]> git.proxmox.com Git - rustc.git/blame - src/librustc/ty/mod.rs
New upstream version 1.29.0+dfsg1
[rustc.git] / src / librustc / ty / mod.rs
CommitLineData
e9174d1e
SL
1// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
e9174d1e 11pub use self::Variance::*;
476ff2be 12pub use self::AssociatedItemContainer::*;
e9174d1e 13pub use self::BorrowKind::*;
e9174d1e 14pub use self::IntVarValue::*;
9cc50fc6 15pub use self::fold::TypeFoldable;
e9174d1e 16
32a655c1 17use hir::{map as hir_map, FreevarMap, TraitMap};
476ff2be 18use hir::def::{Def, CtorKind, ExportMap};
2c00a5a8 19use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
abe05a73 20use hir::map::DefPathData;
ff7c6d11 21use hir::svh::Svh;
2c00a5a8 22use ich::Fingerprint;
cc61c64b 23use ich::StableHashingContext;
8faf50e0 24use infer::canonical::Canonical;
e9174d1e 25use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
cc61c64b 26use middle::privacy::AccessLevels;
8bb4bdeb 27use middle::resolve_lifetime::ObjectLifetimeDefault;
c30ab7b3 28use mir::Mir;
94b46f34 29use mir::interpret::GlobalId;
ea8adc8c 30use mir::GeneratorLayout;
abe05a73 31use session::CrateDisambiguator;
0531ce1d 32use traits::{self, Reveal};
54a0048b 33use ty;
9e0c209e 34use ty::subst::{Subst, Substs};
0531ce1d 35use ty::util::{IntTypeExt, Discr};
54a0048b 36use ty::walk::TypeWalker;
0531ce1d
XL
37use util::captures::Captures;
38use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
94b46f34 39use arena::SyncDroplessArena;
e9174d1e 40
9e0c209e 41use serialize::{self, Encodable, Encoder};
2c00a5a8 42use std::cell::RefCell;
94b46f34 43use std::cmp::{self, Ordering};
7cac9316 44use std::fmt;
e9174d1e 45use std::hash::{Hash, Hasher};
9e0c209e 46use std::ops::Deref;
94b46f34 47use rustc_data_structures::sync::{self, Lrc, ParallelIterator, par_iter};
e9174d1e
SL
48use std::slice;
49use std::vec::IntoIter;
8faf50e0 50use std::{mem, ptr};
7cac9316 51use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
9e0c209e 52use syntax::attr;
83c7162d
XL
53use syntax::ext::hygiene::Mark;
54use syntax::symbol::{Symbol, LocalInternedString, InternedString};
3157f602 55use syntax_pos::{DUMMY_SP, Span};
8bb4bdeb 56
476ff2be 57use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
cc61c64b
XL
58use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
59 HashStable};
54a0048b
SL
60
61use hir;
e9174d1e 62
94b46f34 63pub use self::sty::{Binder, CanonicalVar, DebruijnIndex, INNERMOST};
ea8adc8c 64pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
8bb4bdeb 65pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
94b46f34 66pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
e9174d1e 67pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
9e0c209e 68pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
ea8adc8c 69pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
e9174d1e 70pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
7cac9316 71pub use self::sty::RegionKind;
83c7162d 72pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
e9174d1e 73pub use self::sty::BoundRegion::*;
e9174d1e 74pub use self::sty::InferTy::*;
7cac9316 75pub use self::sty::RegionKind::*;
e9174d1e
SL
76pub use self::sty::TypeVariants::*;
77
3b2f2976
XL
78pub use self::binding::BindingMode;
79pub use self::binding::BindingMode::*;
80
ff7c6d11 81pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
94b46f34 82pub use self::context::{Lift, TypeckTables};
e9174d1e 83
cc61c64b
XL
84pub use self::instance::{Instance, InstanceDef};
85
7cac9316 86pub use self::trait_def::TraitDef;
9cc50fc6 87
94b46f34 88pub use self::query::queries;
8bb4bdeb 89
e9174d1e 90pub mod adjustment;
3b2f2976 91pub mod binding;
e9174d1e 92pub mod cast;
abe05a73
XL
93#[macro_use]
94pub mod codec;
e9174d1e 95pub mod error;
abe05a73 96mod erase_regions;
e9174d1e
SL
97pub mod fast_reject;
98pub mod fold;
32a655c1 99pub mod inhabitedness;
54a0048b
SL
100pub mod item_path;
101pub mod layout;
e9174d1e
SL
102pub mod _match;
103pub mod outlives;
94b46f34 104pub mod query;
e9174d1e 105pub mod relate;
7cac9316 106pub mod steal;
54a0048b 107pub mod subst;
9cc50fc6 108pub mod trait_def;
e9174d1e
SL
109pub mod walk;
110pub mod wf;
111pub mod util;
112
e9174d1e
SL
113mod context;
114mod flags;
cc61c64b 115mod instance;
e9174d1e
SL
116mod structural_impls;
117mod sty;
118
e9174d1e
SL
119// Data types
120
121/// The complete set of all analyses described in this module. This is
94b46f34 122/// produced by the driver and fed to codegen and later passes.
cc61c64b
XL
123///
124/// NB: These contents are being migrated into queries using the
125/// *on-demand* infrastructure.
a7813a04 126#[derive(Clone)]
8bb4bdeb 127pub struct CrateAnalysis {
0531ce1d 128 pub access_levels: Lrc<AccessLevels>,
476ff2be 129 pub name: String,
54a0048b 130 pub glob_map: Option<hir::GlobMap>,
e9174d1e
SL
131}
132
32a655c1
SL
133#[derive(Clone)]
134pub struct Resolutions {
135 pub freevars: FreevarMap,
136 pub trait_map: TraitMap,
137 pub maybe_unused_trait_imports: NodeSet,
3b2f2976 138 pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
cc61c64b 139 pub export_map: ExportMap,
e9174d1e
SL
140}
141
142#[derive(Clone, Copy, PartialEq, Eq, Debug)]
476ff2be 143pub enum AssociatedItemContainer {
e9174d1e
SL
144 TraitContainer(DefId),
145 ImplContainer(DefId),
146}
147
476ff2be 148impl AssociatedItemContainer {
abe05a73
XL
149 /// Asserts that this is the def-id of an associated item declared
150 /// in a trait, and returns the trait def-id.
151 pub fn assert_trait(&self) -> DefId {
152 match *self {
153 TraitContainer(id) => id,
154 _ => bug!("associated item has wrong container type: {:?}", self)
155 }
156 }
157
e9174d1e
SL
158 pub fn id(&self) -> DefId {
159 match *self {
160 TraitContainer(id) => id,
161 ImplContainer(id) => id,
162 }
163 }
164}
165
54a0048b
SL
166/// The "header" of an impl is everything outside the body: a Self type, a trait
167/// ref (in the case of a trait impl), and a set of predicates (from the
168/// bounds/where clauses).
169#[derive(Clone, PartialEq, Eq, Hash, Debug)]
170pub struct ImplHeader<'tcx> {
171 pub impl_def_id: DefId,
172 pub self_ty: Ty<'tcx>,
173 pub trait_ref: Option<TraitRef<'tcx>>,
174 pub predicates: Vec<Predicate<'tcx>>,
175}
176
8faf50e0 177#[derive(Copy, Clone, Debug, PartialEq)]
476ff2be
SL
178pub struct AssociatedItem {
179 pub def_id: DefId,
8faf50e0 180 pub ident: Ident,
476ff2be
SL
181 pub kind: AssociatedKind,
182 pub vis: Visibility,
183 pub defaultness: hir::Defaultness,
184 pub container: AssociatedItemContainer,
e9174d1e 185
476ff2be
SL
186 /// Whether this is a method with an explicit self
187 /// as its first argument, allowing method calls.
188 pub method_has_self_argument: bool,
189}
e9174d1e 190
3b2f2976 191#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
476ff2be
SL
192pub enum AssociatedKind {
193 Const,
194 Method,
8faf50e0 195 Existential,
476ff2be
SL
196 Type
197}
e9174d1e 198
476ff2be
SL
199impl AssociatedItem {
200 pub fn def(&self) -> Def {
201 match self.kind {
202 AssociatedKind::Const => Def::AssociatedConst(self.def_id),
203 AssociatedKind::Method => Def::Method(self.def_id),
204 AssociatedKind::Type => Def::AssociatedTy(self.def_id),
8faf50e0 205 AssociatedKind::Existential => Def::AssociatedExistential(self.def_id),
e9174d1e
SL
206 }
207 }
8bb4bdeb
XL
208
209 /// Tests whether the associated item admits a non-trivial implementation
210 /// for !
211 pub fn relevant_for_never<'tcx>(&self) -> bool {
212 match self.kind {
8faf50e0
XL
213 AssociatedKind::Existential |
214 AssociatedKind::Const |
8bb4bdeb
XL
215 AssociatedKind::Type => true,
216 // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
217 AssociatedKind::Method => !self.method_has_self_argument,
218 }
219 }
7cac9316
XL
220
221 pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
222 match self.kind {
223 ty::AssociatedKind::Method => {
224 // We skip the binder here because the binder would deanonymize all
225 // late-bound regions, and we don't want method signatures to show up
226 // `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
227 // regions just fine, showing `fn(&MyType)`.
8faf50e0 228 tcx.fn_sig(self.def_id).skip_binder().to_string()
7cac9316 229 }
8faf50e0
XL
230 ty::AssociatedKind::Type => format!("type {};", self.ident),
231 ty::AssociatedKind::Existential => format!("existential type {};", self.ident),
7cac9316 232 ty::AssociatedKind::Const => {
8faf50e0 233 format!("const {}: {:?};", self.ident, tcx.type_of(self.def_id))
7cac9316
XL
234 }
235 }
236 }
e9174d1e
SL
237}
238
9e0c209e 239#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
54a0048b
SL
240pub enum Visibility {
241 /// Visible everywhere (including in other crates).
242 Public,
243 /// Visible only in the given crate-local module.
32a655c1 244 Restricted(DefId),
54a0048b 245 /// Not visible anywhere in the local crate. This is the visibility of private external items.
32a655c1 246 Invisible,
54a0048b
SL
247}
248
32a655c1
SL
249pub trait DefIdTree: Copy {
250 fn parent(self, id: DefId) -> Option<DefId>;
a7813a04 251
32a655c1
SL
252 fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
253 if descendant.krate != ancestor.krate {
254 return false;
255 }
256
257 while descendant != ancestor {
258 match self.parent(descendant) {
259 Some(parent) => descendant = parent,
260 None => return false,
a7813a04 261 }
a7813a04
XL
262 }
263 true
264 }
265}
266
32a655c1
SL
267impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
268 fn parent(self, id: DefId) -> Option<DefId> {
269 self.def_key(id).parent.map(|index| DefId { index: index, ..id })
270 }
271}
272
54a0048b 273impl Visibility {
a7813a04 274 pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
8faf50e0
XL
275 match visibility.node {
276 hir::VisibilityKind::Public => Visibility::Public,
277 hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
278 hir::VisibilityKind::Restricted { ref path, .. } => match path.def {
a7813a04
XL
279 // If there is no resolution, `resolve` will have already reported an error, so
280 // assume that the visibility is public to avoid reporting more privacy errors.
3157f602 281 Def::Err => Visibility::Public,
32a655c1 282 def => Visibility::Restricted(def.def_id()),
a7813a04 283 },
8faf50e0 284 hir::VisibilityKind::Inherited => {
7cac9316 285 Visibility::Restricted(tcx.hir.get_module_parent(id))
32a655c1 286 }
54a0048b
SL
287 }
288 }
289
290 /// Returns true if an item with this visibility is accessible from the given block.
32a655c1 291 pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
54a0048b
SL
292 let restriction = match self {
293 // Public items are visible everywhere.
294 Visibility::Public => return true,
295 // Private items from other crates are visible nowhere.
32a655c1 296 Visibility::Invisible => return false,
54a0048b 297 // Restricted items are visible in an arbitrary local module.
32a655c1 298 Visibility::Restricted(other) if other.krate != module.krate => return false,
54a0048b
SL
299 Visibility::Restricted(module) => module,
300 };
301
32a655c1 302 tree.is_descendant_of(module, restriction)
54a0048b
SL
303 }
304
305 /// Returns true if this visibility is at least as accessible as the given visibility
32a655c1 306 pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
54a0048b
SL
307 let vis_restriction = match vis {
308 Visibility::Public => return self == Visibility::Public,
32a655c1 309 Visibility::Invisible => return true,
54a0048b
SL
310 Visibility::Restricted(module) => module,
311 };
312
a7813a04 313 self.is_accessible_from(vis_restriction, tree)
54a0048b 314 }
ff7c6d11
XL
315
316 // Returns true if this item is visible anywhere in the local crate.
317 pub fn is_visible_locally(self) -> bool {
318 match self {
319 Visibility::Public => true,
320 Visibility::Restricted(def_id) => def_id.is_local(),
321 Visibility::Invisible => false,
322 }
323 }
54a0048b
SL
324}
325
e9174d1e
SL
326#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
327pub enum Variance {
328 Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
329 Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
330 Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
331 Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
332}
333
7cac9316
XL
334/// The crate variances map is computed during typeck and contains the
335/// variance of every item in the local crate. You should not use it
336/// directly, because to do so will make your pass dependent on the
337/// HIR of every item in the local crate. Instead, use
338/// `tcx.variances_of()` to get the variance for a *particular*
339/// item.
340pub struct CrateVariancesMap {
7cac9316
XL
341 /// For each item with generics, maps to a vector of the variance
342 /// of its generics. If an item has no generics, it will have no
343 /// entry.
0531ce1d 344 pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
7cac9316
XL
345
346 /// An empty vector, useful for cloning.
0531ce1d 347 pub empty_variance: Lrc<Vec<ty::Variance>>,
7cac9316
XL
348}
349
cc61c64b
XL
350impl Variance {
351 /// `a.xform(b)` combines the variance of a context with the
352 /// variance of a type with the following meaning. If we are in a
353 /// context with variance `a`, and we encounter a type argument in
354 /// a position with variance `b`, then `a.xform(b)` is the new
355 /// variance with which the argument appears.
356 ///
357 /// Example 1:
358 ///
359 /// *mut Vec<i32>
360 ///
361 /// Here, the "ambient" variance starts as covariant. `*mut T` is
362 /// invariant with respect to `T`, so the variance in which the
363 /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
364 /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
365 /// respect to its type argument `T`, and hence the variance of
366 /// the `i32` here is `Invariant.xform(Covariant)`, which results
367 /// (again) in `Invariant`.
368 ///
369 /// Example 2:
370 ///
371 /// fn(*const Vec<i32>, *mut Vec<i32)
372 ///
373 /// The ambient variance is covariant. A `fn` type is
374 /// contravariant with respect to its parameters, so the variance
375 /// within which both pointer types appear is
376 /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
377 /// T` is covariant with respect to `T`, so the variance within
378 /// which the first `Vec<i32>` appears is
379 /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
380 /// is true for its `i32` argument. In the `*mut T` case, the
381 /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
382 /// and hence the outermost type is `Invariant` with respect to
383 /// `Vec<i32>` (and its `i32` argument).
384 ///
385 /// Source: Figure 1 of "Taming the Wildcards:
386 /// Combining Definition- and Use-Site Variance" published in PLDI'11.
387 pub fn xform(self, v: ty::Variance) -> ty::Variance {
388 match (self, v) {
389 // Figure 1, column 1.
390 (ty::Covariant, ty::Covariant) => ty::Covariant,
391 (ty::Covariant, ty::Contravariant) => ty::Contravariant,
392 (ty::Covariant, ty::Invariant) => ty::Invariant,
393 (ty::Covariant, ty::Bivariant) => ty::Bivariant,
394
395 // Figure 1, column 2.
396 (ty::Contravariant, ty::Covariant) => ty::Contravariant,
397 (ty::Contravariant, ty::Contravariant) => ty::Covariant,
398 (ty::Contravariant, ty::Invariant) => ty::Invariant,
399 (ty::Contravariant, ty::Bivariant) => ty::Bivariant,
400
401 // Figure 1, column 3.
402 (ty::Invariant, _) => ty::Invariant,
403
404 // Figure 1, column 4.
405 (ty::Bivariant, _) => ty::Bivariant,
406 }
407 }
408}
409
e9174d1e
SL
410// Contains information needed to resolve types and (in the future) look up
411// the types of AST nodes.
412#[derive(Copy, Clone, PartialEq, Eq, Hash)]
413pub struct CReaderCacheKey {
414 pub cnum: CrateNum,
415 pub pos: usize,
e9174d1e
SL
416}
417
e9174d1e
SL
418// Flags that we track on types. These flags are propagated upwards
419// through the type during type construction, so that we can quickly
420// check whether the type has various kinds of types in it without
421// recursing over the type itself.
422bitflags! {
ea8adc8c
XL
423 pub struct TypeFlags: u32 {
424 const HAS_PARAMS = 1 << 0;
425 const HAS_SELF = 1 << 1;
426 const HAS_TY_INFER = 1 << 2;
427 const HAS_RE_INFER = 1 << 3;
428 const HAS_RE_SKOL = 1 << 4;
ff7c6d11
XL
429
430 /// Does this have any `ReEarlyBound` regions? Used to
431 /// determine whether substitition is required, since those
432 /// represent regions that are bound in a `ty::Generics` and
433 /// hence may be substituted.
ea8adc8c 434 const HAS_RE_EARLY_BOUND = 1 << 5;
ff7c6d11
XL
435
436 /// Does this have any region that "appears free" in the type?
437 /// Basically anything but `ReLateBound` and `ReErased`.
ea8adc8c 438 const HAS_FREE_REGIONS = 1 << 6;
ff7c6d11
XL
439
440 /// Is an error type reachable?
ea8adc8c
XL
441 const HAS_TY_ERR = 1 << 7;
442 const HAS_PROJECTION = 1 << 8;
443
444 // FIXME: Rename this to the actual property since it's used for generators too
445 const HAS_TY_CLOSURE = 1 << 9;
e9174d1e
SL
446
447 // true if there are "names" of types and regions and so forth
448 // that are local to a particular fn
94b46f34 449 const HAS_FREE_LOCAL_NAMES = 1 << 10;
e9174d1e 450
a7813a04
XL
451 // Present if the type belongs in a local type context.
452 // Only set for TyInfer other than Fresh.
ea8adc8c 453 const KEEP_IN_LOCAL_TCX = 1 << 11;
a7813a04 454
1bb2cb6e
SL
455 // Is there a projection that does not involve a bound region?
456 // Currently we can't normalize projections w/ bound regions.
ea8adc8c 457 const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
1bb2cb6e 458
0531ce1d
XL
459 // Set if this includes a "canonical" type or region var --
460 // ought to be true only for the results of canonicalization.
461 const HAS_CANONICAL_VARS = 1 << 13;
462
94b46f34
XL
463 /// Does this have any `ReLateBound` regions? Used to check
464 /// if a global bound is safe to evaluate.
465 const HAS_RE_LATE_BOUND = 1 << 14;
466
e9174d1e
SL
467 const NEEDS_SUBST = TypeFlags::HAS_PARAMS.bits |
468 TypeFlags::HAS_SELF.bits |
ea8adc8c 469 TypeFlags::HAS_RE_EARLY_BOUND.bits;
e9174d1e
SL
470
471 // Flags representing the nominal content of a type,
472 // computed by FlagsComputation. If you add a new nominal
473 // flag, it should be added here too.
474 const NOMINAL_FLAGS = TypeFlags::HAS_PARAMS.bits |
475 TypeFlags::HAS_SELF.bits |
476 TypeFlags::HAS_TY_INFER.bits |
477 TypeFlags::HAS_RE_INFER.bits |
c30ab7b3 478 TypeFlags::HAS_RE_SKOL.bits |
e9174d1e
SL
479 TypeFlags::HAS_RE_EARLY_BOUND.bits |
480 TypeFlags::HAS_FREE_REGIONS.bits |
481 TypeFlags::HAS_TY_ERR.bits |
482 TypeFlags::HAS_PROJECTION.bits |
483 TypeFlags::HAS_TY_CLOSURE.bits |
94b46f34 484 TypeFlags::HAS_FREE_LOCAL_NAMES.bits |
0531ce1d 485 TypeFlags::KEEP_IN_LOCAL_TCX.bits |
94b46f34
XL
486 TypeFlags::HAS_CANONICAL_VARS.bits |
487 TypeFlags::HAS_RE_LATE_BOUND.bits;
e9174d1e
SL
488 }
489}
490
491pub struct TyS<'tcx> {
492 pub sty: TypeVariants<'tcx>,
7cac9316 493 pub flags: TypeFlags,
e9174d1e 494
94b46f34
XL
495 /// This is a kind of confusing thing: it stores the smallest
496 /// binder such that
497 ///
498 /// (a) the binder itself captures nothing but
499 /// (b) all the late-bound things within the type are captured
500 /// by some sub-binder.
501 ///
502 /// So, for a type without any late-bound things, like `u32`, this
503 /// will be INNERMOST, because that is the innermost binder that
504 /// captures nothing. But for a type `&'D u32`, where `'D` is a
505 /// late-bound region with debruijn index D, this would be D+1 --
506 /// the binder itself does not capture D, but D is captured by an
507 /// inner binder.
508 ///
509 /// We call this concept an "exclusive" binder D (because all
510 /// debruijn indices within the type are contained within `0..D`
511 /// (exclusive)).
512 outer_exclusive_binder: ty::DebruijnIndex,
513}
514
515impl<'tcx> Ord for TyS<'tcx> {
516 fn cmp(&self, other: &TyS<'tcx>) -> Ordering {
517 self.sty.cmp(&other.sty)
518 }
519}
520
521impl<'tcx> PartialOrd for TyS<'tcx> {
522 fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> {
523 Some(self.sty.cmp(&other.sty))
524 }
e9174d1e
SL
525}
526
527impl<'tcx> PartialEq for TyS<'tcx> {
528 #[inline]
529 fn eq(&self, other: &TyS<'tcx>) -> bool {
8faf50e0 530 ptr::eq(self, other)
e9174d1e
SL
531 }
532}
533impl<'tcx> Eq for TyS<'tcx> {}
534
535impl<'tcx> Hash for TyS<'tcx> {
536 fn hash<H: Hasher>(&self, s: &mut H) {
537 (self as *const TyS).hash(s)
538 }
539}
540
041b39d2
XL
541impl<'tcx> TyS<'tcx> {
542 pub fn is_primitive_ty(&self) -> bool {
543 match self.sty {
544 TypeVariants::TyBool |
545 TypeVariants::TyChar |
546 TypeVariants::TyInt(_) |
547 TypeVariants::TyUint(_) |
548 TypeVariants::TyFloat(_) |
549 TypeVariants::TyInfer(InferTy::IntVar(_)) |
550 TypeVariants::TyInfer(InferTy::FloatVar(_)) |
551 TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
552 TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
94b46f34 553 TypeVariants::TyRef(_, x, _) => x.is_primitive_ty(),
041b39d2
XL
554 _ => false,
555 }
556 }
557
558 pub fn is_suggestable(&self) -> bool {
559 match self.sty {
560 TypeVariants::TyAnon(..) |
561 TypeVariants::TyFnDef(..) |
562 TypeVariants::TyFnPtr(..) |
563 TypeVariants::TyDynamic(..) |
564 TypeVariants::TyClosure(..) |
3b2f2976 565 TypeVariants::TyInfer(..) |
041b39d2
XL
566 TypeVariants::TyProjection(..) => false,
567 _ => true,
568 }
569 }
570}
571
0531ce1d 572impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
cc61c64b 573 fn hash_stable<W: StableHasherResult>(&self,
0531ce1d 574 hcx: &mut StableHashingContext<'a>,
cc61c64b
XL
575 hasher: &mut StableHasher<W>) {
576 let ty::TyS {
577 ref sty,
578
579 // The other fields just provide fast access to information that is
580 // also contained in `sty`, so no need to hash them.
581 flags: _,
94b46f34
XL
582
583 outer_exclusive_binder: _,
cc61c64b
XL
584 } = *self;
585
586 sty.hash_stable(hcx, hasher);
587 }
588}
589
e9174d1e
SL
590pub type Ty<'tcx> = &'tcx TyS<'tcx>;
591
9e0c209e
SL
592impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
593impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
594
0531ce1d
XL
595pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;
596
94b46f34
XL
597extern {
598 /// A dummy type used to force Slice to by unsized without requiring fat pointers
599 type OpaqueSliceContents;
600}
601
c30ab7b3 602/// A wrapper for slices with the additional invariant
9e0c209e
SL
603/// that the slice is interned and no other slice with
604/// the same contents can exist in the same context.
94b46f34 605/// This means we can use pointer for both
9e0c209e 606/// equality comparisons and hashing.
94b46f34
XL
607#[repr(C)]
608pub struct Slice<T> {
609 len: usize,
610 data: [T; 0],
611 opaque: OpaqueSliceContents,
612}
613
614unsafe impl<T: Sync> Sync for Slice<T> {}
9e0c209e 615
94b46f34
XL
616impl<T: Copy> Slice<T> {
617 #[inline]
618 fn from_arena<'tcx>(arena: &'tcx SyncDroplessArena, slice: &[T]) -> &'tcx Slice<T> {
619 assert!(!mem::needs_drop::<T>());
620 assert!(mem::size_of::<T>() != 0);
621 assert!(slice.len() != 0);
622
623 // Align up the size of the len (usize) field
624 let align = mem::align_of::<T>();
625 let align_mask = align - 1;
626 let offset = mem::size_of::<usize>();
627 let offset = (offset + align_mask) & !align_mask;
628
629 let size = offset + slice.len() * mem::size_of::<T>();
630
631 let mem = arena.alloc_raw(
632 size,
633 cmp::max(mem::align_of::<T>(), mem::align_of::<usize>()));
634 unsafe {
635 let result = &mut *(mem.as_mut_ptr() as *mut Slice<T>);
636 // Write the length
637 result.len = slice.len();
638
639 // Write the elements
640 let arena_slice = slice::from_raw_parts_mut(result.data.as_mut_ptr(), result.len);
641 arena_slice.copy_from_slice(slice);
642
643 result
644 }
645 }
646}
647
648impl<T: fmt::Debug> fmt::Debug for Slice<T> {
649 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
650 (**self).fmt(f)
651 }
652}
653
654impl<T: Encodable> Encodable for Slice<T> {
655 #[inline]
656 fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
657 (**self).encode(s)
658 }
659}
660
661impl<T> Ord for Slice<T> where T: Ord {
662 fn cmp(&self, other: &Slice<T>) -> Ordering {
663 if self == other { Ordering::Equal } else {
664 <[T] as Ord>::cmp(&**self, &**other)
665 }
666 }
667}
668
669impl<T> PartialOrd for Slice<T> where T: PartialOrd {
670 fn partial_cmp(&self, other: &Slice<T>) -> Option<Ordering> {
671 if self == other { Some(Ordering::Equal) } else {
672 <[T] as PartialOrd>::partial_cmp(&**self, &**other)
673 }
674 }
675}
676
677impl<T: PartialEq> PartialEq for Slice<T> {
9e0c209e
SL
678 #[inline]
679 fn eq(&self, other: &Slice<T>) -> bool {
8faf50e0 680 ptr::eq(self, other)
9cc50fc6
SL
681 }
682}
94b46f34 683impl<T: Eq> Eq for Slice<T> {}
9cc50fc6 684
9e0c209e 685impl<T> Hash for Slice<T> {
94b46f34 686 #[inline]
9e0c209e 687 fn hash<H: Hasher>(&self, s: &mut H) {
94b46f34 688 (self as *const Slice<T>).hash(s)
9e0c209e
SL
689 }
690}
691
692impl<T> Deref for Slice<T> {
693 type Target = [T];
94b46f34 694 #[inline(always)]
9e0c209e 695 fn deref(&self) -> &[T] {
94b46f34
XL
696 unsafe {
697 slice::from_raw_parts(self.data.as_ptr(), self.len)
698 }
9e0c209e
SL
699 }
700}
701
702impl<'a, T> IntoIterator for &'a Slice<T> {
703 type Item = &'a T;
704 type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
94b46f34 705 #[inline(always)]
9e0c209e
SL
706 fn into_iter(self) -> Self::IntoIter {
707 self[..].iter()
9cc50fc6
SL
708 }
709}
710
9e0c209e 711impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}
9cc50fc6 712
c30ab7b3 713impl<T> Slice<T> {
94b46f34 714 #[inline(always)]
c30ab7b3 715 pub fn empty<'a>() -> &'a Slice<T> {
94b46f34
XL
716 #[repr(align(64), C)]
717 struct EmptySlice([u8; 64]);
718 static EMPTY_SLICE: EmptySlice = EmptySlice([0; 64]);
719 assert!(mem::align_of::<T>() <= 64);
c30ab7b3 720 unsafe {
94b46f34 721 &*(&EMPTY_SLICE as *const _ as *const Slice<T>)
c30ab7b3
SL
722 }
723 }
724}
725
e9174d1e
SL
726/// Upvars do not get their own node-id. Instead, we use the pair of
727/// the original var id (that is, the root variable that is referenced
728/// by the upvar) and the id of the closure expression.
32a655c1 729#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
e9174d1e 730pub struct UpvarId {
ea8adc8c 731 pub var_id: hir::HirId,
abe05a73 732 pub closure_expr_id: LocalDefId,
e9174d1e
SL
733}
734
735#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
736pub enum BorrowKind {
737 /// Data must be immutable and is aliasable.
738 ImmBorrow,
739
740 /// Data must be immutable but not aliasable. This kind of borrow
741 /// cannot currently be expressed by the user and is used only in
32a655c1 742 /// implicit closure bindings. It is needed when the closure
e9174d1e
SL
743 /// is borrowing or mutating a mutable referent, e.g.:
744 ///
745 /// let x: &mut isize = ...;
746 /// let y = || *x += 5;
747 ///
748 /// If we were to try to translate this closure into a more explicit
749 /// form, we'd encounter an error with the code as written:
750 ///
751 /// struct Env { x: & &mut isize }
752 /// let x: &mut isize = ...;
753 /// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
754 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
755 ///
756 /// This is then illegal because you cannot mutate a `&mut` found
757 /// in an aliasable location. To solve, you'd have to translate with
758 /// an `&mut` borrow:
759 ///
760 /// struct Env { x: & &mut isize }
761 /// let x: &mut isize = ...;
762 /// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
763 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
764 ///
765 /// Now the assignment to `**env.x` is legal, but creating a
766 /// mutable pointer to `x` is not because `x` is not mutable. We
767 /// could fix this by declaring `x` as `let mut x`. This is ok in
768 /// user code, if awkward, but extra weird for closures, since the
769 /// borrow is hidden.
770 ///
771 /// So we introduce a "unique imm" borrow -- the referent is
772 /// immutable, but not aliasable. This solves the problem. For
773 /// simplicity, we don't give users the way to express this
774 /// borrow, it's just used when translating closures.
775 UniqueImmBorrow,
776
777 /// Data is mutable and not aliasable.
778 MutBorrow
779}
780
781/// Information describing the capture of an upvar. This is computed
782/// during `typeck`, specifically by `regionck`.
9e0c209e
SL
783#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
784pub enum UpvarCapture<'tcx> {
e9174d1e
SL
785 /// Upvar is captured by value. This is always true when the
786 /// closure is labeled `move`, but can also be true in other cases
787 /// depending on inference.
788 ByValue,
789
790 /// Upvar is captured by reference.
9e0c209e 791 ByRef(UpvarBorrow<'tcx>),
e9174d1e
SL
792}
793
9e0c209e
SL
794#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
795pub struct UpvarBorrow<'tcx> {
e9174d1e
SL
796 /// The kind of borrow: by-ref upvars have access to shared
797 /// immutable borrows, which are not part of the normal language
798 /// syntax.
799 pub kind: BorrowKind,
800
801 /// Region of the resulting reference.
7cac9316 802 pub region: ty::Region<'tcx>,
e9174d1e
SL
803}
804
476ff2be 805pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
e9174d1e
SL
806
807#[derive(Copy, Clone)]
808pub struct ClosureUpvar<'tcx> {
7453a54e 809 pub def: Def,
e9174d1e
SL
810 pub span: Span,
811 pub ty: Ty<'tcx>,
812}
813
0531ce1d 814#[derive(Clone, Copy, PartialEq, Eq)]
e9174d1e 815pub enum IntVarValue {
b039eaaf
SL
816 IntType(ast::IntTy),
817 UintType(ast::UintTy),
e9174d1e
SL
818}
819
0531ce1d
XL
820#[derive(Clone, Copy, PartialEq, Eq)]
821pub struct FloatVarValue(pub ast::FloatTy);
822
94b46f34
XL
823impl ty::EarlyBoundRegion {
824 pub fn to_bound_region(&self) -> ty::BoundRegion {
825 ty::BoundRegion::BrNamed(self.def_id, self.name)
826 }
827}
ea8adc8c 828
94b46f34
XL
829#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
830pub enum GenericParamDefKind {
831 Lifetime,
832 Type {
833 has_default: bool,
834 object_lifetime_default: ObjectLifetimeDefault,
835 synthetic: Option<hir::SyntheticTyParamKind>,
836 }
e9174d1e
SL
837}
838
94b46f34
XL
839#[derive(Clone, RustcEncodable, RustcDecodable)]
840pub struct GenericParamDef {
83c7162d 841 pub name: InternedString,
e9174d1e 842 pub def_id: DefId,
e9174d1e 843 pub index: u32,
c30ab7b3
SL
844
845 /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
94b46f34
XL
846 /// on generic parameter `'a`/`T`, asserts data behind the parameter
847 /// `'a`/`T` won't be accessed during the parent type's `Drop` impl.
c30ab7b3 848 pub pure_wrt_drop: bool,
94b46f34
XL
849
850 pub kind: GenericParamDefKind,
e9174d1e
SL
851}
852
94b46f34 853impl GenericParamDef {
9e0c209e 854 pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
94b46f34
XL
855 match self.kind {
856 GenericParamDefKind::Lifetime => {
857 ty::EarlyBoundRegion {
858 def_id: self.def_id,
859 index: self.index,
860 name: self.name,
861 }
862 }
863 _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
9e0c209e 864 }
e9174d1e 865 }
9e0c209e 866
7cac9316 867 pub fn to_bound_region(&self) -> ty::BoundRegion {
94b46f34
XL
868 match self.kind {
869 GenericParamDefKind::Lifetime => {
870 self.to_early_bound_region_data().to_bound_region()
871 }
872 _ => bug!("cannot convert a non-lifetime parameter def to an early bound region")
873 }
7cac9316
XL
874 }
875}
876
94b46f34
XL
877pub struct GenericParamCount {
878 pub lifetimes: usize,
879 pub types: usize,
e9174d1e
SL
880}
881
882/// Information about the formal type/lifetime parameters associated
883/// with an item or method. Analogous to hir::Generics.
ea8adc8c 884///
94b46f34
XL
885/// The ordering of parameters is the same as in Subst (excluding child generics):
886/// Self (optionally), Lifetime params..., Type params...
9e0c209e 887#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
8bb4bdeb 888pub struct Generics {
9e0c209e 889 pub parent: Option<DefId>,
94b46f34
XL
890 pub parent_count: usize,
891 pub params: Vec<GenericParamDef>,
8bb4bdeb 892
94b46f34
XL
893 /// Reverse map to the `index` field of each `GenericParamDef`
894 pub param_def_id_to_index: FxHashMap<DefId, u32>,
8bb4bdeb 895
9e0c209e 896 pub has_self: bool,
3b2f2976 897 pub has_late_bound_regions: Option<Span>,
e9174d1e
SL
898}
899
ea8adc8c 900impl<'a, 'gcx, 'tcx> Generics {
94b46f34
XL
901 pub fn count(&self) -> usize {
902 self.parent_count + self.params.len()
e9174d1e
SL
903 }
904
94b46f34
XL
905 pub fn own_counts(&self) -> GenericParamCount {
906 // We could cache this as a property of `GenericParamCount`, but
907 // the aim is to refactor this away entirely eventually and the
908 // presence of this method will be a constant reminder.
909 let mut own_counts = GenericParamCount {
910 lifetimes: 0,
911 types: 0,
912 };
913
914 for param in &self.params {
915 match param.kind {
916 GenericParamDefKind::Lifetime => own_counts.lifetimes += 1,
917 GenericParamDefKind::Type {..} => own_counts.types += 1,
918 };
919 }
920
921 own_counts
e9174d1e
SL
922 }
923
94b46f34
XL
924 pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
925 for param in &self.params {
926 match param.kind {
927 GenericParamDefKind::Type {..} => return true,
928 GenericParamDefKind::Lifetime => {}
929 }
930 }
931 if let Some(parent_def_id) = self.parent {
932 let parent = tcx.generics_of(parent_def_id);
933 parent.requires_monomorphization(tcx)
934 } else {
935 false
936 }
e9174d1e 937 }
c30ab7b3 938
ea8adc8c
XL
939 pub fn region_param(&'tcx self,
940 param: &EarlyBoundRegion,
941 tcx: TyCtxt<'a, 'gcx, 'tcx>)
94b46f34 942 -> &'tcx GenericParamDef
ea8adc8c 943 {
94b46f34
XL
944 if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
945 let param = &self.params[index as usize];
946 match param.kind {
947 ty::GenericParamDefKind::Lifetime => param,
948 _ => bug!("expected lifetime parameter, but found another generic parameter")
949 }
ea8adc8c
XL
950 } else {
951 tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
952 .region_param(param, tcx)
953 }
954 }
955
94b46f34 956 /// Returns the `GenericParamDef` associated with this `ParamTy`.
ea8adc8c
XL
957 pub fn type_param(&'tcx self,
958 param: &ParamTy,
959 tcx: TyCtxt<'a, 'gcx, 'tcx>)
94b46f34
XL
960 -> &'tcx GenericParamDef {
961 if let Some(index) = param.idx.checked_sub(self.parent_count as u32) {
962 let param = &self.params[index as usize];
963 match param.kind {
964 ty::GenericParamDefKind::Type {..} => param,
965 _ => bug!("expected type parameter, but found another generic parameter")
ea8adc8c
XL
966 }
967 } else {
968 tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
969 .type_param(param, tcx)
970 }
c30ab7b3 971 }
e9174d1e
SL
972}
973
974/// Bounds on generics.
8bb4bdeb 975#[derive(Clone, Default)]
e9174d1e 976pub struct GenericPredicates<'tcx> {
9e0c209e
SL
977 pub parent: Option<DefId>,
978 pub predicates: Vec<Predicate<'tcx>>,
e9174d1e
SL
979}
980
9e0c209e
SL
981impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
982impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}
e9174d1e 983
9e0c209e 984impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
a7813a04 985 pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
e9174d1e 986 -> InstantiatedPredicates<'tcx> {
9e0c209e
SL
987 let mut instantiated = InstantiatedPredicates::empty();
988 self.instantiate_into(tcx, &mut instantiated, substs);
989 instantiated
990 }
991 pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
992 -> InstantiatedPredicates<'tcx> {
e9174d1e 993 InstantiatedPredicates {
9e0c209e 994 predicates: self.predicates.subst(tcx, substs)
e9174d1e
SL
995 }
996 }
997
9e0c209e
SL
998 fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
999 instantiated: &mut InstantiatedPredicates<'tcx>,
1000 substs: &Substs<'tcx>) {
1001 if let Some(def_id) = self.parent {
7cac9316 1002 tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
9e0c209e
SL
1003 }
1004 instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
1005 }
1006
7cac9316
XL
1007 pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
1008 -> InstantiatedPredicates<'tcx> {
1009 let mut instantiated = InstantiatedPredicates::empty();
1010 self.instantiate_identity_into(tcx, &mut instantiated);
1011 instantiated
1012 }
1013
1014 fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1015 instantiated: &mut InstantiatedPredicates<'tcx>) {
1016 if let Some(def_id) = self.parent {
1017 tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
1018 }
1019 instantiated.predicates.extend(&self.predicates)
1020 }
1021
a7813a04 1022 pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
e9174d1e
SL
1023 poly_trait_ref: &ty::PolyTraitRef<'tcx>)
1024 -> InstantiatedPredicates<'tcx>
1025 {
9e0c209e 1026 assert_eq!(self.parent, None);
e9174d1e 1027 InstantiatedPredicates {
9e0c209e 1028 predicates: self.predicates.iter().map(|pred| {
a7813a04 1029 pred.subst_supertrait(tcx, poly_trait_ref)
9e0c209e 1030 }).collect()
e9174d1e
SL
1031 }
1032 }
1033}
1034
7cac9316 1035#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
e9174d1e
SL
1036pub enum Predicate<'tcx> {
1037 /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
1038 /// the `Self` type of the trait reference and `A`, `B`, and `C`
9e0c209e 1039 /// would be the type parameters.
e9174d1e
SL
1040 Trait(PolyTraitPredicate<'tcx>),
1041
e9174d1e 1042 /// where 'a : 'b
9e0c209e 1043 RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
e9174d1e
SL
1044
1045 /// where T : 'a
1046 TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
1047
1048 /// where <T as TraitRef>::Name == X, approximately.
1049 /// See `ProjectionPredicate` struct for details.
1050 Projection(PolyProjectionPredicate<'tcx>),
1051
1052 /// no syntax: T WF
1053 WellFormed(Ty<'tcx>),
1054
1055 /// trait must be object-safe
1056 ObjectSafe(DefId),
a7813a04 1057
9e0c209e
SL
1058 /// No direct syntax. May be thought of as `where T : FnFoo<...>`
1059 /// for some substitutions `...` and T being a closure type.
1060 /// Satisfied (or refuted) once we know the closure's kind.
ff7c6d11 1061 ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
cc61c64b
XL
1062
1063 /// `T1 <: T2`
1064 Subtype(PolySubtypePredicate<'tcx>),
ea8adc8c
XL
1065
1066 /// Constant initializer must evaluate successfully.
1067 ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
e9174d1e
SL
1068}
1069
83c7162d
XL
1070/// The crate outlives map is computed during typeck and contains the
1071/// outlives of every item in the local crate. You should not use it
1072/// directly, because to do so will make your pass dependent on the
1073/// HIR of every item in the local crate. Instead, use
1074/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
1075/// item.
1076pub struct CratePredicatesMap<'tcx> {
1077 /// For each struct with outlive bounds, maps to a vector of the
1078 /// predicate of its outlive bounds. If an item has no outlives
1079 /// bounds, it will have no entry.
1080 pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,
1081
1082 /// An empty vector, useful for cloning.
1083 pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
1084}
1085
abe05a73
XL
1086impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
1087 fn as_ref(&self) -> &Predicate<'tcx> {
1088 self
1089 }
1090}
1091
a7813a04 1092impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
e9174d1e
SL
1093 /// Performs a substitution suitable for going from a
1094 /// poly-trait-ref to supertraits that must hold if that
1095 /// poly-trait-ref holds. This is slightly different from a normal
1096 /// substitution in terms of what happens with bound regions. See
1097 /// lengthy comment below for details.
a7813a04 1098 pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
e9174d1e
SL
1099 trait_ref: &ty::PolyTraitRef<'tcx>)
1100 -> ty::Predicate<'tcx>
1101 {
1102 // The interaction between HRTB and supertraits is not entirely
1103 // obvious. Let me walk you (and myself) through an example.
1104 //
1105 // Let's start with an easy case. Consider two traits:
1106 //
1107 // trait Foo<'a> : Bar<'a,'a> { }
1108 // trait Bar<'b,'c> { }
1109 //
1110 // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
1111 // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
1112 // knew that `Foo<'x>` (for any 'x) then we also know that
1113 // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
1114 // normal substitution.
1115 //
1116 // In terms of why this is sound, the idea is that whenever there
1117 // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
1118 // holds. So if there is an impl of `T:Foo<'a>` that applies to
1119 // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
1120 // `'a`.
1121 //
1122 // Another example to be careful of is this:
1123 //
1124 // trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
1125 // trait Bar1<'b,'c> { }
1126 //
1127 // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
1128 // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
1129 // reason is similar to the previous example: any impl of
1130 // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`. So
1131 // basically we would want to collapse the bound lifetimes from
1132 // the input (`trait_ref`) and the supertraits.
1133 //
1134 // To achieve this in practice is fairly straightforward. Let's
1135 // consider the more complicated scenario:
1136 //
1137 // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
1138 // has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
1139 // where both `'x` and `'b` would have a DB index of 1.
1140 // The substitution from the input trait-ref is therefore going to be
1141 // `'a => 'x` (where `'x` has a DB index of 1).
1142 // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
1143 // early-bound parameter and `'b' is a late-bound parameter with a
1144 // DB index of 1.
1145 // - If we replace `'a` with `'x` from the input, it too will have
1146 // a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
1147 // just as we wanted.
1148 //
1149 // There is only one catch. If we just apply the substitution `'a
1150 // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
1151 // adjust the DB index because we substituting into a binder (it
1152 // tries to be so smart...) resulting in `for<'x> for<'b>
1153 // Bar1<'x,'b>` (we have no syntax for this, so use your
1154 // imagination). Basically the 'x will have DB index of 2 and 'b
1155 // will have DB index of 1. Not quite what we want. So we apply
1156 // the substitution to the *contents* of the trait reference,
1157 // rather than the trait reference itself (put another way, the
1158 // substitution code expects equal binding levels in the values
1159 // from the substitution and the value being substituted into, and
1160 // this trick achieves that).
1161
83c7162d 1162 let substs = &trait_ref.skip_binder().substs;
e9174d1e 1163 match *self {
83c7162d
XL
1164 Predicate::Trait(ref binder) =>
1165 Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
1166 Predicate::Subtype(ref binder) =>
1167 Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
1168 Predicate::RegionOutlives(ref binder) =>
1169 Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
1170 Predicate::TypeOutlives(ref binder) =>
1171 Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
1172 Predicate::Projection(ref binder) =>
1173 Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
e9174d1e
SL
1174 Predicate::WellFormed(data) =>
1175 Predicate::WellFormed(data.subst(tcx, substs)),
1176 Predicate::ObjectSafe(trait_def_id) =>
1177 Predicate::ObjectSafe(trait_def_id),
ff7c6d11
XL
1178 Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
1179 Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
ea8adc8c
XL
1180 Predicate::ConstEvaluatable(def_id, const_substs) =>
1181 Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
e9174d1e
SL
1182 }
1183 }
1184}
1185
7cac9316 1186#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
e9174d1e
SL
1187pub struct TraitPredicate<'tcx> {
1188 pub trait_ref: TraitRef<'tcx>
1189}
1190pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;
1191
1192impl<'tcx> TraitPredicate<'tcx> {
1193 pub fn def_id(&self) -> DefId {
1194 self.trait_ref.def_id
1195 }
1196
9e0c209e
SL
1197 pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1198 self.trait_ref.input_types()
e9174d1e
SL
1199 }
1200
1201 pub fn self_ty(&self) -> Ty<'tcx> {
1202 self.trait_ref.self_ty()
1203 }
1204}
1205
1206impl<'tcx> PolyTraitPredicate<'tcx> {
1207 pub fn def_id(&self) -> DefId {
7453a54e 1208 // ok to skip binder since trait def-id does not care about regions
83c7162d 1209 self.skip_binder().def_id()
e9174d1e
SL
1210 }
1211}
1212
94b46f34 1213#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
e9174d1e
SL
1214pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
1215pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
0531ce1d
XL
1216pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
1217 ty::Region<'tcx>>;
1218pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
1219 ty::Region<'tcx>>;
1220pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
1221pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
e9174d1e 1222
7cac9316 1223#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
cc61c64b
XL
1224pub struct SubtypePredicate<'tcx> {
1225 pub a_is_expected: bool,
1226 pub a: Ty<'tcx>,
1227 pub b: Ty<'tcx>
1228}
1229pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;
1230
e9174d1e
SL
1231/// This kind of predicate has no *direct* correspondent in the
1232/// syntax, but it roughly corresponds to the syntactic forms:
1233///
1234/// 1. `T : TraitRef<..., Item=Type>`
1235/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
1236///
1237/// In particular, form #1 is "desugared" to the combination of a
1238/// normal trait predicate (`T : TraitRef<...>`) and one of these
1239/// predicates. Form #2 is a broader form in that it also permits
ff7c6d11
XL
1240/// equality between arbitrary types. Processing an instance of
1241/// Form #2 eventually yields one of these `ProjectionPredicate`
e9174d1e 1242/// instances to normalize the LHS.
0531ce1d 1243#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
e9174d1e
SL
1244pub struct ProjectionPredicate<'tcx> {
1245 pub projection_ty: ProjectionTy<'tcx>,
1246 pub ty: Ty<'tcx>,
1247}
1248
1249pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;
1250
1251impl<'tcx> PolyProjectionPredicate<'tcx> {
83c7162d
XL
1252 /// Returns the def-id of the associated item being projected.
1253 pub fn item_def_id(&self) -> DefId {
1254 self.skip_binder().projection_ty.item_def_id
1255 }
1256
041b39d2
XL
1257 pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
1258 // Note: unlike with TraitRef::to_poly_trait_ref(),
1259 // self.0.trait_ref is permitted to have escaping regions.
1260 // This is because here `self` has a `Binder` and so does our
1261 // return value, so we are preserving the number of binding
1262 // levels.
83c7162d 1263 self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
e9174d1e 1264 }
3b2f2976
XL
1265
1266 pub fn ty(&self) -> Binder<Ty<'tcx>> {
83c7162d
XL
1267 self.map_bound(|predicate| predicate.ty)
1268 }
1269
1270 /// The DefId of the TraitItem for the associated type.
1271 ///
1272 /// Note that this is not the DefId of the TraitRef containing this
1273 /// associated type, which is in tcx.associated_item(projection_def_id()).container.
1274 pub fn projection_def_id(&self) -> DefId {
1275 // ok to skip binder since trait def-id does not care about regions
1276 self.skip_binder().projection_ty.item_def_id
3b2f2976 1277 }
e9174d1e
SL
1278}
1279
1280pub trait ToPolyTraitRef<'tcx> {
1281 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
1282}
1283
1284impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1285 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
83c7162d 1286 ty::Binder::dummy(self.clone())
e9174d1e
SL
1287 }
1288}
1289
1290impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
1291 fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
7453a54e 1292 self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
e9174d1e
SL
1293 }
1294}
1295
e9174d1e
SL
1296pub trait ToPredicate<'tcx> {
1297 fn to_predicate(&self) -> Predicate<'tcx>;
1298}
1299
1300impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
1301 fn to_predicate(&self) -> Predicate<'tcx> {
83c7162d 1302 ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
e9174d1e
SL
1303 trait_ref: self.clone()
1304 }))
1305 }
1306}
1307
1308impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
1309 fn to_predicate(&self) -> Predicate<'tcx> {
1310 ty::Predicate::Trait(self.to_poly_trait_predicate())
1311 }
1312}
1313
9e0c209e 1314impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
e9174d1e
SL
1315 fn to_predicate(&self) -> Predicate<'tcx> {
1316 Predicate::RegionOutlives(self.clone())
1317 }
1318}
1319
1320impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
1321 fn to_predicate(&self) -> Predicate<'tcx> {
1322 Predicate::TypeOutlives(self.clone())
1323 }
1324}
1325
1326impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
1327 fn to_predicate(&self) -> Predicate<'tcx> {
1328 Predicate::Projection(self.clone())
1329 }
1330}
1331
1332impl<'tcx> Predicate<'tcx> {
1333 /// Iterates over the types in this predicate. Note that in all
1334 /// cases this is skipping over a binder, so late-bound regions
1335 /// with depth 0 are bound by the predicate.
1336 pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
1337 let vec: Vec<_> = match *self {
1338 ty::Predicate::Trait(ref data) => {
9e0c209e 1339 data.skip_binder().input_types().collect()
a7813a04 1340 }
83c7162d
XL
1341 ty::Predicate::Subtype(binder) => {
1342 let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
cc61c64b
XL
1343 vec![a, b]
1344 }
83c7162d
XL
1345 ty::Predicate::TypeOutlives(binder) => {
1346 vec![binder.skip_binder().0]
e9174d1e
SL
1347 }
1348 ty::Predicate::RegionOutlives(..) => {
1349 vec![]
1350 }
1351 ty::Predicate::Projection(ref data) => {
83c7162d
XL
1352 let inner = data.skip_binder();
1353 inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
e9174d1e
SL
1354 }
1355 ty::Predicate::WellFormed(data) => {
1356 vec![data]
1357 }
1358 ty::Predicate::ObjectSafe(_trait_def_id) => {
1359 vec![]
1360 }
ff7c6d11
XL
1361 ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
1362 closure_substs.substs.types().collect()
a7813a04 1363 }
ea8adc8c
XL
1364 ty::Predicate::ConstEvaluatable(_, substs) => {
1365 substs.types().collect()
1366 }
e9174d1e
SL
1367 };
1368
1369 // The only reason to collect into a vector here is that I was
1370 // too lazy to make the full (somewhat complicated) iterator
1371 // type that would be needed here. But I wanted this fn to
1372 // return an iterator conceptually, rather than a `Vec`, so as
1373 // to be closer to `Ty::walk`.
1374 vec.into_iter()
1375 }
1376
1377 pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1378 match *self {
1379 Predicate::Trait(ref t) => {
1380 Some(t.to_poly_trait_ref())
1381 }
1382 Predicate::Projection(..) |
cc61c64b 1383 Predicate::Subtype(..) |
e9174d1e
SL
1384 Predicate::RegionOutlives(..) |
1385 Predicate::WellFormed(..) |
1386 Predicate::ObjectSafe(..) |
a7813a04 1387 Predicate::ClosureKind(..) |
ea8adc8c
XL
1388 Predicate::TypeOutlives(..) |
1389 Predicate::ConstEvaluatable(..) => {
e9174d1e
SL
1390 None
1391 }
1392 }
1393 }
abe05a73
XL
1394
1395 pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
1396 match *self {
1397 Predicate::TypeOutlives(data) => {
1398 Some(data)
1399 }
1400 Predicate::Trait(..) |
1401 Predicate::Projection(..) |
abe05a73
XL
1402 Predicate::Subtype(..) |
1403 Predicate::RegionOutlives(..) |
1404 Predicate::WellFormed(..) |
1405 Predicate::ObjectSafe(..) |
1406 Predicate::ClosureKind(..) |
1407 Predicate::ConstEvaluatable(..) => {
1408 None
1409 }
1410 }
1411 }
e9174d1e
SL
1412}
1413
1414/// Represents the bounds declared on a particular set of type
1415/// parameters. Should eventually be generalized into a flag list of
1416/// where clauses. You can obtain a `InstantiatedPredicates` list from a
1417/// `GenericPredicates` by using the `instantiate` method. Note that this method
1418/// reflects an important semantic invariant of `InstantiatedPredicates`: while
1419/// the `GenericPredicates` are expressed in terms of the bound type
1420/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
1421/// represented a set of bounds for some particular instantiation,
1422/// meaning that the generic parameters have been substituted with
1423/// their values.
1424///
1425/// Example:
1426///
1427/// struct Foo<T,U:Bar<T>> { ... }
1428///
1429/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
1430/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
1431/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
1432/// [usize:Bar<isize>]]`.
1433#[derive(Clone)]
1434pub struct InstantiatedPredicates<'tcx> {
9e0c209e 1435 pub predicates: Vec<Predicate<'tcx>>,
e9174d1e
SL
1436}
1437
1438impl<'tcx> InstantiatedPredicates<'tcx> {
1439 pub fn empty() -> InstantiatedPredicates<'tcx> {
9e0c209e 1440 InstantiatedPredicates { predicates: vec![] }
e9174d1e
SL
1441 }
1442
1443 pub fn is_empty(&self) -> bool {
1444 self.predicates.is_empty()
1445 }
1446}
1447
0531ce1d
XL
1448/// "Universes" are used during type- and trait-checking in the
1449/// presence of `for<..>` binders to control what sets of names are
1450/// visible. Universes are arranged into a tree: the root universe
1451/// contains names that are always visible. But when you enter into
1452/// some subuniverse, then it may add names that are only visible
1453/// within that subtree (but it can still name the names of its
1454/// ancestor universes).
1455///
1456/// To make this more concrete, consider this program:
1457///
1458/// ```
1459/// struct Foo { }
1460/// fn bar<T>(x: T) {
1461/// let y: for<'a> fn(&'a u8, Foo) = ...;
1462/// }
1463/// ```
1464///
1465/// The struct name `Foo` is in the root universe U0. But the type
1466/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
1467/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
1468/// `bar`, we cannot name `T`. Then, within the type of `y`, the
1469/// region `'a` is in a subuniverse U2 of U1, because we can name it
1470/// inside the fn type but not outside.
1471///
1472/// Universes are related to **skolemization** -- which is a way of
1473/// doing type- and trait-checking around these "forall" binders (also
1474/// called **universal quantification**). The idea is that when, in
1475/// the body of `bar`, we refer to `T` as a type, we aren't referring
1476/// to any type in particular, but rather a kind of "fresh" type that
1477/// is distinct from all other types we have actually declared. This
1478/// is called a **skolemized** type, and we use universes to talk
1479/// about this. In other words, a type name in universe 0 always
1480/// corresponds to some "ground" type that the user declared, but a
1481/// type name in a non-zero universe is a skolemized type -- an
1482/// idealized representative of "types in general" that we use for
1483/// checking generic functions.
8faf50e0 1484#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
0531ce1d
XL
1485pub struct UniverseIndex(u32);
1486
1487impl UniverseIndex {
1488 /// The root universe, where things that the user defined are
1489 /// visible.
83c7162d 1490 pub const ROOT: Self = UniverseIndex(0);
0531ce1d 1491
8faf50e0
XL
1492 /// The "max universe" -- this isn't really a valid universe, but
1493 /// it's useful sometimes as a "starting value" when you are
1494 /// taking the minimum of a (non-empty!) set of universes.
1495 pub const MAX: Self = UniverseIndex(::std::u32::MAX);
1496
1497 /// Creates a universe index from the given integer. Not to be
1498 /// used lightly lest you pick a bad value. But sometimes we
1499 /// convert universe indicies into integers and back for various
1500 /// reasons.
1501 pub fn from_u32(index: u32) -> Self {
1502 UniverseIndex(index)
1503 }
1504
0531ce1d
XL
1505 /// A "subuniverse" corresponds to being inside a `forall` quantifier.
1506 /// So, for example, suppose we have this type in universe `U`:
1507 ///
1508 /// ```
1509 /// for<'a> fn(&'a u32)
1510 /// ```
1511 ///
1512 /// Once we "enter" into this `for<'a>` quantifier, we are in a
1513 /// subuniverse of `U` -- in this new universe, we can name the
1514 /// region `'a`, but that region was not nameable from `U` because
1515 /// it was not in scope there.
1516 pub fn subuniverse(self) -> UniverseIndex {
83c7162d
XL
1517 UniverseIndex(self.0.checked_add(1).unwrap())
1518 }
1519
8faf50e0
XL
1520 /// True if the names in this universe are a subset of the names in `other`.
1521 pub fn is_subset_of(self, other: UniverseIndex) -> bool {
1522 self.0 <= other.0
1523 }
1524
83c7162d
XL
1525 pub fn as_u32(&self) -> u32 {
1526 self.0
1527 }
1528
1529 pub fn as_usize(&self) -> usize {
1530 self.0 as usize
1531 }
1532}
1533
8faf50e0
XL
1534impl fmt::Debug for UniverseIndex {
1535 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
1536 write!(fmt, "U{}", self.as_u32())
1537 }
1538}
1539
83c7162d
XL
1540impl From<u32> for UniverseIndex {
1541 fn from(index: u32) -> Self {
1542 UniverseIndex(index)
0531ce1d
XL
1543 }
1544}
1545
7cac9316
XL
1546/// When type checking, we use the `ParamEnv` to track
1547/// details about the set of where-clauses that are in scope at this
1548/// particular point.
1549#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1550pub struct ParamEnv<'tcx> {
e9174d1e
SL
1551 /// Obligations that the caller must satisfy. This is basically
1552 /// the set of bounds on the in-scope type parameters, translated
1553 /// into Obligations, and elaborated and normalized.
7cac9316
XL
1554 pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1555
94b46f34 1556 /// Typically, this is `Reveal::UserFacing`, but during codegen we
7cac9316
XL
1557 /// want `Reveal::All` -- note that this is always paired with an
1558 /// empty environment. To get that, use `ParamEnv::reveal()`.
1559 pub reveal: traits::Reveal,
1560}
1561
1562impl<'tcx> ParamEnv<'tcx> {
0531ce1d
XL
1563 /// Construct a trait environment suitable for contexts where
1564 /// there are no where clauses in scope. Hidden types (like `impl
1565 /// Trait`) are left hidden, so this is suitable for ordinary
1566 /// type-checking.
1567 pub fn empty() -> Self {
1568 Self::new(ty::Slice::empty(), Reveal::UserFacing)
1569 }
1570
1571 /// Construct a trait environment with no where clauses in scope
1572 /// where the values of all `impl Trait` and other hidden types
1573 /// are revealed. This is suitable for monomorphized, post-typeck
94b46f34 1574 /// environments like codegen or doing optimizations.
0531ce1d
XL
1575 ///
1576 /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
1577 /// or invoke `param_env.with_reveal_all()`.
1578 pub fn reveal_all() -> Self {
1579 Self::new(ty::Slice::empty(), Reveal::All)
1580 }
1581
1582 /// Construct a trait environment with the given set of predicates.
1583 pub fn new(caller_bounds: &'tcx ty::Slice<ty::Predicate<'tcx>>,
1584 reveal: Reveal)
1585 -> Self {
1586 ty::ParamEnv { caller_bounds, reveal }
1587 }
1588
1589 /// Returns a new parameter environment with the same clauses, but
1590 /// which "reveals" the true results of projections in all cases
1591 /// (even for associated types that are specializable). This is
94b46f34 1592 /// the desired behavior during codegen and certain other special
0531ce1d
XL
1593 /// contexts; normally though we want to use `Reveal::UserFacing`,
1594 /// which is the default.
1595 pub fn with_reveal_all(self) -> Self {
1596 ty::ParamEnv { reveal: Reveal::All, ..self }
1597 }
1598
1599 /// Returns this same environment but with no caller bounds.
1600 pub fn without_caller_bounds(self) -> Self {
1601 ty::ParamEnv { caller_bounds: ty::Slice::empty(), ..self }
1602 }
1603
7cac9316 1604 /// Creates a suitable environment in which to perform trait
0531ce1d
XL
1605 /// queries on the given value. When type-checking, this is simply
1606 /// the pair of the environment plus value. But when reveal is set to
1607 /// All, then if `value` does not reference any type parameters, we will
1608 /// pair it with the empty environment. This improves caching and is generally
1609 /// invisible.
e9174d1e 1610 ///
0531ce1d
XL
1611 /// NB: We preserve the environment when type-checking because it
1612 /// is possible for the user to have wacky where-clauses like
7cac9316 1613 /// `where Box<u32>: Copy`, which are clearly never
0531ce1d
XL
1614 /// satisfiable. We generally want to behave as if they were true,
1615 /// although the surrounding function is never reachable.
7cac9316 1616 pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
0531ce1d
XL
1617 match self.reveal {
1618 Reveal::UserFacing => {
1619 ParamEnvAnd {
1620 param_env: self,
1621 value,
1622 }
e9174d1e 1623 }
0531ce1d
XL
1624
1625 Reveal::All => {
83c7162d
XL
1626 if value.has_skol()
1627 || value.needs_infer()
1628 || value.has_param_types()
1629 || value.has_self_ty()
1630 {
0531ce1d
XL
1631 ParamEnvAnd {
1632 param_env: self,
1633 value,
1634 }
1635 } else {
1636 ParamEnvAnd {
1637 param_env: self.without_caller_bounds(),
1638 value,
1639 }
1640 }
e9174d1e
SL
1641 }
1642 }
1643 }
1644}
1645
7cac9316
XL
1646#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1647pub struct ParamEnvAnd<'tcx, T> {
1648 pub param_env: ParamEnv<'tcx>,
1649 pub value: T,
1650}
1651
1652impl<'tcx, T> ParamEnvAnd<'tcx, T> {
1653 pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1654 (self.param_env, self.value)
1655 }
1656}
1657
0531ce1d
XL
1658impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
1659 where T: HashStable<StableHashingContext<'a>>
ea8adc8c
XL
1660{
1661 fn hash_stable<W: StableHasherResult>(&self,
0531ce1d 1662 hcx: &mut StableHashingContext<'a>,
ea8adc8c
XL
1663 hasher: &mut StableHasher<W>) {
1664 let ParamEnvAnd {
1665 ref param_env,
1666 ref value
1667 } = *self;
1668
1669 param_env.hash_stable(hcx, hasher);
1670 value.hash_stable(hcx, hasher);
1671 }
1672}
1673
8bb4bdeb
XL
1674#[derive(Copy, Clone, Debug)]
1675pub struct Destructor {
1676 /// The def-id of the destructor method
1677 pub did: DefId,
8bb4bdeb
XL
1678}
1679
e9174d1e 1680bitflags! {
ea8adc8c
XL
1681 pub struct AdtFlags: u32 {
1682 const NO_ADT_FLAGS = 0;
1683 const IS_ENUM = 1 << 0;
1684 const IS_PHANTOM_DATA = 1 << 1;
1685 const IS_FUNDAMENTAL = 1 << 2;
1686 const IS_UNION = 1 << 3;
1687 const IS_BOX = 1 << 4;
abe05a73
XL
1688 /// Indicates whether this abstract data type will be expanded on in future (new
1689 /// fields/variants) and as such, whether downstream crates must match exhaustively on the
1690 /// fields/variants of this data type.
1691 ///
ff7c6d11 1692 /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
abe05a73 1693 const IS_NON_EXHAUSTIVE = 1 << 5;
e9174d1e
SL
1694 }
1695}
1696
32a655c1 1697#[derive(Debug)]
476ff2be 1698pub struct VariantDef {
b039eaaf
SL
1699 /// The variant's DefId. If this is a tuple-like struct,
1700 /// this is the DefId of the struct's ctor.
e9174d1e
SL
1701 pub did: DefId,
1702 pub name: Name, // struct's name if this is a struct
8bb4bdeb 1703 pub discr: VariantDiscr,
476ff2be 1704 pub fields: Vec<FieldDef>,
c30ab7b3 1705 pub ctor_kind: CtorKind,
e9174d1e
SL
1706}
1707
8bb4bdeb
XL
1708#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
1709pub enum VariantDiscr {
1710 /// Explicit value for this variant, i.e. `X = 123`.
1711 /// The `DefId` corresponds to the embedded constant.
1712 Explicit(DefId),
1713
1714 /// The previous variant's discriminant plus one.
1715 /// For efficiency reasons, the distance from the
1716 /// last `Explicit` discriminant is being stored,
1717 /// or `0` for the first variant, if it has none.
1718 Relative(usize),
1719}
1720
32a655c1 1721#[derive(Debug)]
476ff2be 1722pub struct FieldDef {
e9174d1e 1723 pub did: DefId,
94b46f34 1724 pub ident: Ident,
54a0048b 1725 pub vis: Visibility,
e9174d1e
SL
1726}
1727
1728/// The definition of an abstract data type - a struct or enum.
1729///
1730/// These are all interned (by intern_adt_def) into the adt_defs
1731/// table.
476ff2be 1732pub struct AdtDef {
e9174d1e 1733 pub did: DefId,
476ff2be 1734 pub variants: Vec<VariantDef>,
8bb4bdeb
XL
1735 flags: AdtFlags,
1736 pub repr: ReprOptions,
e9174d1e
SL
1737}
1738
94b46f34
XL
1739impl PartialOrd for AdtDef {
1740 fn partial_cmp(&self, other: &AdtDef) -> Option<Ordering> {
1741 Some(self.cmp(&other))
1742 }
1743}
1744
1745/// There should be only one AdtDef for each `did`, therefore
1746/// it is fine to implement `Ord` only based on `did`.
1747impl Ord for AdtDef {
1748 fn cmp(&self, other: &AdtDef) -> Ordering {
1749 self.did.cmp(&other.did)
1750 }
1751}
1752
476ff2be
SL
1753impl PartialEq for AdtDef {
1754 // AdtDef are always interned and this is part of TyS equality
e9174d1e 1755 #[inline]
8faf50e0 1756 fn eq(&self, other: &Self) -> bool { ptr::eq(self, other) }
e9174d1e
SL
1757}
1758
476ff2be 1759impl Eq for AdtDef {}
e9174d1e 1760
476ff2be 1761impl Hash for AdtDef {
e9174d1e
SL
1762 #[inline]
1763 fn hash<H: Hasher>(&self, s: &mut H) {
476ff2be 1764 (self as *const AdtDef).hash(s)
e9174d1e
SL
1765 }
1766}
1767
476ff2be 1768impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
9e0c209e 1769 fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
9cc50fc6
SL
1770 self.did.encode(s)
1771 }
1772}
1773
476ff2be 1774impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
e9174d1e 1775
cc61c64b 1776
0531ce1d 1777impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
cc61c64b 1778 fn hash_stable<W: StableHasherResult>(&self,
0531ce1d 1779 hcx: &mut StableHashingContext<'a>,
cc61c64b 1780 hasher: &mut StableHasher<W>) {
2c00a5a8
XL
1781 thread_local! {
1782 static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
1783 RefCell::new(FxHashMap());
1784 }
1785
1786 let hash: Fingerprint = CACHE.with(|cache| {
1787 let addr = self as *const AdtDef as usize;
1788 *cache.borrow_mut().entry(addr).or_insert_with(|| {
1789 let ty::AdtDef {
1790 did,
1791 ref variants,
1792 ref flags,
1793 ref repr,
1794 } = *self;
cc61c64b 1795
2c00a5a8
XL
1796 let mut hasher = StableHasher::new();
1797 did.hash_stable(hcx, &mut hasher);
1798 variants.hash_stable(hcx, &mut hasher);
1799 flags.hash_stable(hcx, &mut hasher);
1800 repr.hash_stable(hcx, &mut hasher);
1801
1802 hasher.finish()
1803 })
1804 });
1805
1806 hash.hash_stable(hcx, hasher);
cc61c64b
XL
1807 }
1808}
1809
0531ce1d 1810#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
9e0c209e 1811pub enum AdtKind { Struct, Union, Enum }
e9174d1e 1812
cc61c64b
XL
1813bitflags! {
1814 #[derive(RustcEncodable, RustcDecodable, Default)]
ea8adc8c
XL
1815 pub struct ReprFlags: u8 {
1816 const IS_C = 1 << 0;
83c7162d
XL
1817 const IS_SIMD = 1 << 1;
1818 const IS_TRANSPARENT = 1 << 2;
cc61c64b 1819 // Internal only for now. If true, don't reorder fields.
83c7162d 1820 const IS_LINEAR = 1 << 3;
cc61c64b
XL
1821
1822 // Any of these flags being set prevent field reordering optimisation.
1823 const IS_UNOPTIMISABLE = ReprFlags::IS_C.bits |
cc61c64b 1824 ReprFlags::IS_SIMD.bits |
ea8adc8c 1825 ReprFlags::IS_LINEAR.bits;
cc61c64b
XL
1826 }
1827}
1828
1829impl_stable_hash_for!(struct ReprFlags {
1830 bits
1831});
1832
1833
1834
8bb4bdeb
XL
1835/// Represents the repr options provided by the user,
1836#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
1837pub struct ReprOptions {
8bb4bdeb 1838 pub int: Option<attr::IntType>,
041b39d2 1839 pub align: u32,
83c7162d 1840 pub pack: u32,
cc61c64b 1841 pub flags: ReprFlags,
8bb4bdeb
XL
1842}
1843
cc61c64b
XL
1844impl_stable_hash_for!(struct ReprOptions {
1845 align,
83c7162d 1846 pack,
cc61c64b
XL
1847 int,
1848 flags
1849});
1850
8bb4bdeb
XL
1851impl ReprOptions {
1852 pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
cc61c64b
XL
1853 let mut flags = ReprFlags::empty();
1854 let mut size = None;
1855 let mut max_align = 0;
83c7162d 1856 let mut min_pack = 0;
8bb4bdeb
XL
1857 for attr in tcx.get_attrs(did).iter() {
1858 for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
cc61c64b 1859 flags.insert(match r {
2c00a5a8 1860 attr::ReprC => ReprFlags::IS_C,
83c7162d
XL
1861 attr::ReprPacked(pack) => {
1862 min_pack = if min_pack > 0 {
1863 cmp::min(pack, min_pack)
1864 } else {
1865 pack
1866 };
1867 ReprFlags::empty()
1868 },
2c00a5a8 1869 attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
cc61c64b
XL
1870 attr::ReprSimd => ReprFlags::IS_SIMD,
1871 attr::ReprInt(i) => {
1872 size = Some(i);
1873 ReprFlags::empty()
1874 },
1875 attr::ReprAlign(align) => {
1876 max_align = cmp::max(align, max_align);
1877 ReprFlags::empty()
1878 },
1879 });
8bb4bdeb
XL
1880 }
1881 }
1882
cc61c64b
XL
1883 // This is here instead of layout because the choice must make it into metadata.
1884 if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
1885 flags.insert(ReprFlags::IS_LINEAR);
1886 }
83c7162d 1887 ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
8bb4bdeb
XL
1888 }
1889
cc61c64b
XL
1890 #[inline]
1891 pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
1892 #[inline]
1893 pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
1894 #[inline]
83c7162d 1895 pub fn packed(&self) -> bool { self.pack > 0 }
cc61c64b 1896 #[inline]
2c00a5a8
XL
1897 pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
1898 #[inline]
cc61c64b
XL
1899 pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }
1900
8bb4bdeb 1901 pub fn discr_type(&self) -> attr::IntType {
2c00a5a8 1902 self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
8bb4bdeb
XL
1903 }
1904
1905 /// Returns true if this `#[repr()]` should inhabit "smart enum
1906 /// layout" optimizations, such as representing `Foo<&T>` as a
1907 /// single pointer.
1908 pub fn inhibit_enum_layout_opt(&self) -> bool {
cc61c64b 1909 self.c() || self.int.is_some()
8bb4bdeb 1910 }
83c7162d
XL
1911
1912 /// Returns true if this `#[repr()]` should inhibit struct field reordering
1913 /// optimizations, such as with repr(C) or repr(packed(1)).
1914 pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
1915 !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
1916 }
8bb4bdeb
XL
1917}
1918
476ff2be 1919impl<'a, 'gcx, 'tcx> AdtDef {
8bb4bdeb 1920 fn new(tcx: TyCtxt,
e9174d1e
SL
1921 did: DefId,
1922 kind: AdtKind,
8bb4bdeb
XL
1923 variants: Vec<VariantDef>,
1924 repr: ReprOptions) -> Self {
e9174d1e
SL
1925 let mut flags = AdtFlags::NO_ADT_FLAGS;
1926 let attrs = tcx.get_attrs(did);
1927 if attr::contains_name(&attrs, "fundamental") {
1928 flags = flags | AdtFlags::IS_FUNDAMENTAL;
1929 }
ea8adc8c 1930 if Some(did) == tcx.lang_items().phantom_data() {
e9174d1e
SL
1931 flags = flags | AdtFlags::IS_PHANTOM_DATA;
1932 }
ea8adc8c 1933 if Some(did) == tcx.lang_items().owned_box() {
32a655c1
SL
1934 flags = flags | AdtFlags::IS_BOX;
1935 }
abe05a73
XL
1936 if tcx.has_attr(did, "non_exhaustive") {
1937 flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
1938 }
9e0c209e
SL
1939 match kind {
1940 AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
1941 AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
1942 AdtKind::Struct => {}
e9174d1e 1943 }
476ff2be 1944 AdtDef {
041b39d2
XL
1945 did,
1946 variants,
1947 flags,
1948 repr,
e9174d1e
SL
1949 }
1950 }
1951
9e0c209e
SL
1952 #[inline]
1953 pub fn is_struct(&self) -> bool {
1954 !self.is_union() && !self.is_enum()
1955 }
1956
1957 #[inline]
1958 pub fn is_union(&self) -> bool {
8bb4bdeb 1959 self.flags.intersects(AdtFlags::IS_UNION)
9e0c209e
SL
1960 }
1961
1962 #[inline]
1963 pub fn is_enum(&self) -> bool {
8bb4bdeb 1964 self.flags.intersects(AdtFlags::IS_ENUM)
9e0c209e
SL
1965 }
1966
abe05a73
XL
1967 #[inline]
1968 pub fn is_non_exhaustive(&self) -> bool {
1969 self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
1970 }
1971
e9174d1e
SL
1972 /// Returns the kind of the ADT - Struct or Enum.
1973 #[inline]
1974 pub fn adt_kind(&self) -> AdtKind {
9e0c209e 1975 if self.is_enum() {
e9174d1e 1976 AdtKind::Enum
9e0c209e
SL
1977 } else if self.is_union() {
1978 AdtKind::Union
e9174d1e
SL
1979 } else {
1980 AdtKind::Struct
1981 }
1982 }
1983
9e0c209e
SL
1984 pub fn descr(&self) -> &'static str {
1985 match self.adt_kind() {
1986 AdtKind::Struct => "struct",
1987 AdtKind::Union => "union",
1988 AdtKind::Enum => "enum",
1989 }
1990 }
1991
1992 pub fn variant_descr(&self) -> &'static str {
1993 match self.adt_kind() {
1994 AdtKind::Struct => "struct",
1995 AdtKind::Union => "union",
1996 AdtKind::Enum => "variant",
1997 }
1998 }
1999
e9174d1e
SL
2000 /// Returns whether this type is #[fundamental] for the purposes
2001 /// of coherence checking.
2002 #[inline]
2003 pub fn is_fundamental(&self) -> bool {
8bb4bdeb 2004 self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
e9174d1e
SL
2005 }
2006
2007 /// Returns true if this is PhantomData<T>.
2008 #[inline]
2009 pub fn is_phantom_data(&self) -> bool {
8bb4bdeb 2010 self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
e9174d1e
SL
2011 }
2012
32a655c1
SL
2013 /// Returns true if this is Box<T>.
2014 #[inline]
2015 pub fn is_box(&self) -> bool {
8bb4bdeb 2016 self.flags.intersects(AdtFlags::IS_BOX)
32a655c1
SL
2017 }
2018
e9174d1e 2019 /// Returns whether this type has a destructor.
8bb4bdeb
XL
2020 pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
2021 self.destructor(tcx).is_some()
e9174d1e
SL
2022 }
2023
2c00a5a8
XL
2024 /// Asserts this is a struct or union and returns its unique variant.
2025 pub fn non_enum_variant(&self) -> &VariantDef {
2026 assert!(self.is_struct() || self.is_union());
e9174d1e
SL
2027 &self.variants[0]
2028 }
2029
e9174d1e 2030 #[inline]
a7813a04 2031 pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
7cac9316 2032 tcx.predicates_of(self.did)
e9174d1e
SL
2033 }
2034
2035 /// Returns an iterator over all fields contained
2036 /// by this ADT.
2037 #[inline]
476ff2be
SL
2038 pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
2039 self.variants.iter().flat_map(|v| v.fields.iter())
e9174d1e
SL
2040 }
2041
e9174d1e
SL
2042 pub fn is_payloadfree(&self) -> bool {
2043 !self.variants.is_empty() &&
2044 self.variants.iter().all(|v| v.fields.is_empty())
2045 }
2046
476ff2be 2047 pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
e9174d1e
SL
2048 self.variants
2049 .iter()
2050 .find(|v| v.did == vid)
2051 .expect("variant_with_id: unknown variant")
2052 }
2053
2054 pub fn variant_index_with_id(&self, vid: DefId) -> usize {
2055 self.variants
2056 .iter()
2057 .position(|v| v.did == vid)
2058 .expect("variant_index_with_id: unknown variant")
2059 }
2060
476ff2be 2061 pub fn variant_of_def(&self, def: Def) -> &VariantDef {
e9174d1e 2062 match def {
c30ab7b3
SL
2063 Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
2064 Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
2c00a5a8 2065 Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
54a0048b 2066 _ => bug!("unexpected def {:?} in variant_of_def", def)
e9174d1e
SL
2067 }
2068 }
2069
cc61c64b 2070 #[inline]
0531ce1d
XL
2071 pub fn eval_explicit_discr(
2072 &self,
2073 tcx: TyCtxt<'a, 'gcx, 'tcx>,
2074 expr_did: DefId,
2075 ) -> Option<Discr<'tcx>> {
2076 let param_env = ParamEnv::empty();
2077 let repr_type = self.repr.discr_type();
2078 let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
2079 let instance = ty::Instance::new(expr_did, substs);
2080 let cid = GlobalId {
2081 instance,
2082 promoted: None
2083 };
2084 match tcx.const_eval(param_env.and(cid)) {
94b46f34
XL
2085 Ok(val) => {
2086 // FIXME: Find the right type and use it instead of `val.ty` here
2087 if let Some(b) = val.assert_bits(tcx.global_tcx(), param_env.and(val.ty)) {
2088 trace!("discriminants: {} ({:?})", b, repr_type);
2089 Some(Discr {
2090 val: b,
2091 ty: val.ty,
2092 })
2093 } else {
2094 info!("invalid enum discriminant: {:#?}", val);
8faf50e0 2095 ::mir::interpret::struct_error(
94b46f34
XL
2096 tcx.at(tcx.def_span(expr_did)),
2097 "constant evaluation of enum discriminant resulted in non-integer",
2098 ).emit();
2099 None
2100 }
0531ce1d
XL
2101 }
2102 Err(err) => {
94b46f34
XL
2103 err.report_as_error(
2104 tcx.at(tcx.def_span(expr_did)),
2105 "could not evaluate enum discriminant",
2106 );
0531ce1d
XL
2107 if !expr_did.is_local() {
2108 span_bug!(tcx.def_span(expr_did),
2109 "variant discriminant evaluation succeeded \
2110 in its crate but failed locally");
2111 }
2112 None
2113 }
0531ce1d
XL
2114 }
2115 }
2116
2117 #[inline]
2118 pub fn discriminants(
2119 &'a self,
2120 tcx: TyCtxt<'a, 'gcx, 'tcx>,
2121 ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
8bb4bdeb
XL
2122 let repr_type = self.repr.discr_type();
2123 let initial = repr_type.initial_discriminant(tcx.global_tcx());
0531ce1d 2124 let mut prev_discr = None::<Discr<'tcx>>;
8bb4bdeb 2125 self.variants.iter().map(move |v| {
0531ce1d 2126 let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
8bb4bdeb 2127 if let VariantDiscr::Explicit(expr_did) = v.discr {
0531ce1d
XL
2128 if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
2129 discr = new_discr;
8bb4bdeb
XL
2130 }
2131 }
2132 prev_discr = Some(discr);
2133
2134 discr
2135 })
e9174d1e
SL
2136 }
2137
cc61c64b
XL
2138 /// Compute the discriminant value used by a specific variant.
2139 /// Unlike `discriminants`, this is (amortized) constant-time,
2140 /// only doing at most one query for evaluating an explicit
2141 /// discriminant (the last one before the requested variant),
2142 /// assuming there are no constant-evaluation errors there.
2143 pub fn discriminant_for_variant(&self,
2144 tcx: TyCtxt<'a, 'gcx, 'tcx>,
2145 variant_index: usize)
0531ce1d
XL
2146 -> Discr<'tcx> {
2147 let (val, offset) = self.discriminant_def_for_variant(variant_index);
2148 let explicit_value = val
2149 .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
2150 .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
2151 explicit_value.checked_add(tcx, offset as u128).0
2152 }
2153
2154 /// Yields a DefId for the discriminant and an offset to add to it
2155 /// Alternatively, if there is no explicit discriminant, returns the
2156 /// inferred discriminant directly
2157 pub fn discriminant_def_for_variant(
2158 &self,
2159 variant_index: usize,
2160 ) -> (Option<DefId>, usize) {
cc61c64b 2161 let mut explicit_index = variant_index;
0531ce1d 2162 let expr_did;
cc61c64b
XL
2163 loop {
2164 match self.variants[explicit_index].discr {
0531ce1d
XL
2165 ty::VariantDiscr::Relative(0) => {
2166 expr_did = None;
2167 break;
2168 },
cc61c64b
XL
2169 ty::VariantDiscr::Relative(distance) => {
2170 explicit_index -= distance;
2171 }
0531ce1d
XL
2172 ty::VariantDiscr::Explicit(did) => {
2173 expr_did = Some(did);
2174 break;
cc61c64b
XL
2175 }
2176 }
2177 }
0531ce1d 2178 (expr_did, variant_index - explicit_index)
cc61c64b
XL
2179 }
2180
8bb4bdeb 2181 pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
7cac9316 2182 tcx.adt_destructor(self.did)
e9174d1e
SL
2183 }
2184
cc61c64b 2185 /// Returns a list of types such that `Self: Sized` if and only
a7813a04
XL
2186 /// if that type is Sized, or `TyErr` if this type is recursive.
2187 ///
a7813a04
XL
2188 /// Oddly enough, checking that the sized-constraint is Sized is
2189 /// actually more expressive than checking all members:
2190 /// the Sized trait is inductive, so an associated type that references
2191 /// Self would prevent its containing ADT from being Sized.
2192 ///
2193 /// Due to normalization being eager, this applies even if
2194 /// the associated type is behind a pointer, e.g. issue #31299.
cc61c64b 2195 pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
94b46f34 2196 match tcx.try_adt_sized_constraint(DUMMY_SP, self.did) {
cc61c64b 2197 Ok(tys) => tys,
3b2f2976 2198 Err(mut bug) => {
cc61c64b
XL
2199 debug!("adt_sized_constraint: {:?} is recursive", self);
2200 // This should be reported as an error by `check_representable`.
2201 //
2202 // Consider the type as Sized in the meanwhile to avoid
3b2f2976
XL
2203 // further errors. Delay our `bug` diagnostic here to get
2204 // emitted later as well in case we accidentally otherwise don't
2205 // emit an error.
2206 bug.delay_as_bug();
cc61c64b 2207 tcx.intern_type_list(&[tcx.types.err])
a7813a04
XL
2208 }
2209 }
2210 }
2211
476ff2be
SL
2212 fn sized_constraint_for_ty(&self,
2213 tcx: TyCtxt<'a, 'tcx, 'tcx>,
476ff2be
SL
2214 ty: Ty<'tcx>)
2215 -> Vec<Ty<'tcx>> {
a7813a04
XL
2216 let result = match ty.sty {
2217 TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
32a655c1 2218 TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
ea8adc8c 2219 TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
a7813a04
XL
2220 vec![]
2221 }
2222
2c00a5a8
XL
2223 TyStr |
2224 TyDynamic(..) |
2225 TySlice(_) |
2226 TyForeign(..) |
2227 TyError |
2228 TyGeneratorWitness(..) => {
a7813a04
XL
2229 // these are never sized - return the target type
2230 vec![ty]
2231 }
2232
0531ce1d 2233 TyTuple(ref tys) => {
9e0c209e
SL
2234 match tys.last() {
2235 None => vec![],
cc61c64b 2236 Some(ty) => self.sized_constraint_for_ty(tcx, ty)
9e0c209e 2237 }
a7813a04
XL
2238 }
2239
9e0c209e 2240 TyAdt(adt, substs) => {
a7813a04 2241 // recursive case
cc61c64b 2242 let adt_tys = adt.sized_constraint(tcx);
a7813a04 2243 debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
cc61c64b
XL
2244 ty, adt_tys);
2245 adt_tys.iter()
2246 .map(|ty| ty.subst(tcx, substs))
2247 .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
2248 .collect()
a7813a04
XL
2249 }
2250
5bcae85e 2251 TyProjection(..) | TyAnon(..) => {
a7813a04
XL
2252 // must calculate explicitly.
2253 // FIXME: consider special-casing always-Sized projections
2254 vec![ty]
2255 }
2256
2257 TyParam(..) => {
2258 // perf hack: if there is a `T: Sized` bound, then
2259 // we know that `T` is Sized and do not need to check
2260 // it on the impl.
2261
ea8adc8c 2262 let sized_trait = match tcx.lang_items().sized_trait() {
a7813a04
XL
2263 Some(x) => x,
2264 _ => return vec![ty]
2265 };
83c7162d 2266 let sized_predicate = Binder::dummy(TraitRef {
a7813a04 2267 def_id: sized_trait,
c30ab7b3 2268 substs: tcx.mk_substs_trait(ty, &[])
a7813a04 2269 }).to_predicate();
7cac9316 2270 let predicates = tcx.predicates_of(self.did).predicates;
a7813a04
XL
2271 if predicates.into_iter().any(|p| p == sized_predicate) {
2272 vec![]
2273 } else {
2274 vec![ty]
2275 }
2276 }
2277
2278 TyInfer(..) => {
2279 bug!("unexpected type `{:?}` in sized_constraint_for_ty",
2280 ty)
2281 }
2282 };
2283 debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
2284 result
2285 }
2286}
2287
476ff2be 2288impl<'a, 'gcx, 'tcx> FieldDef {
a7813a04 2289 pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
7cac9316 2290 tcx.type_of(self.did).subst(tcx, subst)
e9174d1e 2291 }
e9174d1e
SL
2292}
2293
ff7c6d11
XL
2294/// Represents the various closure traits in the Rust language. This
2295/// will determine the type of the environment (`self`, in the
2296/// desuaring) argument that the closure expects.
2297///
2298/// You can get the environment type of a closure using
2299/// `tcx.closure_env_ty()`.
a7813a04 2300#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
e9174d1e
SL
2301pub enum ClosureKind {
2302 // Warning: Ordering is significant here! The ordering is chosen
2303 // because the trait Fn is a subtrait of FnMut and so in turn, and
2304 // hence we order it so that Fn < FnMut < FnOnce.
54a0048b
SL
2305 Fn,
2306 FnMut,
2307 FnOnce,
e9174d1e
SL
2308}
2309
a7813a04 2310impl<'a, 'tcx> ClosureKind {
ff7c6d11
XL
2311 // This is the initial value used when doing upvar inference.
2312 pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;
2313
a7813a04 2314 pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
476ff2be
SL
2315 match *self {
2316 ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
54a0048b 2317 ClosureKind::FnMut => {
476ff2be 2318 tcx.require_lang_item(FnMutTraitLangItem)
e9174d1e 2319 }
54a0048b 2320 ClosureKind::FnOnce => {
476ff2be 2321 tcx.require_lang_item(FnOnceTraitLangItem)
e9174d1e 2322 }
e9174d1e
SL
2323 }
2324 }
2325
2326 /// True if this a type that impls this closure kind
2327 /// must also implement `other`.
2328 pub fn extends(self, other: ty::ClosureKind) -> bool {
2329 match (self, other) {
54a0048b
SL
2330 (ClosureKind::Fn, ClosureKind::Fn) => true,
2331 (ClosureKind::Fn, ClosureKind::FnMut) => true,
2332 (ClosureKind::Fn, ClosureKind::FnOnce) => true,
2333 (ClosureKind::FnMut, ClosureKind::FnMut) => true,
2334 (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
2335 (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
e9174d1e
SL
2336 _ => false,
2337 }
2338 }
ff7c6d11
XL
2339
2340 /// Returns the representative scalar type for this closure kind.
2341 /// See `TyS::to_opt_closure_kind` for more details.
2342 pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
2343 match self {
2344 ty::ClosureKind::Fn => tcx.types.i8,
2345 ty::ClosureKind::FnMut => tcx.types.i16,
2346 ty::ClosureKind::FnOnce => tcx.types.i32,
2347 }
2348 }
e9174d1e
SL
2349}
2350
2351impl<'tcx> TyS<'tcx> {
2352 /// Iterator that walks `self` and any types reachable from
2353 /// `self`, in depth-first order. Note that just walks the types
2354 /// that appear in `self`, it does not descend into the fields of
2355 /// structs or variants. For example:
2356 ///
2357 /// ```notrust
2358 /// isize => { isize }
2359 /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
2360 /// [isize] => { [isize], isize }
2361 /// ```
2362 pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
2363 TypeWalker::new(self)
2364 }
2365
2366 /// Iterator that walks the immediate children of `self`. Hence
2367 /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
2368 /// (but not `i32`, like `walk`).
476ff2be 2369 pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
e9174d1e
SL
2370 walk::walk_shallow(self)
2371 }
2372
2373 /// Walks `ty` and any types appearing within `ty`, invoking the
2374 /// callback `f` on each type. If the callback returns false, then the
2375 /// children of the current type are ignored.
2376 ///
2377 /// Note: prefer `ty.walk()` where possible.
2378 pub fn maybe_walk<F>(&'tcx self, mut f: F)
2379 where F : FnMut(Ty<'tcx>) -> bool
2380 {
2381 let mut walker = self.walk();
2382 while let Some(ty) = walker.next() {
2383 if !f(ty) {
2384 walker.skip_current_subtree();
2385 }
2386 }
2387 }
2388}
2389
e9174d1e
SL
2390impl BorrowKind {
2391 pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2392 match m {
2393 hir::MutMutable => MutBorrow,
2394 hir::MutImmutable => ImmBorrow,
2395 }
2396 }
2397
2398 /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
2399 /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
2400 /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
2401 /// question.
2402 pub fn to_mutbl_lossy(self) -> hir::Mutability {
2403 match self {
2404 MutBorrow => hir::MutMutable,
2405 ImmBorrow => hir::MutImmutable,
2406
2407 // We have no type corresponding to a unique imm borrow, so
2408 // use `&mut`. It gives all the capabilities of an `&uniq`
2409 // and hence is a safe "over approximation".
2410 UniqueImmBorrow => hir::MutMutable,
2411 }
2412 }
2413
2414 pub fn to_user_str(&self) -> &'static str {
2415 match *self {
2416 MutBorrow => "mutable",
2417 ImmBorrow => "immutable",
2418 UniqueImmBorrow => "uniquely immutable",
2419 }
2420 }
2421}
2422
cc61c64b
XL
2423#[derive(Debug, Clone)]
2424pub enum Attributes<'gcx> {
0531ce1d 2425 Owned(Lrc<[ast::Attribute]>),
cc61c64b
XL
2426 Borrowed(&'gcx [ast::Attribute])
2427}
2428
2429impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
2430 type Target = [ast::Attribute];
2431
2432 fn deref(&self) -> &[ast::Attribute] {
2433 match self {
2434 &Attributes::Owned(ref data) => &data,
2435 &Attributes::Borrowed(data) => data
2436 }
2437 }
2438}
2439
a7813a04 2440impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
32a655c1 2441 pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
7cac9316 2442 self.typeck_tables_of(self.hir.body_owner_def_id(body))
32a655c1
SL
2443 }
2444
7cac9316
XL
2445 /// Returns an iterator of the def-ids for all body-owners in this
2446 /// crate. If you would prefer to iterate over the bodies
2447 /// themselves, you can do `self.hir.krate().body_ids.iter()`.
0531ce1d
XL
2448 pub fn body_owners(
2449 self,
2450 ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
7cac9316
XL
2451 self.hir.krate()
2452 .body_ids
2453 .iter()
2454 .map(move |&body_id| self.hir.body_owner_def_id(body_id))
7453a54e
SL
2455 }
2456
94b46f34
XL
2457 pub fn par_body_owners<F: Fn(DefId) + sync::Sync + sync::Send>(self, f: F) {
2458 par_iter(&self.hir.krate().body_ids).for_each(|&body_id| {
2459 f(self.hir.body_owner_def_id(body_id))
2460 });
2461 }
2462
a7813a04 2463 pub fn expr_span(self, id: NodeId) -> Span {
32a655c1
SL
2464 match self.hir.find(id) {
2465 Some(hir_map::NodeExpr(e)) => {
e9174d1e
SL
2466 e.span
2467 }
2468 Some(f) => {
54a0048b 2469 bug!("Node id {} is not an expr: {:?}", id, f);
e9174d1e
SL
2470 }
2471 None => {
54a0048b 2472 bug!("Node id {} is not present in the node map", id);
e9174d1e
SL
2473 }
2474 }
2475 }
2476
476ff2be
SL
2477 pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
2478 self.associated_items(id)
2479 .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2480 .collect()
e9174d1e
SL
2481 }
2482
8bb4bdeb
XL
2483 pub fn trait_relevant_for_never(self, did: DefId) -> bool {
2484 self.associated_items(did).any(|item| {
2485 item.relevant_for_never()
e9174d1e
SL
2486 })
2487 }
2488
7cac9316
XL
2489 pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
2490 let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
2491 match self.hir.get(node_id) {
2492 hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
2493 _ => false,
2494 }
2495 } else {
2496 match self.describe_def(def_id).expect("no def for def-id") {
2497 Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
2498 _ => false,
2499 }
2500 };
8bb4bdeb 2501
7cac9316
XL
2502 if is_associated_item {
2503 Some(self.associated_item(def_id))
2504 } else {
2505 None
2506 }
e9174d1e
SL
2507 }
2508
476ff2be
SL
2509 fn associated_item_from_trait_item_ref(self,
2510 parent_def_id: DefId,
7cac9316 2511 parent_vis: &hir::Visibility,
32a655c1 2512 trait_item_ref: &hir::TraitItemRef)
476ff2be 2513 -> AssociatedItem {
32a655c1
SL
2514 let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2515 let (kind, has_self) = match trait_item_ref.kind {
2516 hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
2517 hir::AssociatedItemKind::Method { has_self } => {
2518 (ty::AssociatedKind::Method, has_self)
476ff2be 2519 }
32a655c1 2520 hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
8faf50e0 2521 hir::AssociatedItemKind::Existential => bug!("only impls can have existentials"),
476ff2be
SL
2522 };
2523
2524 AssociatedItem {
8faf50e0 2525 ident: trait_item_ref.ident,
041b39d2 2526 kind,
7cac9316
XL
2527 // Visibility of trait items is inherited from their traits.
2528 vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
32a655c1 2529 defaultness: trait_item_ref.defaultness,
041b39d2 2530 def_id,
476ff2be
SL
2531 container: TraitContainer(parent_def_id),
2532 method_has_self_argument: has_self
2533 }
2534 }
2535
2536 fn associated_item_from_impl_item_ref(self,
2537 parent_def_id: DefId,
476ff2be
SL
2538 impl_item_ref: &hir::ImplItemRef)
2539 -> AssociatedItem {
32a655c1 2540 let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
476ff2be
SL
2541 let (kind, has_self) = match impl_item_ref.kind {
2542 hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
2543 hir::AssociatedItemKind::Method { has_self } => {
2544 (ty::AssociatedKind::Method, has_self)
2545 }
2546 hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
8faf50e0 2547 hir::AssociatedItemKind::Existential => (ty::AssociatedKind::Existential, false),
476ff2be
SL
2548 };
2549
8faf50e0
XL
2550 AssociatedItem {
2551 ident: impl_item_ref.ident,
041b39d2 2552 kind,
7cac9316
XL
2553 // Visibility of trait impl items doesn't matter.
2554 vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
476ff2be 2555 defaultness: impl_item_ref.defaultness,
041b39d2 2556 def_id,
476ff2be
SL
2557 container: ImplContainer(parent_def_id),
2558 method_has_self_argument: has_self
2559 }
2560 }
2561
83c7162d
XL
2562 pub fn field_index(self, node_id: NodeId, tables: &TypeckTables) -> usize {
2563 let hir_id = self.hir.node_to_hir_id(node_id);
2564 tables.field_indices().get(hir_id).cloned().expect("no index for a field")
2565 }
2566
2567 pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
2568 variant.fields.iter().position(|field| {
94b46f34 2569 self.adjust_ident(ident, variant.did, DUMMY_NODE_ID).0 == field.ident.modern()
83c7162d
XL
2570 })
2571 }
2572
0531ce1d
XL
2573 pub fn associated_items(
2574 self,
2575 def_id: DefId,
8faf50e0 2576 ) -> impl Iterator<Item = AssociatedItem> + 'a {
476ff2be 2577 let def_ids = self.associated_item_def_ids(def_id);
0531ce1d 2578 Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
8faf50e0 2579 as Box<dyn Iterator<Item = AssociatedItem> + 'a>
e9174d1e
SL
2580 }
2581
cc61c64b
XL
2582 /// Returns true if the impls are the same polarity and are implementing
2583 /// a trait which contains no items
2584 pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
0531ce1d 2585 if !self.features().overlapping_marker_traits {
cc61c64b
XL
2586 return false;
2587 }
2588 let trait1_is_empty = self.impl_trait_ref(def_id1)
2589 .map_or(false, |trait_ref| {
2590 self.associated_item_def_ids(trait_ref.def_id).is_empty()
2591 });
2592 let trait2_is_empty = self.impl_trait_ref(def_id2)
2593 .map_or(false, |trait_ref| {
2594 self.associated_item_def_ids(trait_ref.def_id).is_empty()
2595 });
7cac9316 2596 self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
cc61c64b
XL
2597 && trait1_is_empty
2598 && trait2_is_empty
2599 }
2600
5bcae85e
SL
2601 // Returns `ty::VariantDef` if `def` refers to a struct,
2602 // or variant or their constructors, panics otherwise.
476ff2be 2603 pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
5bcae85e 2604 match def {
c30ab7b3 2605 Def::Variant(did) | Def::VariantCtor(did, ..) => {
9e0c209e 2606 let enum_did = self.parent_def_id(did).unwrap();
7cac9316 2607 self.adt_def(enum_did).variant_with_id(did)
5bcae85e 2608 }
9e0c209e 2609 Def::Struct(did) | Def::Union(did) => {
2c00a5a8 2610 self.adt_def(did).non_enum_variant()
5bcae85e 2611 }
c30ab7b3
SL
2612 Def::StructCtor(ctor_did, ..) => {
2613 let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2c00a5a8 2614 self.adt_def(did).non_enum_variant()
c30ab7b3 2615 }
5bcae85e
SL
2616 _ => bug!("expect_variant_def used with unexpected def {:?}", def)
2617 }
2618 }
2619
abe05a73
XL
2620 /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
2621 pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
2622 let def_key = self.def_key(variant_def.did);
2623 match def_key.disambiguated_data.data {
2624 // for enum variants and tuple structs, the def-id of the ADT itself
2625 // is the *parent* of the variant
2626 DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
2627 DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },
2628
2629 // otherwise, for structs and unions, they share a def-id
2630 _ => variant_def.did,
2631 }
2632 }
2633
ea8adc8c 2634 pub fn item_name(self, id: DefId) -> InternedString {
ff7c6d11 2635 if id.index == CRATE_DEF_INDEX {
83c7162d 2636 self.original_crate_name(id.krate).as_interned_str()
e9174d1e 2637 } else {
ea8adc8c 2638 let def_key = self.def_key(id);
9e0c209e 2639 // The name of a StructCtor is that of its struct parent.
32a655c1 2640 if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
9e0c209e
SL
2641 self.item_name(DefId {
2642 krate: id.krate,
2643 index: def_key.parent.unwrap()
2644 })
2645 } else {
2646 def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
2647 bug!("item_name: no name for {:?}", self.def_path(id));
2648 })
2649 }
e9174d1e
SL
2650 }
2651 }
2652
cc61c64b
XL
2653 /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
2654 pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
7cac9316 2655 -> &'gcx Mir<'gcx>
cc61c64b
XL
2656 {
2657 match instance {
7cac9316
XL
2658 ty::InstanceDef::Item(did) => {
2659 self.optimized_mir(did)
2660 }
2661 ty::InstanceDef::Intrinsic(..) |
2662 ty::InstanceDef::FnPtrShim(..) |
2663 ty::InstanceDef::Virtual(..) |
2664 ty::InstanceDef::ClosureOnceShim { .. } |
3b2f2976
XL
2665 ty::InstanceDef::DropGlue(..) |
2666 ty::InstanceDef::CloneShim(..) => {
7cac9316
XL
2667 self.mir_shims(instance)
2668 }
cc61c64b
XL
2669 }
2670 }
2671
8bb4bdeb
XL
2672 /// Given the DefId of an item, returns its MIR, borrowed immutably.
2673 /// Returns None if there is no MIR for the DefId
7cac9316
XL
2674 pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
2675 if self.is_mir_available(did) {
2676 Some(self.optimized_mir(did))
2677 } else {
2678 None
8bb4bdeb 2679 }
c30ab7b3
SL
2680 }
2681
e9174d1e 2682 /// Get the attributes of a definition.
cc61c64b 2683 pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
32a655c1 2684 if let Some(id) = self.hir.as_local_node_id(did) {
cc61c64b 2685 Attributes::Borrowed(self.hir.attrs(id))
e9174d1e 2686 } else {
7cac9316 2687 Attributes::Owned(self.item_attrs(did))
e9174d1e
SL
2688 }
2689 }
2690
2691 /// Determine whether an item is annotated with an attribute
a7813a04 2692 pub fn has_attr(self, did: DefId, attr: &str) -> bool {
ff7c6d11 2693 attr::contains_name(&self.get_attrs(did), attr)
e9174d1e
SL
2694 }
2695
abe05a73 2696 /// Returns true if this is an `auto trait`.
abe05a73
XL
2697 pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2698 self.trait_def(trait_def_id).has_auto_impl
b039eaaf
SL
2699 }
2700
ea8adc8c
XL
2701 pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
2702 self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
2703 }
2704
e9174d1e
SL
2705 /// Given the def_id of an impl, return the def_id of the trait it implements.
2706 /// If it implements no trait, return `None`.
a7813a04 2707 pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
e9174d1e
SL
2708 self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2709 }
2710
2711 /// If the given def ID describes a method belonging to an impl, return the
2712 /// ID of the impl that the method belongs to. Otherwise, return `None`.
a7813a04 2713 pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
8bb4bdeb 2714 let item = if def_id.krate != LOCAL_CRATE {
7cac9316 2715 if let Some(Def::Method(_)) = self.describe_def(def_id) {
8bb4bdeb
XL
2716 Some(self.associated_item(def_id))
2717 } else {
2718 None
2719 }
2720 } else {
7cac9316 2721 self.opt_associated_item(def_id)
8bb4bdeb
XL
2722 };
2723
8faf50e0
XL
2724 item.and_then(|trait_item|
2725 match trait_item.container {
2726 TraitContainer(_) => None,
2727 ImplContainer(def_id) => Some(def_id),
e9174d1e 2728 }
8faf50e0 2729 )
e9174d1e
SL
2730 }
2731
54a0048b
SL
2732 /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
2733 /// with the name of the crate containing the impl.
476ff2be 2734 pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
54a0048b 2735 if impl_did.is_local() {
32a655c1
SL
2736 let node_id = self.hir.as_local_node_id(impl_did).unwrap();
2737 Ok(self.hir.span(node_id))
54a0048b 2738 } else {
ea8adc8c 2739 Err(self.crate_name(impl_did.krate))
54a0048b
SL
2740 }
2741 }
7cac9316 2742
ea8adc8c
XL
2743 // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
2744 // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
2745 // definition's parent/scope to perform comparison.
8faf50e0
XL
2746 pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
2747 self.adjust_ident(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.modern()
7cac9316
XL
2748 }
2749
2750 pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
8faf50e0
XL
2751 ident = ident.modern();
2752 let target_expansion = match scope.krate {
2753 LOCAL_CRATE => self.hir.definitions().expansion_that_defined(scope.index),
7cac9316
XL
2754 _ => Mark::root(),
2755 };
8faf50e0
XL
2756 let scope = match ident.span.adjust(target_expansion) {
2757 Some(actual_expansion) =>
2758 self.hir.definitions().parent_module_of_macro_def(actual_expansion),
ea8adc8c 2759 None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
7cac9316
XL
2760 None => self.hir.get_module_parent(block),
2761 };
2762 (ident, scope)
2763 }
e9174d1e
SL
2764}
2765
a7813a04
XL
2766impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2767 pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
54a0048b 2768 F: FnOnce(&[hir::Freevar]) -> T,
e9174d1e 2769 {
ea8adc8c
XL
2770 let def_id = self.hir.local_def_id(fid);
2771 match self.freevars(def_id) {
e9174d1e 2772 None => f(&[]),
ea8adc8c 2773 Some(d) => f(&d),
e9174d1e
SL
2774 }
2775 }
e9174d1e 2776}
cc61c64b
XL
2777
2778fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
2779 -> AssociatedItem
2780{
2781 let id = tcx.hir.as_local_node_id(def_id).unwrap();
2782 let parent_id = tcx.hir.get_parent(id);
2783 let parent_def_id = tcx.hir.local_def_id(parent_id);
2784 let parent_item = tcx.hir.expect_item(parent_id);
2785 match parent_item.node {
8faf50e0 2786 hir::ItemKind::Impl(.., ref impl_item_refs) => {
cc61c64b 2787 if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
7cac9316
XL
2788 let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
2789 impl_item_ref);
cc61c64b
XL
2790 debug_assert_eq!(assoc_item.def_id, def_id);
2791 return assoc_item;
2792 }
2793 }
2794
8faf50e0 2795 hir::ItemKind::Trait(.., ref trait_item_refs) => {
cc61c64b 2796 if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
7cac9316
XL
2797 let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
2798 &parent_item.vis,
2799 trait_item_ref);
cc61c64b
XL
2800 debug_assert_eq!(assoc_item.def_id, def_id);
2801 return assoc_item;
2802 }
2803 }
2804
7cac9316 2805 _ => { }
cc61c64b 2806 }
7cac9316
XL
2807
2808 span_bug!(parent_item.span,
2809 "unexpected parent of trait or impl item or item not found: {:?}",
2810 parent_item.node)
cc61c64b
XL
2811}
2812
2813/// Calculates the Sized-constraint.
2814///
2815/// In fact, there are only a few options for the types in the constraint:
2816/// - an obviously-unsized type
2817/// - a type parameter or projection whose Sizedness can't be known
2818/// - a tuple of type parameters or projections, if there are multiple
2819/// such.
2820/// - a TyError, if a type contained itself. The representability
2821/// check should catch this case.
2822fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2823 def_id: DefId)
2824 -> &'tcx [Ty<'tcx>] {
7cac9316 2825 let def = tcx.adt_def(def_id);
cc61c64b 2826
94b46f34 2827 let result = tcx.mk_type_list(def.variants.iter().flat_map(|v| {
cc61c64b
XL
2828 v.fields.last()
2829 }).flat_map(|f| {
7cac9316 2830 def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
94b46f34 2831 }));
cc61c64b
XL
2832
2833 debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2834
2835 result
2836}
2837
cc61c64b
XL
2838fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2839 def_id: DefId)
0531ce1d 2840 -> Lrc<Vec<DefId>> {
cc61c64b
XL
2841 let id = tcx.hir.as_local_node_id(def_id).unwrap();
2842 let item = tcx.hir.expect_item(id);
2843 let vec: Vec<_> = match item.node {
8faf50e0 2844 hir::ItemKind::Trait(.., ref trait_item_refs) => {
cc61c64b
XL
2845 trait_item_refs.iter()
2846 .map(|trait_item_ref| trait_item_ref.id)
2847 .map(|id| tcx.hir.local_def_id(id.node_id))
2848 .collect()
2849 }
8faf50e0 2850 hir::ItemKind::Impl(.., ref impl_item_refs) => {
cc61c64b
XL
2851 impl_item_refs.iter()
2852 .map(|impl_item_ref| impl_item_ref.id)
2853 .map(|id| tcx.hir.local_def_id(id.node_id))
2854 .collect()
2855 }
8faf50e0 2856 hir::ItemKind::TraitAlias(..) => vec![],
cc61c64b
XL
2857 _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
2858 };
0531ce1d 2859 Lrc::new(vec)
cc61c64b
XL
2860}
2861
7cac9316
XL
2862fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
2863 tcx.hir.span_if_local(def_id).unwrap()
2864}
2865
2866/// If the given def ID describes an item belonging to a trait,
2867/// return the ID of the trait that the trait item belongs to.
2868/// Otherwise, return `None`.
2869fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
2870 tcx.opt_associated_item(def_id)
2871 .and_then(|associated_item| {
2872 match associated_item.container {
2873 TraitContainer(def_id) => Some(def_id),
2874 ImplContainer(_) => None
2875 }
2876 })
2877}
2878
8faf50e0
XL
2879/// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition
2880pub fn is_impl_trait_defn(tcx: TyCtxt, def_id: DefId) -> Option<DefId> {
2881 if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
2882 if let hir::map::NodeItem(item) = tcx.hir.get(node_id) {
2883 if let hir::ItemKind::Existential(ref exist_ty) = item.node {
2884 return exist_ty.impl_trait_fn;
2885 }
2886 }
2887 }
2888 None
2889}
2890
7cac9316
XL
2891/// See `ParamEnv` struct def'n for details.
2892fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2893 def_id: DefId)
2894 -> ParamEnv<'tcx> {
94b46f34 2895
8faf50e0
XL
2896 // The param_env of an impl Trait type is its defining function's param_env
2897 if let Some(parent) = is_impl_trait_defn(tcx, def_id) {
94b46f34
XL
2898 return param_env(tcx, parent);
2899 }
7cac9316
XL
2900 // Compute the bounds on Self and the type parameters.
2901
8faf50e0
XL
2902 let InstantiatedPredicates { predicates } =
2903 tcx.predicates_of(def_id).instantiate_identity(tcx);
7cac9316
XL
2904
2905 // Finally, we have to normalize the bounds in the environment, in
2906 // case they contain any associated type projections. This process
2907 // can yield errors if the put in illegal associated types, like
2908 // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
2909 // report these errors right here; this doesn't actually feel
2910 // right to me, because constructing the environment feels like a
2911 // kind of a "idempotent" action, but I'm not sure where would be
2912 // a better place. In practice, we construct environments for
2913 // every fn once during type checking, and we'll abort if there
2914 // are any errors at that point, so after type checking you can be
2915 // sure that this will succeed without errors anyway.
2916
2917 let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2918 traits::Reveal::UserFacing);
2919
2920 let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
2921 tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
2922 });
2923 let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
2924 traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
2925}
2926
ea8adc8c 2927fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
abe05a73 2928 crate_num: CrateNum) -> CrateDisambiguator {
ea8adc8c
XL
2929 assert_eq!(crate_num, LOCAL_CRATE);
2930 tcx.sess.local_crate_disambiguator()
2931}
2932
2933fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2934 crate_num: CrateNum) -> Symbol {
2935 assert_eq!(crate_num, LOCAL_CRATE);
2936 tcx.crate_name.clone()
2937}
2938
ff7c6d11
XL
2939fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2940 crate_num: CrateNum)
2941 -> Svh {
2942 assert_eq!(crate_num, LOCAL_CRATE);
2943 tcx.hir.crate_hash
2944}
2945
2c00a5a8
XL
2946fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2947 instance_def: InstanceDef<'tcx>)
2948 -> usize {
2949 match instance_def {
2950 InstanceDef::Item(..) |
2951 InstanceDef::DropGlue(..) => {
2952 let mir = tcx.instance_mir(instance_def);
2953 mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
2954 },
2955 // Estimate the size of other compiler-generated shims to be 1.
2956 _ => 1
2957 }
2958}
2959
94b46f34 2960pub fn provide(providers: &mut ty::query::Providers) {
ea8adc8c 2961 context::provide(providers);
abe05a73 2962 erase_regions::provide(providers);
ff7c6d11
XL
2963 layout::provide(providers);
2964 util::provide(providers);
94b46f34 2965 *providers = ty::query::Providers {
cc61c64b
XL
2966 associated_item,
2967 associated_item_def_ids,
2968 adt_sized_constraint,
7cac9316
XL
2969 def_span,
2970 param_env,
2971 trait_of_item,
ea8adc8c
XL
2972 crate_disambiguator,
2973 original_crate_name,
ff7c6d11 2974 crate_hash,
7cac9316 2975 trait_impls_of: trait_def::trait_impls_of_provider,
2c00a5a8 2976 instance_def_size_estimate,
cc61c64b
XL
2977 ..*providers
2978 };
2979}
2980
cc61c64b
XL
2981/// A map for the local crate mapping each type to a vector of its
2982/// inherent impls. This is not meant to be used outside of coherence;
2983/// rather, you should request the vector for a specific type via
7cac9316
XL
2984/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
2985/// (constructing this map requires touching the entire crate).
cc61c64b
XL
2986#[derive(Clone, Debug)]
2987pub struct CrateInherentImpls {
0531ce1d 2988 pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
cc61c64b
XL
2989}
2990
0531ce1d 2991#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
7cac9316
XL
2992pub struct SymbolName {
2993 // FIXME: we don't rely on interning or equality here - better have
2994 // this be a `&'tcx str`.
2995 pub name: InternedString
2996}
2997
ea8adc8c
XL
2998impl_stable_hash_for!(struct self::SymbolName {
2999 name
3000});
3001
0531ce1d
XL
3002impl SymbolName {
3003 pub fn new(name: &str) -> SymbolName {
3004 SymbolName {
83c7162d 3005 name: Symbol::intern(name).as_interned_str()
0531ce1d
XL
3006 }
3007 }
7cac9316 3008
83c7162d
XL
3009 pub fn as_str(&self) -> LocalInternedString {
3010 self.name.as_str()
3011 }
7cac9316
XL
3012}
3013
3014impl fmt::Display for SymbolName {
3015 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
3016 fmt::Display::fmt(&self.name, fmt)
3017 }
3018}
0531ce1d
XL
3019
3020impl fmt::Debug for SymbolName {
3021 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
3022 fmt::Display::fmt(&self.name, fmt)
3023 }
3024}