _)| {
a7813a04 1065 pred.subst_supertrait(tcx, poly_trait_ref)
9e0c209e 1066 }).collect()
e9174d1e
SL
1067 }
1068 }
1069}
1070
60c5eb7d
XL
1071#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1072#[derive(HashStable, TypeFoldable)]
e9174d1e 1073pub enum Predicate<'tcx> {
dc9dc135 1074 /// Corresponds to `where Foo: Bar<A, B, C>`. `Foo` here would be
e9174d1e 1075 /// the `Self` type of the trait reference and `A`, `B`, and `C`
9e0c209e 1076 /// would be the type parameters.
e9174d1e
SL
1077 Trait(PolyTraitPredicate<'tcx>),
1078
dc9dc135 1079 /// `where 'a: 'b`
9e0c209e 1080 RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
e9174d1e 1081
dc9dc135 1082 /// `where T: 'a`
e9174d1e
SL
1083 TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
1084
dc9dc135 1085 /// `where <T as TraitRef>::Name == X`, approximately.
a1dfa0c6 1086 /// See the `ProjectionPredicate` struct for details.
e9174d1e
SL
1087 Projection(PolyProjectionPredicate<'tcx>),
1088
dc9dc135 1089 /// No syntax: `T` well-formed.
e9174d1e
SL
1090 WellFormed(Ty<'tcx>),
1091
dc9dc135 1092 /// Trait must be object-safe.
e9174d1e 1093 ObjectSafe(DefId),
a7813a04 1094
a1dfa0c6
XL
1095 /// No direct syntax. May be thought of as `where T: FnFoo<...>`
1096 /// for some substitutions `...` and `T` being a closure type.
9e0c209e 1097 /// Satisfied (or refuted) once we know the closure's kind.
e74abb32 1098 ClosureKind(DefId, SubstsRef<'tcx>, ClosureKind),
cc61c64b
XL
1099
1100 /// `T1 <: T2`
1101 Subtype(PolySubtypePredicate<'tcx>),
ea8adc8c
XL
1102
1103 /// Constant initializer must evaluate successfully.
532ac7d7 1104 ConstEvaluatable(DefId, SubstsRef<'tcx>),
e9174d1e
SL
1105}
1106
83c7162d
XL
1107/// The crate outlives map is computed during typeck and contains the
1108/// outlives of every item in the local crate. You should not use it
1109/// directly, because to do so will make your pass dependent on the
1110/// HIR of every item in the local crate. Instead, use
1111/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
1112/// item.
532ac7d7 1113#[derive(HashStable)]
83c7162d
XL
1114pub struct CratePredicatesMap<'tcx> {
1115 /// For each struct with outlive bounds, maps to a vector of the
1116 /// predicate of its outlive bounds. If an item has no outlives
1117 /// bounds, it will have no entry.
e74abb32 1118 pub predicates: FxHashMap<DefId, &'tcx [(ty::Predicate<'tcx>, Span)]>,
83c7162d
XL
1119}
1120
abe05a73
XL
1121impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
1122 fn as_ref(&self) -> &Predicate<'tcx> {
1123 self
1124 }
1125}
1126
dc9dc135 1127impl<'tcx> Predicate<'tcx> {
e9174d1e
SL
1128 /// Performs a substitution suitable for going from a
1129 /// poly-trait-ref to supertraits that must hold if that
1130 /// poly-trait-ref holds. This is slightly different from a normal
9fa01778 1131 /// substitution in terms of what happens with bound regions. See
e9174d1e 1132 /// lengthy comment below for details.
dc9dc135
XL
1133 pub fn subst_supertrait(
1134 &self,
1135 tcx: TyCtxt<'tcx>,
1136 trait_ref: &ty::PolyTraitRef<'tcx>,
1137 ) -> ty::Predicate<'tcx> {
e9174d1e
SL
1138 // The interaction between HRTB and supertraits is not entirely
1139 // obvious. Let me walk you (and myself) through an example.
1140 //
1141 // Let's start with an easy case. Consider two traits:
1142 //
a1dfa0c6 1143 // trait Foo<'a>: Bar<'a,'a> { }
e9174d1e
SL
1144 // trait Bar<'b,'c> { }
1145 //
a1dfa0c6
XL
1146 // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then
1147 // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we
e9174d1e
SL
1148 // knew that `Foo<'x>` (for any 'x) then we also know that
1149 // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
1150 // normal substitution.
1151 //
1152 // In terms of why this is sound, the idea is that whenever there
1153 // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
1154 // holds. So if there is an impl of `T:Foo<'a>` that applies to
1155 // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
1156 // `'a`.
1157 //
1158 // Another example to be careful of is this:
1159 //
a1dfa0c6 1160 // trait Foo1<'a>: for<'b> Bar1<'a,'b> { }
e9174d1e
SL
1161 // trait Bar1<'b,'c> { }
1162 //
a1dfa0c6
XL
1163 // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know?
1164 // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The
e9174d1e 1165 // reason is similar to the previous example: any impl of
a1dfa0c6 1166 // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`. So
e9174d1e
SL
1167 // basically we would want to collapse the bound lifetimes from
1168 // the input (`trait_ref`) and the supertraits.
1169 //
1170 // To achieve this in practice is fairly straightforward. Let's
1171 // consider the more complicated scenario:
1172 //
a1dfa0c6
XL
1173 // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x`
1174 // has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`,
e9174d1e
SL
1175 // where both `'x` and `'b` would have a DB index of 1.
1176 // The substitution from the input trait-ref is therefore going to be
1177 // `'a => 'x` (where `'x` has a DB index of 1).
1178 // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
1179 // early-bound parameter and `'b' is a late-bound parameter with a
1180 // DB index of 1.
1181 // - If we replace `'a` with `'x` from the input, it too will have
1182 // a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
1183 // just as we wanted.
1184 //
1185 // There is only one catch. If we just apply the substitution `'a
1186 // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
1187 // adjust the DB index because we substituting into a binder (it
1188 // tries to be so smart...) resulting in `for<'x> for<'b>
1189 // Bar1<'x,'b>` (we have no syntax for this, so use your
1190 // imagination). Basically the 'x will have DB index of 2 and 'b
1191 // will have DB index of 1. Not quite what we want. So we apply
1192 // the substitution to the *contents* of the trait reference,
1193 // rather than the trait reference itself (put another way, the
1194 // substitution code expects equal binding levels in the values
1195 // from the substitution and the value being substituted into, and
1196 // this trick achieves that).
1197
83c7162d 1198 let substs = &trait_ref.skip_binder().substs;
e9174d1e 1199 match *self {
83c7162d
XL
1200 Predicate::Trait(ref binder) =>
1201 Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
1202 Predicate::Subtype(ref binder) =>
1203 Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
1204 Predicate::RegionOutlives(ref binder) =>
1205 Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
1206 Predicate::TypeOutlives(ref binder) =>
1207 Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
1208 Predicate::Projection(ref binder) =>
1209 Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
e9174d1e
SL
1210 Predicate::WellFormed(data) =>
1211 Predicate::WellFormed(data.subst(tcx, substs)),
1212 Predicate::ObjectSafe(trait_def_id) =>
1213 Predicate::ObjectSafe(trait_def_id),
ff7c6d11
XL
1214 Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
1215 Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
ea8adc8c
XL
1216 Predicate::ConstEvaluatable(def_id, const_substs) =>
1217 Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
e9174d1e
SL
1218 }
1219 }
1220}
1221
60c5eb7d
XL
1222#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1223#[derive(HashStable, TypeFoldable)]
e9174d1e
SL
1224pub struct TraitPredicate<'tcx> {
1225 pub trait_ref: TraitRef<'tcx>
1226}
a1dfa0c6 1227
e9174d1e
SL
1228pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;
1229
1230impl<'tcx> TraitPredicate<'tcx> {
1231 pub fn def_id(&self) -> DefId {
1232 self.trait_ref.def_id
1233 }
1234
dc9dc135 1235 pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item = Ty<'tcx>> + 'a {
9e0c209e 1236 self.trait_ref.input_types()
e9174d1e
SL
1237 }
1238
1239 pub fn self_ty(&self) -> Ty<'tcx> {
1240 self.trait_ref.self_ty()
1241 }
1242}
1243
1244impl<'tcx> PolyTraitPredicate<'tcx> {
1245 pub fn def_id(&self) -> DefId {
416331ca 1246 // Ok to skip binder since trait `DefId` does not care about regions.
83c7162d 1247 self.skip_binder().def_id()
e9174d1e
SL
1248 }
1249}
1250
60c5eb7d
XL
1251#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
1252#[derive(HashStable, TypeFoldable)]
dc9dc135
XL
1253pub struct OutlivesPredicate<A, B>(pub A, pub B); // `A: B`
1254pub type PolyOutlivesPredicate<A, B> = ty::Binder<OutlivesPredicate<A, B>>;
1255pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>;
1256pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
0531ce1d
XL
1257pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
1258pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
e9174d1e 1259
60c5eb7d
XL
1260#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1261#[derive(HashStable, TypeFoldable)]
cc61c64b
XL
1262pub struct SubtypePredicate<'tcx> {
1263 pub a_is_expected: bool,
1264 pub a: Ty<'tcx>,
1265 pub b: Ty<'tcx>
1266}
1267pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;
1268
e9174d1e
SL
1269/// This kind of predicate has no *direct* correspondent in the
1270/// syntax, but it roughly corresponds to the syntactic forms:
1271///
9fa01778 1272/// 1. `T: TraitRef<..., Item = Type>`
e9174d1e
SL
1273/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
1274///
1275/// In particular, form #1 is "desugared" to the combination of a
a1dfa0c6 1276/// normal trait predicate (`T: TraitRef<...>`) and one of these
e9174d1e 1277/// predicates. Form #2 is a broader form in that it also permits
ff7c6d11
XL
1278/// equality between arbitrary types. Processing an instance of
1279/// Form #2 eventually yields one of these `ProjectionPredicate`
e9174d1e 1280/// instances to normalize the LHS.
60c5eb7d
XL
1281#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1282#[derive(HashStable, TypeFoldable)]
e9174d1e
SL
1283pub struct ProjectionPredicate<'tcx> {
1284 pub projection_ty: ProjectionTy<'tcx>,
1285 pub ty: Ty<'tcx>,
1286}
1287
1288pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;
1289
1290impl<'tcx> PolyProjectionPredicate<'tcx> {
a1dfa0c6 1291 /// Returns the `DefId` of the associated item being projected.
83c7162d
XL
1292 pub fn item_def_id(&self) -> DefId {
1293 self.skip_binder().projection_ty.item_def_id
1294 }
1295
a1dfa0c6 1296 #[inline]
dc9dc135 1297 pub fn to_poly_trait_ref(&self, tcx: TyCtxt<'_>) -> PolyTraitRef<'tcx> {
a1dfa0c6
XL
1298 // Note: unlike with `TraitRef::to_poly_trait_ref()`,
1299 // `self.0.trait_ref` is permitted to have escaping regions.
041b39d2
XL
1300 // This is because here `self` has a `Binder` and so does our
1301 // return value, so we are preserving the number of binding
1302 // levels.
83c7162d 1303 self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
e9174d1e 1304 }
3b2f2976
XL
1305
1306 pub fn ty(&self) -> Binder<Ty<'tcx>> {
83c7162d
XL
1307 self.map_bound(|predicate| predicate.ty)
1308 }
1309
a1dfa0c6 1310 /// The `DefId` of the `TraitItem` for the associated type.
83c7162d 1311 ///
a1dfa0c6
XL
1312 /// Note that this is not the `DefId` of the `TraitRef` containing this
1313 /// associated type, which is in `tcx.associated_item(projection_def_id()).container`.
83c7162d 1314 pub fn projection_def_id(&self) -> DefId {
416331ca 1315 // Ok to skip binder since trait `DefId` does not care about regions.
83c7162d 1316 self.skip_binder().projection_ty.item_def_id
3b2f2976 1317 }
e9174d1e
SL
1318}
1319
1320pub trait ToPolyTraitRef<'tcx> {
1321 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
1322}
1323
1324impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1325 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
83c7162d 1326 ty::Binder::dummy(self.clone())
e9174d1e
SL
1327 }
1328}
1329
1330impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
1331 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
7453a54e 1332 self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
e9174d1e
SL
1333 }
1334}
1335
e9174d1e
SL
1336pub trait ToPredicate<'tcx> {
1337 fn to_predicate(&self) -> Predicate<'tcx>;
1338}
1339
1340impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
1341 fn to_predicate(&self) -> Predicate<'tcx> {
83c7162d 1342 ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
e9174d1e
SL
1343 trait_ref: self.clone()
1344 }))
1345 }
1346}
1347
1348impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
1349 fn to_predicate(&self) -> Predicate<'tcx> {
1350 ty::Predicate::Trait(self.to_poly_trait_predicate())
1351 }
1352}
1353
9e0c209e 1354impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
e9174d1e
SL
1355 fn to_predicate(&self) -> Predicate<'tcx> {
1356 Predicate::RegionOutlives(self.clone())
1357 }
1358}
1359
1360impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
1361 fn to_predicate(&self) -> Predicate<'tcx> {
1362 Predicate::TypeOutlives(self.clone())
1363 }
1364}
1365
1366impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
1367 fn to_predicate(&self) -> Predicate<'tcx> {
1368 Predicate::Projection(self.clone())
1369 }
1370}
1371
dc9dc135 1372// A custom iterator used by `Predicate::walk_tys`.
a1dfa0c6
XL
1373enum WalkTysIter<'tcx, I, J, K>
1374 where I: Iterator<Item = Ty<'tcx>>,
1375 J: Iterator<Item = Ty<'tcx>>,
1376 K: Iterator<Item = Ty<'tcx>>
1377{
1378 None,
1379 One(Ty<'tcx>),
1380 Two(Ty<'tcx>, Ty<'tcx>),
1381 Types(I),
1382 InputTypes(J),
1383 ProjectionTypes(K)
1384}
1385
1386impl<'tcx, I, J, K> Iterator for WalkTysIter<'tcx, I, J, K>
1387 where I: Iterator<Item = Ty<'tcx>>,
1388 J: Iterator<Item = Ty<'tcx>>,
1389 K: Iterator<Item = Ty<'tcx>>
1390{
1391 type Item = Ty<'tcx>;
1392
1393 fn next(&mut self) -> Option<Ty<'tcx>> {
1394 match *self {
1395 WalkTysIter::None => None,
1396 WalkTysIter::One(item) => {
1397 *self = WalkTysIter::None;
1398 Some(item)
1399 },
1400 WalkTysIter::Two(item1, item2) => {
1401 *self = WalkTysIter::One(item2);
1402 Some(item1)
1403 },
1404 WalkTysIter::Types(ref mut iter) => {
1405 iter.next()
1406 },
1407 WalkTysIter::InputTypes(ref mut iter) => {
1408 iter.next()
1409 },
1410 WalkTysIter::ProjectionTypes(ref mut iter) => {
1411 iter.next()
1412 }
1413 }
1414 }
1415}
1416
e9174d1e
SL
1417impl<'tcx> Predicate<'tcx> {
1418 /// Iterates over the types in this predicate. Note that in all
1419 /// cases this is skipping over a binder, so late-bound regions
1420 /// with depth 0 are bound by the predicate.
a1dfa0c6
XL
1421 pub fn walk_tys(&'a self) -> impl Iterator<Item = Ty<'tcx>> + 'a {
1422 match *self {
e9174d1e 1423 ty::Predicate::Trait(ref data) => {
a1dfa0c6 1424 WalkTysIter::InputTypes(data.skip_binder().input_types())
a7813a04 1425 }
83c7162d
XL
1426 ty::Predicate::Subtype(binder) => {
1427 let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
a1dfa0c6 1428 WalkTysIter::Two(a, b)
cc61c64b 1429 }
83c7162d 1430 ty::Predicate::TypeOutlives(binder) => {
a1dfa0c6 1431 WalkTysIter::One(binder.skip_binder().0)
e9174d1e
SL
1432 }
1433 ty::Predicate::RegionOutlives(..) => {
a1dfa0c6 1434 WalkTysIter::None
e9174d1e
SL
1435 }
1436 ty::Predicate::Projection(ref data) => {
83c7162d 1437 let inner = data.skip_binder();
a1dfa0c6
XL
1438 WalkTysIter::ProjectionTypes(
1439 inner.projection_ty.substs.types().chain(Some(inner.ty)))
e9174d1e
SL
1440 }
1441 ty::Predicate::WellFormed(data) => {
a1dfa0c6 1442 WalkTysIter::One(data)
e9174d1e
SL
1443 }
1444 ty::Predicate::ObjectSafe(_trait_def_id) => {
a1dfa0c6 1445 WalkTysIter::None
e9174d1e 1446 }
ff7c6d11 1447 ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
e74abb32 1448 WalkTysIter::Types(closure_substs.types())
a7813a04 1449 }
ea8adc8c 1450 ty::Predicate::ConstEvaluatable(_, substs) => {
a1dfa0c6 1451 WalkTysIter::Types(substs.types())
ea8adc8c 1452 }
a1dfa0c6 1453 }
e9174d1e
SL
1454 }
1455
1456 pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1457 match *self {
1458 Predicate::Trait(ref t) => {
1459 Some(t.to_poly_trait_ref())
1460 }
1461 Predicate::Projection(..) |
cc61c64b 1462 Predicate::Subtype(..) |
e9174d1e
SL
1463 Predicate::RegionOutlives(..) |
1464 Predicate::WellFormed(..) |
1465 Predicate::ObjectSafe(..) |
a7813a04 1466 Predicate::ClosureKind(..) |
ea8adc8c
XL
1467 Predicate::TypeOutlives(..) |
1468 Predicate::ConstEvaluatable(..) => {
e9174d1e
SL
1469 None
1470 }
1471 }
1472 }
abe05a73
XL
1473
1474 pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
1475 match *self {
1476 Predicate::TypeOutlives(data) => {
1477 Some(data)
1478 }
1479 Predicate::Trait(..) |
1480 Predicate::Projection(..) |
abe05a73
XL
1481 Predicate::Subtype(..) |
1482 Predicate::RegionOutlives(..) |
1483 Predicate::WellFormed(..) |
1484 Predicate::ObjectSafe(..) |
1485 Predicate::ClosureKind(..) |
1486 Predicate::ConstEvaluatable(..) => {
1487 None
1488 }
1489 }
1490 }
e9174d1e
SL
1491}
1492
1493/// Represents the bounds declared on a particular set of type
9fa01778
XL
1494/// parameters. Should eventually be generalized into a flag list of
1495/// where-clauses. You can obtain a `InstantiatedPredicates` list from a
e9174d1e
SL
1496/// `GenericPredicates` by using the `instantiate` method. Note that this method
1497/// reflects an important semantic invariant of `InstantiatedPredicates`: while
1498/// the `GenericPredicates` are expressed in terms of the bound type
1499/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
1500/// represented a set of bounds for some particular instantiation,
1501/// meaning that the generic parameters have been substituted with
1502/// their values.
1503///
1504/// Example:
1505///
dc9dc135 1506/// struct Foo<T, U: Bar<T>> { ... }
e9174d1e
SL
1507///
1508/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
9fa01778 1509/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
e9174d1e
SL
1510/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
1511/// [usize:Bar<isize>]]`.
60c5eb7d 1512#[derive(Clone, Debug, TypeFoldable)]
e9174d1e 1513pub struct InstantiatedPredicates<'tcx> {
9e0c209e 1514 pub predicates: Vec<Predicate<'tcx>>,
e9174d1e
SL
1515}
1516
1517impl<'tcx> InstantiatedPredicates<'tcx> {
1518 pub fn empty() -> InstantiatedPredicates<'tcx> {
9e0c209e 1519 InstantiatedPredicates { predicates: vec![] }
e9174d1e
SL
1520 }
1521
1522 pub fn is_empty(&self) -> bool {
1523 self.predicates.is_empty()
1524 }
1525}
1526
e74abb32 1527rustc_index::newtype_index! {
532ac7d7
XL
1528 /// "Universes" are used during type- and trait-checking in the
1529 /// presence of `for<..>` binders to control what sets of names are
1530 /// visible. Universes are arranged into a tree: the root universe
1531 /// contains names that are always visible. Each child then adds a new
1532 /// set of names that are visible, in addition to those of its parent.
1533 /// We say that the child universe "extends" the parent universe with
1534 /// new names.
1535 ///
1536 /// To make this more concrete, consider this program:
1537 ///
1538 /// ```
1539 /// struct Foo { }
1540 /// fn bar<T>(x: T) {
1541 /// let y: for<'a> fn(&'a u8, Foo) = ...;
1542 /// }
1543 /// ```
1544 ///
1545 /// The struct name `Foo` is in the root universe U0. But the type
1546 /// parameter `T`, introduced on `bar`, is in an extended universe U1
1547 /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
1548 /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
1549 /// region `'a` is in a universe U2 that extends U1, because we can
1550 /// name it inside the fn type but not outside.
1551 ///
1552 /// Universes are used to do type- and trait-checking around these
1553 /// "forall" binders (also called **universal quantification**). The
1554 /// idea is that when, in the body of `bar`, we refer to `T` as a
1555 /// type, we aren't referring to any type in particular, but rather a
1556 /// kind of "fresh" type that is distinct from all other types we have
1557 /// actually declared. This is called a **placeholder** type, and we
1558 /// use universes to talk about this. In other words, a type name in
1559 /// universe 0 always corresponds to some "ground" type that the user
1560 /// declared, but a type name in a non-zero universe is a placeholder
1561 /// type -- an idealized representative of "types in general" that we
1562 /// use for checking generic functions.
0bf4aa26 1563 pub struct UniverseIndex {
60c5eb7d 1564 derive [HashStable]
0bf4aa26
XL
1565 DEBUG_FORMAT = "U{}",
1566 }
1567}
0531ce1d 1568
0bf4aa26
XL
1569impl UniverseIndex {
1570 pub const ROOT: UniverseIndex = UniverseIndex::from_u32_const(0);
8faf50e0 1571
0bf4aa26
XL
1572 /// Returns the "next" universe index in order -- this new index
1573 /// is considered to extend all previous universes. This
9fa01778 1574 /// corresponds to entering a `forall` quantifier. So, for
0bf4aa26 1575 /// example, suppose we have this type in universe `U`:
0531ce1d
XL
1576 ///
1577 /// ```
1578 /// for<'a> fn(&'a u32)
1579 /// ```
1580 ///
1581 /// Once we "enter" into this `for<'a>` quantifier, we are in a
0bf4aa26
XL
1582 /// new universe that extends `U` -- in this new universe, we can
1583 /// name the region `'a`, but that region was not nameable from
1584 /// `U` because it was not in scope there.
1585 pub fn next_universe(self) -> UniverseIndex {
1586 UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
8faf50e0
XL
1587 }
1588
a1dfa0c6 1589 /// Returns `true` if `self` can name a name from `other` -- in other words,
0bf4aa26 1590 /// if the set of names in `self` is a superset of those in
a1dfa0c6 1591 /// `other` (`self >= other`).
0bf4aa26
XL
1592 pub fn can_name(self, other: UniverseIndex) -> bool {
1593 self.private >= other.private
83c7162d 1594 }
a1dfa0c6
XL
1595
1596 /// Returns `true` if `self` cannot name some names from `other` -- in other
1597 /// words, if the set of names in `self` is a strict subset of
1598 /// those in `other` (`self < other`).
1599 pub fn cannot_name(self, other: UniverseIndex) -> bool {
1600 self.private < other.private
1601 }
83c7162d
XL
1602}
1603
0bf4aa26
XL
1604/// The "placeholder index" fully defines a placeholder region.
1605/// Placeholder regions are identified by both a **universe** as well
1606/// as a "bound-region" within that universe. The `bound_region` is
1607/// basically a name -- distinct bound regions within the same
1608/// universe are just two regions with an unknown relationship to one
1609/// another.
1610#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, PartialOrd, Ord)]
a1dfa0c6 1611pub struct Placeholder<T> {
0bf4aa26 1612 pub universe: UniverseIndex,
a1dfa0c6 1613 pub name: T,
0531ce1d
XL
1614}
1615
dc9dc135
XL
1616impl<'a, T> HashStable<StableHashingContext<'a>> for Placeholder<T>
1617where
1618 T: HashStable<StableHashingContext<'a>>,
a1dfa0c6 1619{
e74abb32 1620 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
a1dfa0c6
XL
1621 self.universe.hash_stable(hcx, hasher);
1622 self.name.hash_stable(hcx, hasher);
1623 }
1624}
1625
1626pub type PlaceholderRegion = Placeholder<BoundRegion>;
1627
1628pub type PlaceholderType = Placeholder<BoundVar>;
1629
48663c56
XL
1630pub type PlaceholderConst = Placeholder<BoundVar>;
1631
7cac9316
XL
1632/// When type checking, we use the `ParamEnv` to track
1633/// details about the set of where-clauses that are in scope at this
1634/// particular point.
60c5eb7d 1635#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, TypeFoldable)]
7cac9316 1636pub struct ParamEnv<'tcx> {
416331ca 1637 /// `Obligation`s that the caller must satisfy. This is basically
e9174d1e 1638 /// the set of bounds on the in-scope type parameters, translated
416331ca 1639 /// into `Obligation`s, and elaborated and normalized.
b7449926 1640 pub caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
7cac9316 1641
94b46f34 1642 /// Typically, this is `Reveal::UserFacing`, but during codegen we
7cac9316
XL
1643 /// want `Reveal::All` -- note that this is always paired with an
1644 /// empty environment. To get that, use `ParamEnv::reveal()`.
1645 pub reveal: traits::Reveal,
0731742a
XL
1646
1647 /// If this `ParamEnv` comes from a call to `tcx.param_env(def_id)`,
1648 /// register that `def_id` (useful for transitioning to the chalk trait
1649 /// solver).
1650 pub def_id: Option<DefId>,
7cac9316
XL
1651}
1652
1653impl<'tcx> ParamEnv<'tcx> {
0531ce1d 1654 /// Construct a trait environment suitable for contexts where
9fa01778 1655 /// there are no where-clauses in scope. Hidden types (like `impl
0531ce1d
XL
1656 /// Trait`) are left hidden, so this is suitable for ordinary
1657 /// type-checking.
a1dfa0c6 1658 #[inline]
0531ce1d 1659 pub fn empty() -> Self {
0731742a 1660 Self::new(List::empty(), Reveal::UserFacing, None)
0531ce1d
XL
1661 }
1662
9fa01778 1663 /// Construct a trait environment with no where-clauses in scope
0531ce1d
XL
1664 /// where the values of all `impl Trait` and other hidden types
1665 /// are revealed. This is suitable for monomorphized, post-typeck
94b46f34 1666 /// environments like codegen or doing optimizations.
0531ce1d 1667 ///
9fa01778 1668 /// N.B., if you want to have predicates in scope, use `ParamEnv::new`,
0531ce1d 1669 /// or invoke `param_env.with_reveal_all()`.
a1dfa0c6 1670 #[inline]
0531ce1d 1671 pub fn reveal_all() -> Self {
0731742a 1672 Self::new(List::empty(), Reveal::All, None)
0531ce1d
XL
1673 }
1674
1675 /// Construct a trait environment with the given set of predicates.
a1dfa0c6 1676 #[inline]
0731742a
XL
1677 pub fn new(
1678 caller_bounds: &'tcx List<ty::Predicate<'tcx>>,
1679 reveal: Reveal,
1680 def_id: Option<DefId>
1681 ) -> Self {
1682 ty::ParamEnv { caller_bounds, reveal, def_id }
0531ce1d
XL
1683 }
1684
1685 /// Returns a new parameter environment with the same clauses, but
1686 /// which "reveals" the true results of projections in all cases
9fa01778 1687 /// (even for associated types that are specializable). This is
94b46f34 1688 /// the desired behavior during codegen and certain other special
0531ce1d
XL
1689 /// contexts; normally though we want to use `Reveal::UserFacing`,
1690 /// which is the default.
1691 pub fn with_reveal_all(self) -> Self {
1692 ty::ParamEnv { reveal: Reveal::All, ..self }
1693 }
1694
1695 /// Returns this same environment but with no caller bounds.
1696 pub fn without_caller_bounds(self) -> Self {
b7449926 1697 ty::ParamEnv { caller_bounds: List::empty(), ..self }
0531ce1d
XL
1698 }
1699
7cac9316 1700 /// Creates a suitable environment in which to perform trait
0531ce1d
XL
1701 /// queries on the given value. When type-checking, this is simply
1702 /// the pair of the environment plus value. But when reveal is set to
1703 /// All, then if `value` does not reference any type parameters, we will
1704 /// pair it with the empty environment. This improves caching and is generally
1705 /// invisible.
e9174d1e 1706 ///
0731742a 1707 /// N.B., we preserve the environment when type-checking because it
0531ce1d 1708 /// is possible for the user to have wacky where-clauses like
7cac9316 1709 /// `where Box<u32>: Copy`, which are clearly never
0531ce1d
XL
1710 /// satisfiable. We generally want to behave as if they were true,
1711 /// although the surrounding function is never reachable.
7cac9316 1712 pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
0531ce1d
XL
1713 match self.reveal {
1714 Reveal::UserFacing => {
1715 ParamEnvAnd {
1716 param_env: self,
1717 value,
1718 }
e9174d1e 1719 }
0531ce1d
XL
1720
1721 Reveal::All => {
a1dfa0c6 1722 if value.has_placeholders()
83c7162d
XL
1723 || value.needs_infer()
1724 || value.has_param_types()
83c7162d 1725 {
0531ce1d
XL
1726 ParamEnvAnd {
1727 param_env: self,
1728 value,
1729 }
1730 } else {
1731 ParamEnvAnd {
1732 param_env: self.without_caller_bounds(),
1733 value,
1734 }
1735 }
e9174d1e
SL
1736 }
1737 }
1738 }
1739}
1740
60c5eb7d 1741#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)]
7cac9316
XL
1742pub struct ParamEnvAnd<'tcx, T> {
1743 pub param_env: ParamEnv<'tcx>,
1744 pub value: T,
1745}
1746
1747impl<'tcx, T> ParamEnvAnd<'tcx, T> {
1748 pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1749 (self.param_env, self.value)
1750 }
1751}
1752
dc9dc135
XL
1753impl<'a, 'tcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'tcx, T>
1754where
1755 T: HashStable<StableHashingContext<'a>>,
ea8adc8c 1756{
e74abb32 1757 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
ea8adc8c
XL
1758 let ParamEnvAnd {
1759 ref param_env,
1760 ref value
1761 } = *self;
1762
1763 param_env.hash_stable(hcx, hasher);
1764 value.hash_stable(hcx, hasher);
1765 }
1766}
1767
532ac7d7 1768#[derive(Copy, Clone, Debug, HashStable)]
8bb4bdeb 1769pub struct Destructor {
9fa01778 1770 /// The `DefId` of the destructor method
8bb4bdeb 1771 pub did: DefId,
8bb4bdeb
XL
1772}
1773
e9174d1e 1774bitflags! {
532ac7d7 1775 #[derive(HashStable)]
ea8adc8c
XL
1776 pub struct AdtFlags: u32 {
1777 const NO_ADT_FLAGS = 0;
532ac7d7 1778 /// Indicates whether the ADT is an enum.
ea8adc8c 1779 const IS_ENUM = 1 << 0;
532ac7d7 1780 /// Indicates whether the ADT is a union.
69743fb6 1781 const IS_UNION = 1 << 1;
532ac7d7 1782 /// Indicates whether the ADT is a struct.
69743fb6 1783 const IS_STRUCT = 1 << 2;
532ac7d7 1784 /// Indicates whether the ADT is a struct and has a constructor.
69743fb6 1785 const HAS_CTOR = 1 << 3;
532ac7d7 1786 /// Indicates whether the type is a `PhantomData`.
69743fb6 1787 const IS_PHANTOM_DATA = 1 << 4;
532ac7d7 1788 /// Indicates whether the type has a `#[fundamental]` attribute.
69743fb6 1789 const IS_FUNDAMENTAL = 1 << 5;
532ac7d7 1790 /// Indicates whether the type is a `Box`.
69743fb6 1791 const IS_BOX = 1 << 6;
0bf4aa26 1792 /// Indicates whether the type is an `Arc`.
69743fb6 1793 const IS_ARC = 1 << 7;
0bf4aa26 1794 /// Indicates whether the type is an `Rc`.
69743fb6 1795 const IS_RC = 1 << 8;
b7449926
XL
1796 /// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
1797 /// (i.e., this flag is never set unless this ADT is an enum).
69743fb6 1798 const IS_VARIANT_LIST_NON_EXHAUSTIVE = 1 << 9;
b7449926
XL
1799 }
1800}
1801
1802bitflags! {
532ac7d7 1803 #[derive(HashStable)]
b7449926
XL
1804 pub struct VariantFlags: u32 {
1805 const NO_VARIANT_FLAGS = 0;
1806 /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
1807 const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
e9174d1e
SL
1808 }
1809}
1810
532ac7d7 1811/// Definition of a variant -- a struct's fields or a enum variant.
60c5eb7d 1812#[derive(Debug, HashStable)]
476ff2be 1813pub struct VariantDef {
532ac7d7
XL
1814 /// `DefId` that identifies the variant itself.
1815 /// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
1816 pub def_id: DefId,
1817 /// `DefId` that identifies the variant's constructor.
1818 /// If this variant is a struct variant, then this is `None`.
1819 pub ctor_def_id: Option<DefId>,
1820 /// Variant or struct name.
60c5eb7d 1821 #[stable_hasher(project(name))]
532ac7d7
XL
1822 pub ident: Ident,
1823 /// Discriminant of this variant.
8bb4bdeb 1824 pub discr: VariantDiscr,
532ac7d7 1825 /// Fields of this variant.
476ff2be 1826 pub fields: Vec<FieldDef>,
532ac7d7 1827 /// Type of constructor of variant.
c30ab7b3 1828 pub ctor_kind: CtorKind,
532ac7d7 1829 /// Flags of the variant (e.g. is field list non-exhaustive)?
b7449926 1830 flags: VariantFlags,
416331ca
XL
1831 /// Variant is obtained as part of recovering from a syntactic error.
1832 /// May be incomplete or bogus.
532ac7d7 1833 pub recovered: bool,
e9174d1e
SL
1834}
1835
dc9dc135 1836impl<'tcx> VariantDef {
9fa01778 1837 /// Creates a new `VariantDef`.
b7449926 1838 ///
532ac7d7
XL
1839 /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
1840 /// represents an enum variant).
1841 ///
1842 /// `ctor_did` is the `DefId` that identifies the constructor of unit or
1843 /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
0bf4aa26 1844 ///
532ac7d7
XL
1845 /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
1846 /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
1847 /// to go through the redirect of checking the ctor's attributes - but compiling a small crate
1848 /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
0bf4aa26
XL
1849 /// built-in trait), and we do not want to load attributes twice.
1850 ///
1851 /// If someone speeds up attribute loading to not be a performance concern, they can
9fa01778 1852 /// remove this hack and use the constructor `DefId` everywhere.
532ac7d7 1853 pub fn new(
dc9dc135 1854 tcx: TyCtxt<'tcx>,
532ac7d7
XL
1855 ident: Ident,
1856 variant_did: Option<DefId>,
1857 ctor_def_id: Option<DefId>,
1858 discr: VariantDiscr,
1859 fields: Vec<FieldDef>,
1860 ctor_kind: CtorKind,
1861 adt_kind: AdtKind,
1862 parent_did: DefId,
1863 recovered: bool,
1864 ) -> Self {
1865 debug!(
1866 "VariantDef::new(ident = {:?}, variant_did = {:?}, ctor_def_id = {:?}, discr = {:?},
1867 fields = {:?}, ctor_kind = {:?}, adt_kind = {:?}, parent_did = {:?})",
1868 ident, variant_did, ctor_def_id, discr, fields, ctor_kind, adt_kind, parent_did,
1869 );
1870
b7449926 1871 let mut flags = VariantFlags::NO_VARIANT_FLAGS;
48663c56 1872 if adt_kind == AdtKind::Struct && tcx.has_attr(parent_did, sym::non_exhaustive) {
532ac7d7 1873 debug!("found non-exhaustive field list for {:?}", parent_did);
b7449926 1874 flags = flags | VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
532ac7d7 1875 } else if let Some(variant_did) = variant_did {
48663c56 1876 if tcx.has_attr(variant_did, sym::non_exhaustive) {
532ac7d7
XL
1877 debug!("found non-exhaustive field list for {:?}", variant_did);
1878 flags = flags | VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
1879 }
b7449926 1880 }
532ac7d7 1881
b7449926 1882 VariantDef {
532ac7d7
XL
1883 def_id: variant_did.unwrap_or(parent_did),
1884 ctor_def_id,
0731742a 1885 ident,
b7449926
XL
1886 discr,
1887 fields,
1888 ctor_kind,
532ac7d7
XL
1889 flags,
1890 recovered,
b7449926
XL
1891 }
1892 }
1893
532ac7d7 1894 /// Is this field list non-exhaustive?
b7449926
XL
1895 #[inline]
1896 pub fn is_field_list_non_exhaustive(&self) -> bool {
1897 self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
1898 }
1899}
1900
532ac7d7 1901#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
8bb4bdeb 1902pub enum VariantDiscr {
0731742a 1903 /// Explicit value for this variant, i.e., `X = 123`.
8bb4bdeb
XL
1904 /// The `DefId` corresponds to the embedded constant.
1905 Explicit(DefId),
1906
1907 /// The previous variant's discriminant plus one.
1908 /// For efficiency reasons, the distance from the
1909 /// last `Explicit` discriminant is being stored,
1910 /// or `0` for the first variant, if it has none.
a1dfa0c6 1911 Relative(u32),
8bb4bdeb
XL
1912}
1913
532ac7d7 1914#[derive(Debug, HashStable)]
476ff2be 1915pub struct FieldDef {
e9174d1e 1916 pub did: DefId,
532ac7d7 1917 #[stable_hasher(project(name))]
94b46f34 1918 pub ident: Ident,
54a0048b 1919 pub vis: Visibility,
e9174d1e
SL
1920}
1921
e1599b0c 1922/// The definition of a user-defined type, e.g., a `struct`, `enum`, or `union`.
e9174d1e 1923///
532ac7d7 1924/// These are all interned (by `intern_adt_def`) into the `adt_defs` table.
e1599b0c 1925///
60c5eb7d 1926/// The initialism *ADT* stands for an [*algebraic data type (ADT)*][adt].
e1599b0c
XL
1927/// This is slightly wrong because `union`s are not ADTs.
1928/// Moreover, Rust only allows recursive data types through indirection.
1929///
1930/// [adt]: https://en.wikipedia.org/wiki/Algebraic_data_type
476ff2be 1931pub struct AdtDef {
60c5eb7d 1932 /// The `DefId` of the struct, enum or union item.
e9174d1e 1933 pub did: DefId,
416331ca 1934 /// Variants of the ADT. If this is a struct or union, then there will be a single variant.
a1dfa0c6 1935 pub variants: IndexVec<self::layout::VariantIdx, VariantDef>,
60c5eb7d 1936 /// Flags of the ADT (e.g., is this a struct? is this non-exhaustive?).
8bb4bdeb 1937 flags: AdtFlags,
532ac7d7 1938 /// Repr options provided by the user.
8bb4bdeb 1939 pub repr: ReprOptions,
e9174d1e
SL
1940}
1941
94b46f34
XL
1942impl PartialOrd for AdtDef {
1943 fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
1944 Some(self.cmp(&other))
1945 }
1946}
1947
1948/// There should be only one AdtDef for each `did`, therefore
1949/// it is fine to implement `Ord` only based on `did`.
1950impl Ord for AdtDef {
1951 fn cmp(&self, other: &AdtDef) -> Ordering {
1952 self.did.cmp(&other.did)
1953 }
1954}
1955
476ff2be 1956impl PartialEq for AdtDef {
60c5eb7d 1957 // `AdtDef`s are always interned, and this is part of `TyS` equality.
e9174d1e 1958 #[inline]
8faf50e0 1959 fn eq(&self, other: &Self) -> bool { ptr::eq(self, other) }
e9174d1e
SL
1960}
1961
476ff2be 1962impl Eq for AdtDef {}
e9174d1e 1963
476ff2be 1964impl Hash for AdtDef {
e9174d1e
SL
1965 #[inline]
1966 fn hash<H: Hasher>(&self, s: &mut H) {
476ff2be 1967 (self as *const AdtDef).hash(s)
e9174d1e
SL
1968 }
1969}
1970
416331ca 1971impl<'tcx> rustc_serialize::UseSpecializedEncodable for &'tcx AdtDef {
9e0c209e 1972 fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
9cc50fc6
SL
1973 self.did.encode(s)
1974 }
1975}
1976
416331ca 1977impl<'tcx> rustc_serialize::UseSpecializedDecodable for &'tcx AdtDef {}
e9174d1e 1978
0531ce1d 1979impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
e74abb32 1980 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
2c00a5a8 1981 thread_local! {
0bf4aa26 1982 static CACHE: RefCell<FxHashMap<usize, Fingerprint>> = Default::default();
2c00a5a8
XL
1983 }
1984
1985 let hash: Fingerprint = CACHE.with(|cache| {
1986 let addr = self as *const AdtDef as usize;
1987 *cache.borrow_mut().entry(addr).or_insert_with(|| {
1988 let ty::AdtDef {
1989 did,
1990 ref variants,
1991 ref flags,
1992 ref repr,
1993 } = *self;
cc61c64b 1994
2c00a5a8
XL
1995 let mut hasher = StableHasher::new();
1996 did.hash_stable(hcx, &mut hasher);
1997 variants.hash_stable(hcx, &mut hasher);
1998 flags.hash_stable(hcx, &mut hasher);
1999 repr.hash_stable(hcx, &mut hasher);
2000
2001 hasher.finish()
2002 })
2003 });
2004
2005 hash.hash_stable(hcx, hasher);
cc61c64b
XL
2006 }
2007}
2008
0531ce1d 2009#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
9e0c209e 2010pub enum AdtKind { Struct, Union, Enum }
e9174d1e 2011
b7449926
XL
2012impl Into<DataTypeKind> for AdtKind {
2013 fn into(self) -> DataTypeKind {
2014 match self {
2015 AdtKind::Struct => DataTypeKind::Struct,
2016 AdtKind::Union => DataTypeKind::Union,
2017 AdtKind::Enum => DataTypeKind::Enum,
2018 }
2019 }
2020}
2021
cc61c64b 2022bitflags! {
60c5eb7d 2023 #[derive(RustcEncodable, RustcDecodable, Default, HashStable)]
ea8adc8c
XL
2024 pub struct ReprFlags: u8 {
2025 const IS_C = 1 << 0;
83c7162d
XL
2026 const IS_SIMD = 1 << 1;
2027 const IS_TRANSPARENT = 1 << 2;
cc61c64b 2028 // Internal only for now. If true, don't reorder fields.
83c7162d 2029 const IS_LINEAR = 1 << 3;
cc61c64b
XL
2030
2031 // Any of these flags being set prevent field reordering optimisation.
2032 const IS_UNOPTIMISABLE = ReprFlags::IS_C.bits |
cc61c64b 2033 ReprFlags::IS_SIMD.bits |
ea8adc8c 2034 ReprFlags::IS_LINEAR.bits;
cc61c64b
XL
2035 }
2036}
2037
8bb4bdeb 2038/// Represents the repr options provided by the user,
60c5eb7d
XL
2039#[derive(Copy, Clone, Debug, Eq, PartialEq, RustcEncodable, RustcDecodable,
2040 Default, HashStable)]
8bb4bdeb 2041pub struct ReprOptions {
8bb4bdeb 2042 pub int: Option<attr::IntType>,
e1599b0c
XL
2043 pub align: Option<Align>,
2044 pub pack: Option<Align>,
cc61c64b 2045 pub flags: ReprFlags,
8bb4bdeb
XL
2046}
2047
2048impl ReprOptions {
dc9dc135 2049 pub fn new(tcx: TyCtxt<'_>, did: DefId) -> ReprOptions {
cc61c64b
XL
2050 let mut flags = ReprFlags::empty();
2051 let mut size = None;
e1599b0c
XL
2052 let mut max_align: Option<Align> = None;
2053 let mut min_pack: Option<Align> = None;
8bb4bdeb 2054 for attr in tcx.get_attrs(did).iter() {
a1dfa0c6 2055 for r in attr::find_repr_attrs(&tcx.sess.parse_sess, attr) {
cc61c64b 2056 flags.insert(match r {
2c00a5a8 2057 attr::ReprC => ReprFlags::IS_C,
83c7162d 2058 attr::ReprPacked(pack) => {
e1599b0c
XL
2059 let pack = Align::from_bytes(pack as u64).unwrap();
2060 min_pack = Some(if let Some(min_pack) = min_pack {
2061 min_pack.min(pack)
83c7162d
XL
2062 } else {
2063 pack
e1599b0c 2064 });
83c7162d
XL
2065 ReprFlags::empty()
2066 },
2c00a5a8 2067 attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
cc61c64b
XL
2068 attr::ReprSimd => ReprFlags::IS_SIMD,
2069 attr::ReprInt(i) => {
2070 size = Some(i);
2071 ReprFlags::empty()
2072 },
2073 attr::ReprAlign(align) => {
e1599b0c 2074 max_align = max_align.max(Some(Align::from_bytes(align as u64).unwrap()));
cc61c64b
XL
2075 ReprFlags::empty()
2076 },
2077 });
8bb4bdeb
XL
2078 }
2079 }
2080
cc61c64b 2081 // This is here instead of layout because the choice must make it into metadata.
532ac7d7 2082 if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.def_path_str(did))) {
cc61c64b
XL
2083 flags.insert(ReprFlags::IS_LINEAR);
2084 }
83c7162d 2085 ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
8bb4bdeb
XL
2086 }
2087
cc61c64b
XL
2088 #[inline]
2089 pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
2090 #[inline]
2091 pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
2092 #[inline]
e1599b0c 2093 pub fn packed(&self) -> bool { self.pack.is_some() }
cc61c64b 2094 #[inline]
2c00a5a8
XL
2095 pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
2096 #[inline]
cc61c64b
XL
2097 pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }
2098
8bb4bdeb 2099 pub fn discr_type(&self) -> attr::IntType {
2c00a5a8 2100 self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
8bb4bdeb
XL
2101 }
2102
a1dfa0c6 2103 /// Returns `true` if this `#[repr()]` should inhabit "smart enum
8bb4bdeb
XL
2104 /// layout" optimizations, such as representing `Foo<&T>` as a
2105 /// single pointer.
2106 pub fn inhibit_enum_layout_opt(&self) -> bool {
cc61c64b 2107 self.c() || self.int.is_some()
8bb4bdeb 2108 }
83c7162d 2109
a1dfa0c6 2110 /// Returns `true` if this `#[repr()]` should inhibit struct field reordering
9fa01778 2111 /// optimizations, such as with `repr(C)`, `repr(packed(1))`, or `repr(<int>)`.
83c7162d 2112 pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
e1599b0c
XL
2113 if let Some(pack) = self.pack {
2114 if pack.bytes() == 1 {
2115 return true;
2116 }
2117 }
2118 self.flags.intersects(ReprFlags::IS_UNOPTIMISABLE) || self.int.is_some()
83c7162d 2119 }
a1dfa0c6 2120
9fa01778 2121 /// Returns `true` if this `#[repr()]` should inhibit union ABI optimisations.
a1dfa0c6
XL
2122 pub fn inhibit_union_abi_opt(&self) -> bool {
2123 self.c()
2124 }
8bb4bdeb
XL
2125}
2126
dc9dc135 2127impl<'tcx> AdtDef {
532ac7d7
XL
2128 /// Creates a new `AdtDef`.
2129 fn new(
dc9dc135 2130 tcx: TyCtxt<'_>,
532ac7d7
XL
2131 did: DefId,
2132 kind: AdtKind,
2133 variants: IndexVec<VariantIdx, VariantDef>,
dc9dc135 2134 repr: ReprOptions,
532ac7d7 2135 ) -> Self {
b7449926 2136 debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
e9174d1e 2137 let mut flags = AdtFlags::NO_ADT_FLAGS;
69743fb6 2138
48663c56 2139 if kind == AdtKind::Enum && tcx.has_attr(did, sym::non_exhaustive) {
69743fb6
XL
2140 debug!("found non-exhaustive variant list for {:?}", did);
2141 flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
2142 }
532ac7d7 2143
69743fb6
XL
2144 flags |= match kind {
2145 AdtKind::Enum => AdtFlags::IS_ENUM,
2146 AdtKind::Union => AdtFlags::IS_UNION,
2147 AdtKind::Struct => AdtFlags::IS_STRUCT,
2148 };
2149
532ac7d7
XL
2150 if kind == AdtKind::Struct && variants[VariantIdx::new(0)].ctor_def_id.is_some() {
2151 flags |= AdtFlags::HAS_CTOR;
69743fb6
XL
2152 }
2153
e9174d1e 2154 let attrs = tcx.get_attrs(did);
48663c56 2155 if attr::contains_name(&attrs, sym::fundamental) {
69743fb6 2156 flags |= AdtFlags::IS_FUNDAMENTAL;
e9174d1e 2157 }
ea8adc8c 2158 if Some(did) == tcx.lang_items().phantom_data() {
69743fb6 2159 flags |= AdtFlags::IS_PHANTOM_DATA;
e9174d1e 2160 }
ea8adc8c 2161 if Some(did) == tcx.lang_items().owned_box() {
69743fb6 2162 flags |= AdtFlags::IS_BOX;
32a655c1 2163 }
0bf4aa26 2164 if Some(did) == tcx.lang_items().arc() {
69743fb6 2165 flags |= AdtFlags::IS_ARC;
0bf4aa26
XL
2166 }
2167 if Some(did) == tcx.lang_items().rc() {
69743fb6 2168 flags |= AdtFlags::IS_RC;
e9174d1e 2169 }
69743fb6 2170
476ff2be 2171 AdtDef {
041b39d2
XL
2172 did,
2173 variants,
2174 flags,
2175 repr,
e9174d1e
SL
2176 }
2177 }
2178
532ac7d7 2179 /// Returns `true` if this is a struct.
9e0c209e
SL
2180 #[inline]
2181 pub fn is_struct(&self) -> bool {
69743fb6 2182 self.flags.contains(AdtFlags::IS_STRUCT)
9e0c209e
SL
2183 }
2184
532ac7d7 2185 /// Returns `true` if this is a union.
9e0c209e
SL
2186 #[inline]
2187 pub fn is_union(&self) -> bool {
69743fb6 2188 self.flags.contains(AdtFlags::IS_UNION)
9e0c209e
SL
2189 }
2190
532ac7d7 2191 /// Returns `true` if this is a enum.
9e0c209e
SL
2192 #[inline]
2193 pub fn is_enum(&self) -> bool {
69743fb6 2194 self.flags.contains(AdtFlags::IS_ENUM)
9e0c209e
SL
2195 }
2196
532ac7d7 2197 /// Returns `true` if the variant list of this ADT is `#[non_exhaustive]`.
abe05a73 2198 #[inline]
b7449926 2199 pub fn is_variant_list_non_exhaustive(&self) -> bool {
69743fb6 2200 self.flags.contains(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
abe05a73
XL
2201 }
2202
69743fb6 2203 /// Returns the kind of the ADT.
e9174d1e
SL
2204 #[inline]
2205 pub fn adt_kind(&self) -> AdtKind {
9e0c209e 2206 if self.is_enum() {
e9174d1e 2207 AdtKind::Enum
9e0c209e
SL
2208 } else if self.is_union() {
2209 AdtKind::Union
e9174d1e
SL
2210 } else {
2211 AdtKind::Struct
2212 }
2213 }
2214
532ac7d7 2215 /// Returns a description of this abstract data type.
9e0c209e
SL
2216 pub fn descr(&self) -> &'static str {
2217 match self.adt_kind() {
2218 AdtKind::Struct => "struct",
2219 AdtKind::Union => "union",
2220 AdtKind::Enum => "enum",
2221 }
2222 }
2223
532ac7d7 2224 /// Returns a description of a variant of this abstract data type.
a1dfa0c6 2225 #[inline]
9e0c209e
SL
2226 pub fn variant_descr(&self) -> &'static str {
2227 match self.adt_kind() {
2228 AdtKind::Struct => "struct",
2229 AdtKind::Union => "union",
2230 AdtKind::Enum => "variant",
2231 }
2232 }
2233
69743fb6
XL
2234 /// If this function returns `true`, it implies that `is_struct` must return `true`.
2235 #[inline]
2236 pub fn has_ctor(&self) -> bool {
2237 self.flags.contains(AdtFlags::HAS_CTOR)
2238 }
2239
9fa01778 2240 /// Returns `true` if this type is `#[fundamental]` for the purposes
e9174d1e
SL
2241 /// of coherence checking.
2242 #[inline]
2243 pub fn is_fundamental(&self) -> bool {
69743fb6 2244 self.flags.contains(AdtFlags::IS_FUNDAMENTAL)
e9174d1e
SL
2245 }
2246
9fa01778 2247 /// Returns `true` if this is `PhantomData<T>`.
e9174d1e
SL
2248 #[inline]
2249 pub fn is_phantom_data(&self) -> bool {
69743fb6 2250 self.flags.contains(AdtFlags::IS_PHANTOM_DATA)
e9174d1e
SL
2251 }
2252
0bf4aa26
XL
2253 /// Returns `true` if this is `Arc<T>`.
2254 pub fn is_arc(&self) -> bool {
69743fb6 2255 self.flags.contains(AdtFlags::IS_ARC)
0bf4aa26
XL
2256 }
2257
2258 /// Returns `true` if this is `Rc<T>`.
2259 pub fn is_rc(&self) -> bool {
69743fb6 2260 self.flags.contains(AdtFlags::IS_RC)
0bf4aa26
XL
2261 }
2262
a1dfa0c6 2263 /// Returns `true` if this is Box<T>.
32a655c1
SL
2264 #[inline]
2265 pub fn is_box(&self) -> bool {
69743fb6 2266 self.flags.contains(AdtFlags::IS_BOX)
32a655c1
SL
2267 }
2268
9fa01778 2269 /// Returns `true` if this type has a destructor.
dc9dc135 2270 pub fn has_dtor(&self, tcx: TyCtxt<'tcx>) -> bool {
8bb4bdeb 2271 self.destructor(tcx).is_some()
e9174d1e
SL
2272 }
2273
2c00a5a8
XL
2274 /// Asserts this is a struct or union and returns its unique variant.
2275 pub fn non_enum_variant(&self) -> &VariantDef {
2276 assert!(self.is_struct() || self.is_union());
a1dfa0c6 2277 &self.variants[VariantIdx::new(0)]
e9174d1e
SL
2278 }
2279
e9174d1e 2280 #[inline]
e74abb32 2281 pub fn predicates(&self, tcx: TyCtxt<'tcx>) -> GenericPredicates<'tcx> {
7cac9316 2282 tcx.predicates_of(self.did)
e9174d1e
SL
2283 }
2284
2285 /// Returns an iterator over all fields contained
2286 /// by this ADT.
2287 #[inline]
dc9dc135 2288 pub fn all_fields(&self) -> impl Iterator<Item=&FieldDef> + Clone {
476ff2be 2289 self.variants.iter().flat_map(|v| v.fields.iter())
e9174d1e
SL
2290 }
2291
e9174d1e
SL
2292 pub fn is_payloadfree(&self) -> bool {
2293 !self.variants.is_empty() &&
2294 self.variants.iter().all(|v| v.fields.is_empty())
2295 }
2296
532ac7d7 2297 /// Return a `VariantDef` given a variant id.
476ff2be 2298 pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
532ac7d7 2299 self.variants.iter().find(|v| v.def_id == vid)
e9174d1e
SL
2300 .expect("variant_with_id: unknown variant")
2301 }
2302
532ac7d7
XL
2303 /// Return a `VariantDef` given a constructor id.
2304 pub fn variant_with_ctor_id(&self, cid: DefId) -> &VariantDef {
2305 self.variants.iter().find(|v| v.ctor_def_id == Some(cid))
2306 .expect("variant_with_ctor_id: unknown variant")
2307 }
2308
2309 /// Return the index of `VariantDef` given a variant id.
a1dfa0c6 2310 pub fn variant_index_with_id(&self, vid: DefId) -> VariantIdx {
532ac7d7
XL
2311 self.variants.iter_enumerated().find(|(_, v)| v.def_id == vid)
2312 .expect("variant_index_with_id: unknown variant").0
2313 }
2314
2315 /// Return the index of `VariantDef` given a constructor id.
2316 pub fn variant_index_with_ctor_id(&self, cid: DefId) -> VariantIdx {
2317 self.variants.iter_enumerated().find(|(_, v)| v.ctor_def_id == Some(cid))
2318 .expect("variant_index_with_ctor_id: unknown variant").0
e9174d1e
SL
2319 }
2320
48663c56
XL
2321 pub fn variant_of_res(&self, res: Res) -> &VariantDef {
2322 match res {
2323 Res::Def(DefKind::Variant, vid) => self.variant_with_id(vid),
2324 Res::Def(DefKind::Ctor(..), cid) => self.variant_with_ctor_id(cid),
2325 Res::Def(DefKind::Struct, _) | Res::Def(DefKind::Union, _) |
dc9dc135 2326 Res::Def(DefKind::TyAlias, _) | Res::Def(DefKind::AssocTy, _) | Res::SelfTy(..) |
48663c56
XL
2327 Res::SelfCtor(..) => self.non_enum_variant(),
2328 _ => bug!("unexpected res {:?} in variant_of_res", res)
e9174d1e
SL
2329 }
2330 }
2331
cc61c64b 2332 #[inline]
dc9dc135 2333 pub fn eval_explicit_discr(&self, tcx: TyCtxt<'tcx>, expr_did: DefId) -> Option<Discr<'tcx>> {
416331ca 2334 let param_env = tcx.param_env(expr_did);
0531ce1d 2335 let repr_type = self.repr.discr_type();
e74abb32 2336 let substs = InternalSubsts::identity_for_item(tcx, expr_did);
0531ce1d
XL
2337 let instance = ty::Instance::new(expr_did, substs);
2338 let cid = GlobalId {
2339 instance,
2340 promoted: None
2341 };
2342 match tcx.const_eval(param_env.and(cid)) {
94b46f34
XL
2343 Ok(val) => {
2344 // FIXME: Find the right type and use it instead of `val.ty` here
e74abb32 2345 if let Some(b) = val.try_eval_bits(tcx, param_env, val.ty) {
94b46f34
XL
2346 trace!("discriminants: {} ({:?})", b, repr_type);
2347 Some(Discr {
2348 val: b,
2349 ty: val.ty,
2350 })
2351 } else {
2352 info!("invalid enum discriminant: {:#?}", val);
9fa01778 2353 crate::mir::interpret::struct_error(
94b46f34
XL
2354 tcx.at(tcx.def_span(expr_did)),
2355 "constant evaluation of enum discriminant resulted in non-integer",
2356 ).emit();
2357 None
2358 }
0531ce1d 2359 }
a1dfa0c6 2360 Err(ErrorHandled::Reported) => {
0531ce1d
XL
2361 if !expr_did.is_local() {
2362 span_bug!(tcx.def_span(expr_did),
2363 "variant discriminant evaluation succeeded \
0bf4aa26 2364 in its crate but failed locally");
0531ce1d
XL
2365 }
2366 None
2367 }
a1dfa0c6
XL
2368 Err(ErrorHandled::TooGeneric) => span_bug!(
2369 tcx.def_span(expr_did),
2370 "enum discriminant depends on generic arguments",
2371 ),
0531ce1d
XL
2372 }
2373 }
2374
2375 #[inline]
2376 pub fn discriminants(
dc9dc135
XL
2377 &'tcx self,
2378 tcx: TyCtxt<'tcx>,
2379 ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
8bb4bdeb 2380 let repr_type = self.repr.discr_type();
e74abb32 2381 let initial = repr_type.initial_discriminant(tcx);
0531ce1d 2382 let mut prev_discr = None::<Discr<'tcx>>;
a1dfa0c6 2383 self.variants.iter_enumerated().map(move |(i, v)| {
0531ce1d 2384 let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
8bb4bdeb 2385 if let VariantDiscr::Explicit(expr_did) = v.discr {
0531ce1d
XL
2386 if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
2387 discr = new_discr;
8bb4bdeb
XL
2388 }
2389 }
2390 prev_discr = Some(discr);
2391
a1dfa0c6 2392 (i, discr)
8bb4bdeb 2393 })
e9174d1e
SL
2394 }
2395
48663c56
XL
2396 #[inline]
2397 pub fn variant_range(&self) -> Range<VariantIdx> {
2398 (VariantIdx::new(0)..VariantIdx::new(self.variants.len()))
2399 }
2400
9fa01778 2401 /// Computes the discriminant value used by a specific variant.
cc61c64b
XL
2402 /// Unlike `discriminants`, this is (amortized) constant-time,
2403 /// only doing at most one query for evaluating an explicit
2404 /// discriminant (the last one before the requested variant),
2405 /// assuming there are no constant-evaluation errors there.
48663c56 2406 #[inline]
dc9dc135
XL
2407 pub fn discriminant_for_variant(
2408 &self,
2409 tcx: TyCtxt<'tcx>,
2410 variant_index: VariantIdx,
2411 ) -> Discr<'tcx> {
0531ce1d
XL
2412 let (val, offset) = self.discriminant_def_for_variant(variant_index);
2413 let explicit_value = val
2414 .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
e74abb32 2415 .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx));
0531ce1d
XL
2416 explicit_value.checked_add(tcx, offset as u128).0
2417 }
2418
9fa01778 2419 /// Yields a `DefId` for the discriminant and an offset to add to it
0531ce1d 2420 /// Alternatively, if there is no explicit discriminant, returns the
9fa01778 2421 /// inferred discriminant directly.
0531ce1d
XL
2422 pub fn discriminant_def_for_variant(
2423 &self,
a1dfa0c6
XL
2424 variant_index: VariantIdx,
2425 ) -> (Option<DefId>, u32) {
2426 let mut explicit_index = variant_index.as_u32();
0531ce1d 2427 let expr_did;
cc61c64b 2428 loop {
a1dfa0c6 2429 match self.variants[VariantIdx::from_u32(explicit_index)].discr {
0531ce1d
XL
2430 ty::VariantDiscr::Relative(0) => {
2431 expr_did = None;
2432 break;
2433 },
cc61c64b
XL
2434 ty::VariantDiscr::Relative(distance) => {
2435 explicit_index -= distance;
2436 }
0531ce1d
XL
2437 ty::VariantDiscr::Explicit(did) => {
2438 expr_did = Some(did);
2439 break;
cc61c64b
XL
2440 }
2441 }
2442 }
a1dfa0c6 2443 (expr_did, variant_index.as_u32() - explicit_index)
cc61c64b
XL
2444 }
2445
dc9dc135 2446 pub fn destructor(&self, tcx: TyCtxt<'tcx>) -> Option<Destructor> {
7cac9316 2447 tcx.adt_destructor(self.did)
e9174d1e
SL
2448 }
2449
cc61c64b 2450 /// Returns a list of types such that `Self: Sized` if and only
9fa01778 2451 /// if that type is `Sized`, or `TyErr` if this type is recursive.
a7813a04 2452 ///
9fa01778 2453 /// Oddly enough, checking that the sized-constraint is `Sized` is
a7813a04 2454 /// actually more expressive than checking all members:
9fa01778
XL
2455 /// the `Sized` trait is inductive, so an associated type that references
2456 /// `Self` would prevent its containing ADT from being `Sized`.
a7813a04
XL
2457 ///
2458 /// Due to normalization being eager, this applies even if
9fa01778 2459 /// the associated type is behind a pointer (e.g., issue #31299).
dc9dc135 2460 pub fn sized_constraint(&self, tcx: TyCtxt<'tcx>) -> &'tcx [Ty<'tcx>] {
9fa01778 2461 tcx.adt_sized_constraint(self.did).0
a7813a04
XL
2462 }
2463
dc9dc135 2464 fn sized_constraint_for_ty(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Vec<Ty<'tcx>> {
e74abb32 2465 let result = match ty.kind {
b7449926
XL
2466 Bool | Char | Int(..) | Uint(..) | Float(..) |
2467 RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) |
2468 Array(..) | Closure(..) | Generator(..) | Never => {
a7813a04
XL
2469 vec![]
2470 }
2471
b7449926
XL
2472 Str |
2473 Dynamic(..) |
2474 Slice(_) |
2475 Foreign(..) |
2476 Error |
2477 GeneratorWitness(..) => {
a7813a04
XL
2478 // these are never sized - return the target type
2479 vec![ty]
2480 }
2481
b7449926 2482 Tuple(ref tys) => {
9e0c209e
SL
2483 match tys.last() {
2484 None => vec![],
48663c56 2485 Some(ty) => self.sized_constraint_for_ty(tcx, ty.expect_ty()),
9e0c209e 2486 }
a7813a04
XL
2487 }
2488
b7449926 2489 Adt(adt, substs) => {
a7813a04 2490 // recursive case
cc61c64b 2491 let adt_tys = adt.sized_constraint(tcx);
a7813a04 2492 debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
cc61c64b
XL
2493 ty, adt_tys);
2494 adt_tys.iter()
0bf4aa26
XL
2495 .map(|ty| ty.subst(tcx, substs))
2496 .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
2497 .collect()
a7813a04
XL
2498 }
2499
b7449926 2500 Projection(..) | Opaque(..) => {
a7813a04
XL
2501 // must calculate explicitly.
2502 // FIXME: consider special-casing always-Sized projections
2503 vec![ty]
2504 }
2505
0bf4aa26
XL
2506 UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
2507
b7449926 2508 Param(..) => {
a7813a04
XL
2509 // perf hack: if there is a `T: Sized` bound, then
2510 // we know that `T` is Sized and do not need to check
2511 // it on the impl.
2512
ea8adc8c 2513 let sized_trait = match tcx.lang_items().sized_trait() {
a7813a04
XL
2514 Some(x) => x,
2515 _ => return vec![ty]
2516 };
83c7162d 2517 let sized_predicate = Binder::dummy(TraitRef {
a7813a04 2518 def_id: sized_trait,
c30ab7b3 2519 substs: tcx.mk_substs_trait(ty, &[])
a7813a04 2520 }).to_predicate();
e74abb32 2521 let predicates = tcx.predicates_of(self.did).predicates;
a1dfa0c6 2522 if predicates.iter().any(|(p, _)| *p == sized_predicate) {
a7813a04
XL
2523 vec![]
2524 } else {
2525 vec![ty]
2526 }
2527 }
2528
a1dfa0c6
XL
2529 Placeholder(..) |
2530 Bound(..) |
b7449926 2531 Infer(..) => {
a7813a04
XL
2532 bug!("unexpected type `{:?}` in sized_constraint_for_ty",
2533 ty)
2534 }
2535 };
2536 debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
2537 result
2538 }
2539}
2540
dc9dc135 2541impl<'tcx> FieldDef {
416331ca
XL
2542 /// Returns the type of this field. The `subst` is typically obtained
2543 /// via the second field of `TyKind::AdtDef`.
dc9dc135 2544 pub fn ty(&self, tcx: TyCtxt<'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx> {
7cac9316 2545 tcx.type_of(self.did).subst(tcx, subst)
e9174d1e 2546 }
e9174d1e
SL
2547}
2548
9fa01778 2549/// Represents the various closure traits in the language. This
ff7c6d11 2550/// will determine the type of the environment (`self`, in the
a1dfa0c6 2551/// desugaring) argument that the closure expects.
ff7c6d11
XL
2552///
2553/// You can get the environment type of a closure using
2554/// `tcx.closure_env_ty()`.
532ac7d7
XL
2555#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug,
2556 RustcEncodable, RustcDecodable, HashStable)]
e9174d1e
SL
2557pub enum ClosureKind {
2558 // Warning: Ordering is significant here! The ordering is chosen
2559 // because the trait Fn is a subtrait of FnMut and so in turn, and
2560 // hence we order it so that Fn < FnMut < FnOnce.
54a0048b
SL
2561 Fn,
2562 FnMut,
2563 FnOnce,
e9174d1e
SL
2564}
2565
dc9dc135 2566impl<'tcx> ClosureKind {
ff7c6d11
XL
2567 // This is the initial value used when doing upvar inference.
2568 pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;
2569
dc9dc135 2570 pub fn trait_did(&self, tcx: TyCtxt<'tcx>) -> DefId {
476ff2be 2571 match *self {
e1599b0c 2572 ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem, None),
54a0048b 2573 ClosureKind::FnMut => {
e1599b0c 2574 tcx.require_lang_item(FnMutTraitLangItem, None)
e9174d1e 2575 }
54a0048b 2576 ClosureKind::FnOnce => {
e1599b0c 2577 tcx.require_lang_item(FnOnceTraitLangItem, None)
e9174d1e 2578 }
e9174d1e
SL
2579 }
2580 }
2581
a1dfa0c6 2582 /// Returns `true` if this a type that impls this closure kind
e9174d1e
SL
2583 /// must also implement `other`.
2584 pub fn extends(self, other: ty::ClosureKind) -> bool {
2585 match (self, other) {
54a0048b
SL
2586 (ClosureKind::Fn, ClosureKind::Fn) => true,
2587 (ClosureKind::Fn, ClosureKind::FnMut) => true,
2588 (ClosureKind::Fn, ClosureKind::FnOnce) => true,
2589 (ClosureKind::FnMut, ClosureKind::FnMut) => true,
2590 (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
2591 (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
e9174d1e
SL
2592 _ => false,
2593 }
2594 }
ff7c6d11
XL
2595
2596 /// Returns the representative scalar type for this closure kind.
2597 /// See `TyS::to_opt_closure_kind` for more details.
dc9dc135 2598 pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
ff7c6d11
XL
2599 match self {
2600 ty::ClosureKind::Fn => tcx.types.i8,
2601 ty::ClosureKind::FnMut => tcx.types.i16,
2602 ty::ClosureKind::FnOnce => tcx.types.i32,
2603 }
2604 }
e9174d1e
SL
2605}
2606
2607impl<'tcx> TyS<'tcx> {
2608 /// Iterator that walks `self` and any types reachable from
2609 /// `self`, in depth-first order. Note that just walks the types
2610 /// that appear in `self`, it does not descend into the fields of
2611 /// structs or variants. For example:
2612 ///
2613 /// ```notrust
2614 /// isize => { isize }
2615 /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
2616 /// [isize] => { [isize], isize }
2617 /// ```
2618 pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
2619 TypeWalker::new(self)
2620 }
2621
9fa01778 2622 /// Iterator that walks the immediate children of `self`. Hence
e9174d1e
SL
2623 /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
2624 /// (but not `i32`, like `walk`).
b7449926 2625 pub fn walk_shallow(&'tcx self) -> smallvec::IntoIter<walk::TypeWalkerArray<'tcx>> {
e9174d1e
SL
2626 walk::walk_shallow(self)
2627 }
2628
2629 /// Walks `ty` and any types appearing within `ty`, invoking the
9fa01778 2630 /// callback `f` on each type. If the callback returns `false`, then the
e9174d1e
SL
2631 /// children of the current type are ignored.
2632 ///
2633 /// Note: prefer `ty.walk()` where possible.
2634 pub fn maybe_walk<F>(&'tcx self, mut f: F)
a1dfa0c6 2635 where F: FnMut(Ty<'tcx>) -> bool
e9174d1e
SL
2636 {
2637 let mut walker = self.walk();
2638 while let Some(ty) = walker.next() {
2639 if !f(ty) {
2640 walker.skip_current_subtree();
2641 }
2642 }
2643 }
2644}
2645
e9174d1e
SL
2646impl BorrowKind {
2647 pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2648 match m {
60c5eb7d
XL
2649 hir::Mutability::Mutable => MutBorrow,
2650 hir::Mutability::Immutable => ImmBorrow,
e9174d1e
SL
2651 }
2652 }
2653
2654 /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
2655 /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
2656 /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
2657 /// question.
2658 pub fn to_mutbl_lossy(self) -> hir::Mutability {
2659 match self {
60c5eb7d
XL
2660 MutBorrow => hir::Mutability::Mutable,
2661 ImmBorrow => hir::Mutability::Immutable,
e9174d1e
SL
2662
2663 // We have no type corresponding to a unique imm borrow, so
2664 // use `&mut`. It gives all the capabilities of an `&uniq`
2665 // and hence is a safe "over approximation".
60c5eb7d 2666 UniqueImmBorrow => hir::Mutability::Mutable,
e9174d1e
SL
2667 }
2668 }
2669
2670 pub fn to_user_str(&self) -> &'static str {
2671 match *self {
2672 MutBorrow => "mutable",
2673 ImmBorrow => "immutable",
2674 UniqueImmBorrow => "uniquely immutable",
2675 }
2676 }
2677}
2678
cc61c64b 2679#[derive(Debug, Clone)]
dc9dc135 2680pub enum Attributes<'tcx> {
0531ce1d 2681 Owned(Lrc<[ast::Attribute]>),
dc9dc135 2682 Borrowed(&'tcx [ast::Attribute]),
cc61c64b
XL
2683}
2684
dc9dc135 2685impl<'tcx> ::std::ops::Deref for Attributes<'tcx> {
cc61c64b
XL
2686 type Target = [ast::Attribute];
2687
2688 fn deref(&self) -> &[ast::Attribute] {
2689 match self {
2690 &Attributes::Owned(ref data) => &data,
2691 &Attributes::Borrowed(data) => data
2692 }
2693 }
2694}
2695
0731742a
XL
2696#[derive(Debug, PartialEq, Eq)]
2697pub enum ImplOverlapKind {
2698 /// These impls are always allowed to overlap.
2699 Permitted,
2700 /// These impls are allowed to overlap, but that raises
2701 /// an issue #33140 future-compatibility warning.
2702 ///
2703 /// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's
2704 /// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different.
2705 ///
2706 /// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied
2707 /// that difference, making what reduces to the following set of impls:
2708 ///
2709 /// ```
2710 /// trait Trait {}
2711 /// impl Trait for dyn Send + Sync {}
2712 /// impl Trait for dyn Sync + Send {}
2713 /// ```
2714 ///
2715 /// Obviously, once we made these types be identical, that code causes a coherence
2716 /// error and a fairly big headache for us. However, luckily for us, the trait
2717 /// `Trait` used in this case is basically a marker trait, and therefore having
2718 /// overlapping impls for it is sound.
2719 ///
2720 /// To handle this, we basically regard the trait as a marker trait, with an additional
2721 /// future-compatibility warning. To avoid accidentally "stabilizing" this feature,
2722 /// it has the following restrictions:
2723 ///
2724 /// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be
2725 /// positive impls.
2726 /// 2. The trait-ref of both impls must be equal.
2727 /// 3. The trait-ref of both impls must be a trait object type consisting only of
2728 /// marker traits.
2729 /// 4. Neither of the impls can have any where-clauses.
2730 ///
2731 /// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed.
2732 Issue33140
2733}
2734
dc9dc135
XL
2735impl<'tcx> TyCtxt<'tcx> {
2736 pub fn body_tables(self, body: hir::BodyId) -> &'tcx TypeckTables<'tcx> {
0731742a 2737 self.typeck_tables_of(self.hir().body_owner_def_id(body))
32a655c1
SL
2738 }
2739
9fa01778 2740 /// Returns an iterator of the `DefId`s for all body-owners in this
7cac9316 2741 /// crate. If you would prefer to iterate over the bodies
0731742a 2742 /// themselves, you can do `self.hir().krate().body_ids.iter()`.
dc9dc135 2743 pub fn body_owners(self) -> impl Iterator<Item = DefId> + Captures<'tcx> + 'tcx {
0731742a
XL
2744 self.hir().krate()
2745 .body_ids
2746 .iter()
2747 .map(move |&body_id| self.hir().body_owner_def_id(body_id))
7453a54e
SL
2748 }
2749
94b46f34 2750 pub fn par_body_owners<F: Fn(DefId) + sync::Sync + sync::Send>(self, f: F) {
0731742a
XL
2751 par_iter(&self.hir().krate().body_ids).for_each(|&body_id| {
2752 f(self.hir().body_owner_def_id(body_id))
94b46f34
XL
2753 });
2754 }
2755
dc9dc135 2756 pub fn provided_trait_methods(self, id: DefId) -> Vec<AssocItem> {
476ff2be 2757 self.associated_items(id)
dc9dc135 2758 .filter(|item| item.kind == AssocKind::Method && item.defaultness.has_value())
476ff2be 2759 .collect()
e9174d1e
SL
2760 }
2761
8bb4bdeb
XL
2762 pub fn trait_relevant_for_never(self, did: DefId) -> bool {
2763 self.associated_items(did).any(|item| {
2764 item.relevant_for_never()
e9174d1e
SL
2765 })
2766 }
2767
e1599b0c
XL
2768 pub fn opt_item_name(self, def_id: DefId) -> Option<Ident> {
2769 self.hir().as_local_hir_id(def_id).and_then(|hir_id| self.hir().get(hir_id).ident())
2770 }
2771
dc9dc135 2772 pub fn opt_associated_item(self, def_id: DefId) -> Option<AssocItem> {
532ac7d7 2773 let is_associated_item = if let Some(hir_id) = self.hir().as_local_hir_id(def_id) {
dc9dc135 2774 match self.hir().get(hir_id) {
b7449926 2775 Node::TraitItem(_) | Node::ImplItem(_) => true,
7cac9316
XL
2776 _ => false,
2777 }
2778 } else {
416331ca 2779 match self.def_kind(def_id).expect("no def for `DefId`") {
dc9dc135 2780 DefKind::AssocConst
48663c56 2781 | DefKind::Method
dc9dc135 2782 | DefKind::AssocTy => true,
7cac9316
XL
2783 _ => false,
2784 }
2785 };
8bb4bdeb 2786
60c5eb7d 2787 is_associated_item.then(|| self.associated_item(def_id))
e9174d1e
SL
2788 }
2789
476ff2be
SL
2790 fn associated_item_from_trait_item_ref(self,
2791 parent_def_id: DefId,
7cac9316 2792 parent_vis: &hir::Visibility,
32a655c1 2793 trait_item_ref: &hir::TraitItemRef)
dc9dc135 2794 -> AssocItem {
416331ca 2795 let def_id = self.hir().local_def_id(trait_item_ref.id.hir_id);
32a655c1 2796 let (kind, has_self) = match trait_item_ref.kind {
dc9dc135
XL
2797 hir::AssocItemKind::Const => (ty::AssocKind::Const, false),
2798 hir::AssocItemKind::Method { has_self } => {
2799 (ty::AssocKind::Method, has_self)
476ff2be 2800 }
dc9dc135 2801 hir::AssocItemKind::Type => (ty::AssocKind::Type, false),
416331ca 2802 hir::AssocItemKind::OpaqueTy => bug!("only impls can have opaque types"),
476ff2be
SL
2803 };
2804
dc9dc135 2805 AssocItem {
8faf50e0 2806 ident: trait_item_ref.ident,
041b39d2 2807 kind,
7cac9316 2808 // Visibility of trait items is inherited from their traits.
532ac7d7 2809 vis: Visibility::from_hir(parent_vis, trait_item_ref.id.hir_id, self),
32a655c1 2810 defaultness: trait_item_ref.defaultness,
041b39d2 2811 def_id,
476ff2be
SL
2812 container: TraitContainer(parent_def_id),
2813 method_has_self_argument: has_self
2814 }
2815 }
2816
2817 fn associated_item_from_impl_item_ref(self,
2818 parent_def_id: DefId,
476ff2be 2819 impl_item_ref: &hir::ImplItemRef)
dc9dc135 2820 -> AssocItem {
416331ca 2821 let def_id = self.hir().local_def_id(impl_item_ref.id.hir_id);
476ff2be 2822 let (kind, has_self) = match impl_item_ref.kind {
dc9dc135
XL
2823 hir::AssocItemKind::Const => (ty::AssocKind::Const, false),
2824 hir::AssocItemKind::Method { has_self } => {
2825 (ty::AssocKind::Method, has_self)
476ff2be 2826 }
dc9dc135 2827 hir::AssocItemKind::Type => (ty::AssocKind::Type, false),
416331ca 2828 hir::AssocItemKind::OpaqueTy => (ty::AssocKind::OpaqueTy, false),
476ff2be
SL
2829 };
2830
dc9dc135 2831 AssocItem {
8faf50e0 2832 ident: impl_item_ref.ident,
041b39d2 2833 kind,
7cac9316 2834 // Visibility of trait impl items doesn't matter.
532ac7d7 2835 vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.hir_id, self),
476ff2be 2836 defaultness: impl_item_ref.defaultness,
041b39d2 2837 def_id,
476ff2be
SL
2838 container: ImplContainer(parent_def_id),
2839 method_has_self_argument: has_self
2840 }
2841 }
2842
532ac7d7 2843 pub fn field_index(self, hir_id: hir::HirId, tables: &TypeckTables<'_>) -> usize {
83c7162d
XL
2844 tables.field_indices().get(hir_id).cloned().expect("no index for a field")
2845 }
2846
2847 pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
2848 variant.fields.iter().position(|field| {
dc9dc135 2849 self.hygienic_eq(ident, field.ident, variant.def_id)
83c7162d
XL
2850 })
2851 }
2852
dc9dc135 2853 pub fn associated_items(self, def_id: DefId) -> AssocItemsIterator<'tcx> {
a1dfa0c6
XL
2854 // Ideally, we would use `-> impl Iterator` here, but it falls
2855 // afoul of the conservative "capture [restrictions]" we put
2856 // in place, so we use a hand-written iterator.
2857 //
2858 // [restrictions]: https://github.com/rust-lang/rust/issues/34511#issuecomment-373423999
dc9dc135 2859 AssocItemsIterator {
a1dfa0c6
XL
2860 tcx: self,
2861 def_ids: self.associated_item_def_ids(def_id),
2862 next_index: 0,
2863 }
e9174d1e
SL
2864 }
2865
a1dfa0c6 2866 /// Returns `true` if the impls are the same polarity and the trait either
0bf4aa26 2867 /// has no items or is annotated #[marker] and prevents item overrides.
0731742a
XL
2868 pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId)
2869 -> Option<ImplOverlapKind>
2870 {
e1599b0c
XL
2871 // If either trait impl references an error, they're allowed to overlap,
2872 // as one of them essentially doesn't exist.
2873 if self.impl_trait_ref(def_id1).map_or(false, |tr| tr.references_error()) ||
2874 self.impl_trait_ref(def_id2).map_or(false, |tr| tr.references_error()) {
2875 return Some(ImplOverlapKind::Permitted);
2876 }
2877
e74abb32
XL
2878 match (self.impl_polarity(def_id1), self.impl_polarity(def_id2)) {
2879 (ImplPolarity::Reservation, _) |
2880 (_, ImplPolarity::Reservation) => {
2881 // `#[rustc_reservation_impl]` impls don't overlap with anything
2882 debug!("impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (reservations)",
2883 def_id1, def_id2);
2884 return Some(ImplOverlapKind::Permitted);
2885 }
2886 (ImplPolarity::Positive, ImplPolarity::Negative) |
2887 (ImplPolarity::Negative, ImplPolarity::Positive) => {
2888 // `impl AutoTrait for Type` + `impl !AutoTrait for Type`
2889 debug!("impls_are_allowed_to_overlap({:?}, {:?}) - None (differing polarities)",
2890 def_id1, def_id2);
2891 return None;
2892 }
2893 (ImplPolarity::Positive, ImplPolarity::Positive) |
2894 (ImplPolarity::Negative, ImplPolarity::Negative) => {}
2895 };
2896
2897 let is_marker_overlap = if self.features().overlapping_marker_traits {
0bf4aa26
XL
2898 let trait1_is_empty = self.impl_trait_ref(def_id1)
2899 .map_or(false, |trait_ref| {
2900 self.associated_item_def_ids(trait_ref.def_id).is_empty()
2901 });
2902 let trait2_is_empty = self.impl_trait_ref(def_id2)
2903 .map_or(false, |trait_ref| {
2904 self.associated_item_def_ids(trait_ref.def_id).is_empty()
2905 });
e74abb32 2906 trait1_is_empty && trait2_is_empty
0731742a 2907 } else {
0bf4aa26
XL
2908 let is_marker_impl = |def_id: DefId| -> bool {
2909 let trait_ref = self.impl_trait_ref(def_id);
2910 trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker)
2911 };
e74abb32 2912 is_marker_impl(def_id1) && is_marker_impl(def_id2)
0731742a
XL
2913 };
2914
e74abb32
XL
2915
2916 if is_marker_overlap {
2917 debug!("impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (marker overlap)",
2918 def_id1, def_id2);
0731742a 2919 Some(ImplOverlapKind::Permitted)
0bf4aa26 2920 } else {
0731742a
XL
2921 if let Some(self_ty1) = self.issue33140_self_ty(def_id1) {
2922 if let Some(self_ty2) = self.issue33140_self_ty(def_id2) {
2923 if self_ty1 == self_ty2 {
2924 debug!("impls_are_allowed_to_overlap({:?}, {:?}) - issue #33140 HACK",
2925 def_id1, def_id2);
2926 return Some(ImplOverlapKind::Issue33140);
2927 } else {
2928 debug!("impls_are_allowed_to_overlap({:?}, {:?}) - found {:?} != {:?}",
2929 def_id1, def_id2, self_ty1, self_ty2);
2930 }
2931 }
2932 }
2933
2934 debug!("impls_are_allowed_to_overlap({:?}, {:?}) = None",
2935 def_id1, def_id2);
2936 None
cc61c64b 2937 }
cc61c64b
XL
2938 }
2939
48663c56 2940 /// Returns `ty::VariantDef` if `res` refers to a struct,
532ac7d7 2941 /// or variant or their constructors, panics otherwise.
48663c56
XL
2942 pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
2943 match res {
2944 Res::Def(DefKind::Variant, did) => {
532ac7d7 2945 let enum_did = self.parent(did).unwrap();
7cac9316 2946 self.adt_def(enum_did).variant_with_id(did)
5bcae85e 2947 }
48663c56 2948 Res::Def(DefKind::Struct, did) | Res::Def(DefKind::Union, did) => {
2c00a5a8 2949 self.adt_def(did).non_enum_variant()
5bcae85e 2950 }
48663c56 2951 Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
532ac7d7
XL
2952 let variant_did = self.parent(variant_ctor_did).unwrap();
2953 let enum_did = self.parent(variant_did).unwrap();
2954 self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
2955 }
48663c56 2956 Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
532ac7d7
XL
2957 let struct_did = self.parent(ctor_did).expect("struct ctor has no parent");
2958 self.adt_def(struct_did).non_enum_variant()
c30ab7b3 2959 }
48663c56 2960 _ => bug!("expect_variant_res used with unexpected res {:?}", res)
5bcae85e
SL
2961 }
2962 }
2963
dc9dc135 2964 pub fn item_name(self, id: DefId) -> Symbol {
ff7c6d11 2965 if id.index == CRATE_DEF_INDEX {
dc9dc135 2966 self.original_crate_name(id.krate)
e9174d1e 2967 } else {
ea8adc8c 2968 let def_key = self.def_key(id);
532ac7d7
XL
2969 match def_key.disambiguated_data.data {
2970 // The name of a constructor is that of its parent.
2971 hir_map::DefPathData::Ctor =>
2972 self.item_name(DefId {
2973 krate: id.krate,
2974 index: def_key.parent.unwrap()
2975 }),
2976 _ => def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
9e0c209e 2977 bug!("item_name: no name for {:?}", self.def_path(id));
e74abb32 2978 }),
9e0c209e 2979 }
e9174d1e
SL
2980 }
2981 }
2982
9fa01778 2983 /// Returns the possibly-auto-generated MIR of a `(DefId, Subst)` pair.
60c5eb7d 2984 pub fn instance_mir(self, instance: ty::InstanceDef<'tcx>) -> ReadOnlyBodyAndCache<'tcx, 'tcx> {
cc61c64b 2985 match instance {
7cac9316 2986 ty::InstanceDef::Item(did) => {
60c5eb7d 2987 self.optimized_mir(did).unwrap_read_only()
7cac9316 2988 }
a1dfa0c6 2989 ty::InstanceDef::VtableShim(..) |
e74abb32 2990 ty::InstanceDef::ReifyShim(..) |
7cac9316
XL
2991 ty::InstanceDef::Intrinsic(..) |
2992 ty::InstanceDef::FnPtrShim(..) |
2993 ty::InstanceDef::Virtual(..) |
2994 ty::InstanceDef::ClosureOnceShim { .. } |
3b2f2976
XL
2995 ty::InstanceDef::DropGlue(..) |
2996 ty::InstanceDef::CloneShim(..) => {
60c5eb7d 2997 self.mir_shims(instance).unwrap_read_only()
7cac9316 2998 }
cc61c64b
XL
2999 }
3000 }
3001
9fa01778 3002 /// Gets the attributes of a definition.
dc9dc135 3003 pub fn get_attrs(self, did: DefId) -> Attributes<'tcx> {
9fa01778 3004 if let Some(id) = self.hir().as_local_hir_id(did) {
dc9dc135 3005 Attributes::Borrowed(self.hir().attrs(id))
e9174d1e 3006 } else {
7cac9316 3007 Attributes::Owned(self.item_attrs(did))
e9174d1e
SL
3008 }
3009 }
3010
9fa01778 3011 /// Determines whether an item is annotated with an attribute.
48663c56 3012 pub fn has_attr(self, did: DefId, attr: Symbol) -> bool {
ff7c6d11 3013 attr::contains_name(&self.get_attrs(did), attr)
e9174d1e
SL
3014 }
3015
a1dfa0c6 3016 /// Returns `true` if this is an `auto trait`.
abe05a73
XL
3017 pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
3018 self.trait_def(trait_def_id).has_auto_impl
b039eaaf
SL
3019 }
3020
ea8adc8c
XL
3021 pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
3022 self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
3023 }
3024
9fa01778
XL
3025 /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
3026 /// If it implements no trait, returns `None`.
a7813a04 3027 pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
e9174d1e
SL
3028 self.impl_trait_ref(def_id).map(|tr| tr.def_id)
3029 }
3030
9fa01778
XL
3031 /// If the given defid describes a method belonging to an impl, returns the
3032 /// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
a7813a04 3033 pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
8bb4bdeb 3034 let item = if def_id.krate != LOCAL_CRATE {
48663c56 3035 if let Some(DefKind::Method) = self.def_kind(def_id) {
8bb4bdeb
XL
3036 Some(self.associated_item(def_id))
3037 } else {
3038 None
3039 }
3040 } else {
7cac9316 3041 self.opt_associated_item(def_id)
8bb4bdeb
XL
3042 };
3043
8faf50e0
XL
3044 item.and_then(|trait_item|
3045 match trait_item.container {
3046 TraitContainer(_) => None,
3047 ImplContainer(def_id) => Some(def_id),
e9174d1e 3048 }
8faf50e0 3049 )
e9174d1e
SL
3050 }
3051
54a0048b
SL
3052 /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
3053 /// with the name of the crate containing the impl.
476ff2be 3054 pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
54a0048b 3055 if impl_did.is_local() {
9fa01778 3056 let hir_id = self.hir().as_local_hir_id(impl_did).unwrap();
dc9dc135 3057 Ok(self.hir().span(hir_id))
54a0048b 3058 } else {
ea8adc8c 3059 Err(self.crate_name(impl_did.krate))
54a0048b
SL
3060 }
3061 }
7cac9316 3062
9fa01778
XL
3063 /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
3064 /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
3065 /// definition's parent/scope to perform comparison.
8faf50e0 3066 pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
dc9dc135
XL
3067 // We could use `Ident::eq` here, but we deliberately don't. The name
3068 // comparison fails frequently, and we want to avoid the expensive
3069 // `modern()` calls required for the span comparison whenever possible.
3070 use_name.name == def_name.name &&
3071 use_name.span.ctxt().hygienic_eq(def_name.span.ctxt(),
3072 self.expansion_that_defined(def_parent_def_id))
7cac9316
XL
3073 }
3074
416331ca 3075 fn expansion_that_defined(self, scope: DefId) -> ExpnId {
dc9dc135 3076 match scope.krate {
0731742a 3077 LOCAL_CRATE => self.hir().definitions().expansion_that_defined(scope.index),
416331ca 3078 _ => ExpnId::root(),
dc9dc135
XL
3079 }
3080 }
3081
3082 pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
3083 ident.span.modernize_and_adjust(self.expansion_that_defined(scope));
3084 ident
3085 }
3086
3087 pub fn adjust_ident_and_get_scope(self, mut ident: Ident, scope: DefId, block: hir::HirId)
3088 -> (Ident, DefId) {
3089 let scope = match ident.span.modernize_and_adjust(self.expansion_that_defined(scope)) {
8faf50e0 3090 Some(actual_expansion) =>
0731742a 3091 self.hir().definitions().parent_module_of_macro_def(actual_expansion),
dc9dc135 3092 None => self.hir().get_module_parent(block),
7cac9316
XL
3093 };
3094 (ident, scope)
3095 }
e9174d1e
SL
3096}
3097
e74abb32 3098#[derive(Clone)]
dc9dc135
XL
3099pub struct AssocItemsIterator<'tcx> {
3100 tcx: TyCtxt<'tcx>,
3101 def_ids: &'tcx [DefId],
a1dfa0c6
XL
3102 next_index: usize,
3103}
3104
dc9dc135
XL
3105impl Iterator for AssocItemsIterator<'_> {
3106 type Item = AssocItem;
a1dfa0c6 3107
dc9dc135 3108 fn next(&mut self) -> Option<AssocItem> {
a1dfa0c6
XL
3109 let def_id = self.def_ids.get(self.next_index)?;
3110 self.next_index += 1;
3111 Some(self.tcx.associated_item(*def_id))
3112 }
3113}
3114
dc9dc135 3115fn associated_item(tcx: TyCtxt<'_>, def_id: DefId) -> AssocItem {
532ac7d7
XL
3116 let id = tcx.hir().as_local_hir_id(def_id).unwrap();
3117 let parent_id = tcx.hir().get_parent_item(id);
416331ca 3118 let parent_def_id = tcx.hir().local_def_id(parent_id);
dc9dc135 3119 let parent_item = tcx.hir().expect_item(parent_id);
e74abb32 3120 match parent_item.kind {
8faf50e0 3121 hir::ItemKind::Impl(.., ref impl_item_refs) => {
532ac7d7 3122 if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.hir_id == id) {
7cac9316
XL
3123 let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
3124 impl_item_ref);
cc61c64b
XL
3125 debug_assert_eq!(assoc_item.def_id, def_id);
3126 return assoc_item;
3127 }
3128 }
3129
8faf50e0 3130 hir::ItemKind::Trait(.., ref trait_item_refs) => {
532ac7d7 3131 if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.hir_id == id) {
7cac9316
XL
3132 let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
3133 &parent_item.vis,
3134 trait_item_ref);
cc61c64b
XL
3135 debug_assert_eq!(assoc_item.def_id, def_id);
3136 return assoc_item;
3137 }
3138 }
3139
7cac9316 3140 _ => { }
cc61c64b 3141 }
7cac9316
XL
3142
3143 span_bug!(parent_item.span,
3144 "unexpected parent of trait or impl item or item not found: {:?}",
e74abb32 3145 parent_item.kind)
cc61c64b
XL
3146}
3147
532ac7d7 3148#[derive(Clone, HashStable)]
9fa01778
XL
3149pub struct AdtSizedConstraint<'tcx>(pub &'tcx [Ty<'tcx>]);
3150
3151/// Calculates the `Sized` constraint.
cc61c64b
XL
3152///
3153/// In fact, there are only a few options for the types in the constraint:
3154/// - an obviously-unsized type
3155/// - a type parameter or projection whose Sizedness can't be known
3156/// - a tuple of type parameters or projections, if there are multiple
3157/// such.
b7449926 3158/// - a Error, if a type contained itself. The representability
cc61c64b 3159/// check should catch this case.
dc9dc135 3160fn adt_sized_constraint(tcx: TyCtxt<'_>, def_id: DefId) -> AdtSizedConstraint<'_> {
7cac9316 3161 let def = tcx.adt_def(def_id);
cc61c64b 3162
94b46f34 3163 let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
cc61c64b
XL
3164 v.fields.last()
3165 }).flat_map(|f| {
7cac9316 3166 def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
94b46f34 3167 }));
cc61c64b
XL
3168
3169 debug!("adt_sized_constraint: {:?} => {:?}", def, result);
3170
9fa01778 3171 AdtSizedConstraint(result)
cc61c64b
XL
3172}
3173
dc9dc135 3174fn associated_item_def_ids(tcx: TyCtxt<'_>, def_id: DefId) -> &[DefId] {
9fa01778 3175 let id = tcx.hir().as_local_hir_id(def_id).unwrap();
dc9dc135 3176 let item = tcx.hir().expect_item(id);
e74abb32 3177 match item.kind {
8faf50e0 3178 hir::ItemKind::Trait(.., ref trait_item_refs) => {
dc9dc135
XL
3179 tcx.arena.alloc_from_iter(
3180 trait_item_refs.iter()
3181 .map(|trait_item_ref| trait_item_ref.id)
416331ca 3182 .map(|id| tcx.hir().local_def_id(id.hir_id))
dc9dc135 3183 )
cc61c64b 3184 }
8faf50e0 3185 hir::ItemKind::Impl(.., ref impl_item_refs) => {
dc9dc135
XL
3186 tcx.arena.alloc_from_iter(
3187 impl_item_refs.iter()
3188 .map(|impl_item_ref| impl_item_ref.id)
416331ca 3189 .map(|id| tcx.hir().local_def_id(id.hir_id))
dc9dc135 3190 )
cc61c64b 3191 }
dc9dc135 3192 hir::ItemKind::TraitAlias(..) => &[],
cc61c64b 3193 _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
dc9dc135 3194 }
cc61c64b
XL
3195}
3196
dc9dc135 3197fn def_span(tcx: TyCtxt<'_>, def_id: DefId) -> Span {
0731742a 3198 tcx.hir().span_if_local(def_id).unwrap()
7cac9316
XL
3199}
3200
9fa01778
XL
3201/// If the given `DefId` describes an item belonging to a trait,
3202/// returns the `DefId` of the trait that the trait item belongs to;
3203/// otherwise, returns `None`.
dc9dc135 3204fn trait_of_item(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> {
7cac9316
XL
3205 tcx.opt_associated_item(def_id)
3206 .and_then(|associated_item| {
3207 match associated_item.container {
3208 TraitContainer(def_id) => Some(def_id),
3209 ImplContainer(_) => None
3210 }
3211 })
3212}
3213
a1dfa0c6 3214/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition.
dc9dc135 3215pub fn is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> {
532ac7d7 3216 if let Some(hir_id) = tcx.hir().as_local_hir_id(def_id) {
dc9dc135 3217 if let Node::Item(item) = tcx.hir().get(hir_id) {
e74abb32 3218 if let hir::ItemKind::OpaqueTy(ref opaque_ty) = item.kind {
416331ca 3219 return opaque_ty.impl_trait_fn;
8faf50e0
XL
3220 }
3221 }
3222 }
3223 None
3224}
3225
a1dfa0c6 3226/// See `ParamEnv` struct definition for details.
dc9dc135 3227fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ParamEnv<'_> {
8faf50e0
XL
3228 // The param_env of an impl Trait type is its defining function's param_env
3229 if let Some(parent) = is_impl_trait_defn(tcx, def_id) {
94b46f34
XL
3230 return param_env(tcx, parent);
3231 }
7cac9316
XL
3232 // Compute the bounds on Self and the type parameters.
3233
8faf50e0
XL
3234 let InstantiatedPredicates { predicates } =
3235 tcx.predicates_of(def_id).instantiate_identity(tcx);
7cac9316
XL
3236
3237 // Finally, we have to normalize the bounds in the environment, in
3238 // case they contain any associated type projections. This process
3239 // can yield errors if the put in illegal associated types, like
3240 // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
3241 // report these errors right here; this doesn't actually feel
3242 // right to me, because constructing the environment feels like a
3243 // kind of a "idempotent" action, but I'm not sure where would be
3244 // a better place. In practice, we construct environments for
3245 // every fn once during type checking, and we'll abort if there
3246 // are any errors at that point, so after type checking you can be
3247 // sure that this will succeed without errors anyway.
3248
0731742a
XL
3249 let unnormalized_env = ty::ParamEnv::new(
3250 tcx.intern_predicates(&predicates),
3251 traits::Reveal::UserFacing,
60c5eb7d 3252 tcx.sess.opts.debugging_opts.chalk.then_some(def_id),
0731742a 3253 );
7cac9316 3254
9fa01778 3255 let body_id = tcx.hir().as_local_hir_id(def_id).map_or(hir::DUMMY_HIR_ID, |id| {
dc9dc135 3256 tcx.hir().maybe_body_owned_by(id).map_or(id, |body| body.hir_id)
7cac9316
XL
3257 });
3258 let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
3259 traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
3260}
3261
dc9dc135 3262fn crate_disambiguator(tcx: TyCtxt<'_>, crate_num: CrateNum) -> CrateDisambiguator {
ea8adc8c
XL
3263 assert_eq!(crate_num, LOCAL_CRATE);
3264 tcx.sess.local_crate_disambiguator()
3265}
3266
dc9dc135 3267fn original_crate_name(tcx: TyCtxt<'_>, crate_num: CrateNum) -> Symbol {
ea8adc8c
XL
3268 assert_eq!(crate_num, LOCAL_CRATE);
3269 tcx.crate_name.clone()
3270}
3271
dc9dc135 3272fn crate_hash(tcx: TyCtxt<'_>, crate_num: CrateNum) -> Svh {
ff7c6d11 3273 assert_eq!(crate_num, LOCAL_CRATE);
0731742a 3274 tcx.hir().crate_hash
ff7c6d11
XL
3275}
3276
dc9dc135 3277fn instance_def_size_estimate<'tcx>(tcx: TyCtxt<'tcx>, instance_def: InstanceDef<'tcx>) -> usize {
2c00a5a8
XL
3278 match instance_def {
3279 InstanceDef::Item(..) |
3280 InstanceDef::DropGlue(..) => {
3281 let mir = tcx.instance_mir(instance_def);
3282 mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
3283 },
3284 // Estimate the size of other compiler-generated shims to be 1.
3285 _ => 1
3286 }
3287}
3288
9fa01778 3289/// If `def_id` is an issue 33140 hack impl, returns its self type; otherwise, returns `None`.
0731742a 3290///
9fa01778 3291/// See [`ImplOverlapKind::Issue33140`] for more details.
dc9dc135 3292fn issue33140_self_ty(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Ty<'_>> {
0731742a
XL
3293 debug!("issue33140_self_ty({:?})", def_id);
3294
3295 let trait_ref = tcx.impl_trait_ref(def_id).unwrap_or_else(|| {
3296 bug!("issue33140_self_ty called on inherent impl {:?}", def_id)
3297 });
3298
3299 debug!("issue33140_self_ty({:?}), trait-ref={:?}", def_id, trait_ref);
3300
3301 let is_marker_like =
e74abb32 3302 tcx.impl_polarity(def_id) == ty::ImplPolarity::Positive &&
0731742a
XL
3303 tcx.associated_item_def_ids(trait_ref.def_id).is_empty();
3304
3305 // Check whether these impls would be ok for a marker trait.
3306 if !is_marker_like {
3307 debug!("issue33140_self_ty - not marker-like!");
3308 return None;
3309 }
3310
3311 // impl must be `impl Trait for dyn Marker1 + Marker2 + ...`
3312 if trait_ref.substs.len() != 1 {
3313 debug!("issue33140_self_ty - impl has substs!");
3314 return None;
3315 }
3316
3317 let predicates = tcx.predicates_of(def_id);
3318 if predicates.parent.is_some() || !predicates.predicates.is_empty() {
3319 debug!("issue33140_self_ty - impl has predicates {:?}!", predicates);
3320 return None;
3321 }
3322
3323 let self_ty = trait_ref.self_ty();
e74abb32 3324 let self_ty_matches = match self_ty.kind {
0731742a
XL
3325 ty::Dynamic(ref data, ty::ReStatic) => data.principal().is_none(),
3326 _ => false
3327 };
3328
3329 if self_ty_matches {
3330 debug!("issue33140_self_ty - MATCHES!");
3331 Some(self_ty)
3332 } else {
3333 debug!("issue33140_self_ty - non-matching self type");
3334 None
3335 }
3336}
3337
e1599b0c
XL
3338/// Check if a function is async.
3339fn asyncness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::IsAsync {
3340 let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap_or_else(|| {
3341 bug!("asyncness: expected local `DefId`, got `{:?}`", def_id)
3342 });
3343
3344 let node = tcx.hir().get(hir_id);
3345
3346 let fn_like = hir::map::blocks::FnLikeNode::from_node(node).unwrap_or_else(|| {
3347 bug!("asyncness: expected fn-like node but got `{:?}`", def_id);
3348 });
3349
3350 fn_like.asyncness()
3351}
3352
0bf4aa26 3353pub fn provide(providers: &mut ty::query::Providers<'_>) {
ea8adc8c 3354 context::provide(providers);
abe05a73 3355 erase_regions::provide(providers);
ff7c6d11
XL
3356 layout::provide(providers);
3357 util::provide(providers);
0bf4aa26 3358 constness::provide(providers);
94b46f34 3359 *providers = ty::query::Providers {
e1599b0c 3360 asyncness,
cc61c64b
XL
3361 associated_item,
3362 associated_item_def_ids,
3363 adt_sized_constraint,
7cac9316
XL
3364 def_span,
3365 param_env,
3366 trait_of_item,
ea8adc8c
XL
3367 crate_disambiguator,
3368 original_crate_name,
ff7c6d11 3369 crate_hash,
7cac9316 3370 trait_impls_of: trait_def::trait_impls_of_provider,
2c00a5a8 3371 instance_def_size_estimate,
0731742a 3372 issue33140_self_ty,
cc61c64b
XL
3373 ..*providers
3374 };
3375}
3376
cc61c64b
XL
3377/// A map for the local crate mapping each type to a vector of its
3378/// inherent impls. This is not meant to be used outside of coherence;
3379/// rather, you should request the vector for a specific type via
7cac9316
XL
3380/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
3381/// (constructing this map requires touching the entire crate).
532ac7d7 3382#[derive(Clone, Debug, Default, HashStable)]
cc61c64b 3383pub struct CrateInherentImpls {
dc9dc135 3384 pub inherent_impls: DefIdMap<Vec<DefId>>,
cc61c64b
XL
3385}
3386
60c5eb7d 3387#[derive(Clone, Copy, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
7cac9316
XL
3388pub struct SymbolName {
3389 // FIXME: we don't rely on interning or equality here - better have
3390 // this be a `&'tcx str`.
e74abb32 3391 pub name: Symbol
7cac9316
XL
3392}
3393
0531ce1d
XL
3394impl SymbolName {
3395 pub fn new(name: &str) -> SymbolName {
3396 SymbolName {
e74abb32 3397 name: Symbol::intern(name)
0531ce1d
XL
3398 }
3399 }
7cac9316
XL
3400}
3401
e74abb32
XL
3402impl PartialOrd for SymbolName {
3403 fn partial_cmp(&self, other: &SymbolName) -> Option<Ordering> {
3404 self.name.as_str().partial_cmp(&other.name.as_str())
3405 }
3406}
3407
3408/// Ordering must use the chars to ensure reproducible builds.
3409impl Ord for SymbolName {
3410 fn cmp(&self, other: &SymbolName) -> Ordering {
3411 self.name.as_str().cmp(&other.name.as_str())
3412 }
3413}
3414
7cac9316 3415impl fmt::Display for SymbolName {
0bf4aa26 3416 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
7cac9316
XL
3417 fmt::Display::fmt(&self.name, fmt)
3418 }
3419}
0531ce1d
XL
3420
3421impl fmt::Debug for SymbolName {
0bf4aa26 3422 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
0531ce1d
XL
3423 fmt::Display::fmt(&self.name, fmt)
3424 }
3425}