]> git.proxmox.com Git - rustc.git/blame - src/librustc/ty/wf.rs
New upstream version 1.34.2+dfsg1
[rustc.git] / src / librustc / ty / wf.rs
CommitLineData
9fa01778
XL
1use crate::hir;
2use crate::hir::def_id::DefId;
3use crate::infer::InferCtxt;
4use crate::ty::subst::Substs;
5use crate::traits;
6use crate::ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
e9174d1e 7use std::iter::once;
3157f602 8use syntax_pos::Span;
9fa01778 9use crate::middle::lang_items;
e9174d1e
SL
10
11/// Returns the set of obligations needed to make `ty` well-formed.
12/// If `ty` contains unresolved inference variables, this may include
13/// further WF obligations. However, if `ty` IS an unresolved
14/// inference variable, returns `None`, because we are not able to
15/// make any progress at all. This is to prevent "livelock" where we
16/// say "$0 is WF if $0 is WF".
a7813a04 17pub fn obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
7cac9316 18 param_env: ty::ParamEnv<'tcx>,
9fa01778 19 body_id: hir::HirId,
a7813a04
XL
20 ty: Ty<'tcx>,
21 span: Span)
22 -> Option<Vec<traits::PredicateObligation<'tcx>>>
e9174d1e 23{
041b39d2
XL
24 let mut wf = WfPredicates { infcx,
25 param_env,
26 body_id,
27 span,
9cc50fc6 28 out: vec![] };
e9174d1e
SL
29 if wf.compute(ty) {
30 debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
31 let result = wf.normalize();
32 debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
33 Some(result)
34 } else {
35 None // no progress made, return None
36 }
37}
38
39/// Returns the obligations that make this trait reference
40/// well-formed. For example, if there is a trait `Set` defined like
41/// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
42/// if `Bar: Eq`.
a7813a04 43pub fn trait_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
7cac9316 44 param_env: ty::ParamEnv<'tcx>,
9fa01778 45 body_id: hir::HirId,
a7813a04
XL
46 trait_ref: &ty::TraitRef<'tcx>,
47 span: Span)
48 -> Vec<traits::PredicateObligation<'tcx>>
e9174d1e 49{
7cac9316 50 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
3b2f2976 51 wf.compute_trait_ref(trait_ref, Elaborate::All);
e9174d1e
SL
52 wf.normalize()
53}
54
a7813a04 55pub fn predicate_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
7cac9316 56 param_env: ty::ParamEnv<'tcx>,
9fa01778 57 body_id: hir::HirId,
a7813a04
XL
58 predicate: &ty::Predicate<'tcx>,
59 span: Span)
60 -> Vec<traits::PredicateObligation<'tcx>>
e9174d1e 61{
7cac9316 62 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
e9174d1e
SL
63
64 // (*) ok to skip binders, because wf code is prepared for it
65 match *predicate {
66 ty::Predicate::Trait(ref t) => {
3b2f2976 67 wf.compute_trait_ref(&t.skip_binder().trait_ref, Elaborate::None); // (*)
e9174d1e 68 }
e9174d1e
SL
69 ty::Predicate::RegionOutlives(..) => {
70 }
71 ty::Predicate::TypeOutlives(ref t) => {
72 wf.compute(t.skip_binder().0);
73 }
74 ty::Predicate::Projection(ref t) => {
75 let t = t.skip_binder(); // (*)
76 wf.compute_projection(t.projection_ty);
77 wf.compute(t.ty);
78 }
79 ty::Predicate::WellFormed(t) => {
80 wf.compute(t);
81 }
82 ty::Predicate::ObjectSafe(_) => {
83 }
a7813a04
XL
84 ty::Predicate::ClosureKind(..) => {
85 }
cc61c64b
XL
86 ty::Predicate::Subtype(ref data) => {
87 wf.compute(data.skip_binder().a); // (*)
88 wf.compute(data.skip_binder().b); // (*)
89 }
ea8adc8c
XL
90 ty::Predicate::ConstEvaluatable(def_id, substs) => {
91 let obligations = wf.nominal_obligations(def_id, substs);
92 wf.out.extend(obligations);
93
94 for ty in substs.types() {
95 wf.compute(ty);
96 }
97 }
e9174d1e
SL
98 }
99
100 wf.normalize()
101}
102
a7813a04
XL
103struct WfPredicates<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
104 infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
7cac9316 105 param_env: ty::ParamEnv<'tcx>,
9fa01778 106 body_id: hir::HirId,
e9174d1e
SL
107 span: Span,
108 out: Vec<traits::PredicateObligation<'tcx>>,
e9174d1e
SL
109}
110
3b2f2976
XL
111/// Controls whether we "elaborate" supertraits and so forth on the WF
112/// predicates. This is a kind of hack to address #43784. The
113/// underlying problem in that issue was a trait structure like:
114///
115/// ```
116/// trait Foo: Copy { }
117/// trait Bar: Foo { }
118/// impl<T: Bar> Foo for T { }
119/// impl<T> Bar for T { }
120/// ```
121///
122/// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
123/// we decide that this is true because `T: Bar` is in the
124/// where-clauses (and we can elaborate that to include `T:
125/// Copy`). This wouldn't be a problem, except that when we check the
126/// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
127/// impl. And so nowhere did we check that `T: Copy` holds!
128///
129/// To resolve this, we elaborate the WF requirements that must be
130/// proven when checking impls. This means that (e.g.) the `impl Bar
131/// for T` will be forced to prove not only that `T: Foo` but also `T:
132/// Copy` (which it won't be able to do, because there is no `Copy`
133/// impl for `T`).
134#[derive(Debug, PartialEq, Eq, Copy, Clone)]
135enum Elaborate {
136 All,
137 None,
138}
139
a7813a04 140impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
e9174d1e 141 fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
9cc50fc6 142 traits::ObligationCause::new(self.span, self.body_id, code)
e9174d1e
SL
143 }
144
145 fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
146 let cause = self.cause(traits::MiscObligation);
147 let infcx = &mut self.infcx;
7cac9316 148 let param_env = self.param_env;
e9174d1e 149 self.out.iter()
a1dfa0c6 150 .inspect(|pred| assert!(!pred.has_escaping_bound_vars()))
e9174d1e
SL
151 .flat_map(|pred| {
152 let mut selcx = traits::SelectionContext::new(infcx);
7cac9316 153 let pred = traits::normalize(&mut selcx, param_env, cause.clone(), pred);
e9174d1e
SL
154 once(pred.value).chain(pred.obligations)
155 })
156 .collect()
157 }
158
e9174d1e
SL
159 /// Pushes the obligations required for `trait_ref` to be WF into
160 /// `self.out`.
3b2f2976 161 fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
e9174d1e 162 let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
e9174d1e
SL
163
164 let cause = self.cause(traits::MiscObligation);
7cac9316 165 let param_env = self.param_env;
3b2f2976
XL
166
167 if let Elaborate::All = elaborate {
168 let predicates = obligations.iter()
169 .map(|obligation| obligation.predicate.clone())
170 .collect();
171 let implied_obligations = traits::elaborate_predicates(self.infcx.tcx, predicates);
172 let implied_obligations = implied_obligations.map(|pred| {
173 traits::Obligation::new(cause.clone(), param_env, pred)
174 });
175 self.out.extend(implied_obligations);
176 }
177
178 self.out.extend(obligations);
179
e9174d1e 180 self.out.extend(
9e0c209e 181 trait_ref.substs.types()
a1dfa0c6 182 .filter(|ty| !ty.has_escaping_bound_vars())
e9174d1e 183 .map(|ty| traits::Obligation::new(cause.clone(),
7cac9316 184 param_env,
e9174d1e
SL
185 ty::Predicate::WellFormed(ty))));
186 }
187
188 /// Pushes the obligations required for `trait_ref::Item` to be WF
189 /// into `self.out`.
190 fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
191 // A projection is well-formed if (a) the trait ref itself is
a7813a04 192 // WF and (b) the trait-ref holds. (It may also be
e9174d1e 193 // normalizable and be WF that way.)
041b39d2 194 let trait_ref = data.trait_ref(self.infcx.tcx);
3b2f2976 195 self.compute_trait_ref(&trait_ref, Elaborate::None);
e9174d1e 196
a1dfa0c6 197 if !data.has_escaping_bound_vars() {
041b39d2 198 let predicate = trait_ref.to_predicate();
e9174d1e 199 let cause = self.cause(traits::ProjectionWf(data));
7cac9316 200 self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
e9174d1e
SL
201 }
202 }
203
0731742a 204 /// Pushes the obligations required for an array length to be WF
ea8adc8c 205 /// into `self.out`.
0731742a
XL
206 fn compute_array_len(&mut self, constant: ty::LazyConst<'tcx>) {
207 if let ty::LazyConst::Unevaluated(def_id, substs) = constant {
8faf50e0
XL
208 let obligations = self.nominal_obligations(def_id, substs);
209 self.out.extend(obligations);
210
211 let predicate = ty::Predicate::ConstEvaluatable(def_id, substs);
212 let cause = self.cause(traits::MiscObligation);
213 self.out.push(traits::Obligation::new(cause,
0bf4aa26
XL
214 self.param_env,
215 predicate));
ea8adc8c
XL
216 }
217 }
218
9e0c209e 219 fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
a1dfa0c6 220 if !subty.has_escaping_bound_vars() {
a7813a04 221 let cause = self.cause(cause);
476ff2be
SL
222 let trait_ref = ty::TraitRef {
223 def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem),
224 substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
225 };
7cac9316 226 self.out.push(traits::Obligation::new(cause, self.param_env, trait_ref.to_predicate()));
a7813a04
XL
227 }
228 }
229
9fa01778 230 /// Pushes new obligations into `out`. Returns `true` if it was able
e9174d1e
SL
231 /// to generate all the predicates needed to validate that `ty0`
232 /// is WF. Returns false if `ty0` is an unresolved type variable,
233 /// in which case we are not able to simplify at all.
234 fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
235 let mut subtys = ty0.walk();
7cac9316 236 let param_env = self.param_env;
e9174d1e
SL
237 while let Some(ty) = subtys.next() {
238 match ty.sty {
b7449926
XL
239 ty::Bool |
240 ty::Char |
241 ty::Int(..) |
242 ty::Uint(..) |
243 ty::Float(..) |
244 ty::Error |
245 ty::Str |
246 ty::GeneratorWitness(..) |
247 ty::Never |
248 ty::Param(_) |
a1dfa0c6
XL
249 ty::Bound(..) |
250 ty::Placeholder(..) |
b7449926 251 ty::Foreign(..) => {
e9174d1e
SL
252 // WfScalar, WfParameter, etc
253 }
254
b7449926 255 ty::Slice(subty) => {
ea8adc8c
XL
256 self.require_sized(subty, traits::SliceOrArrayElem);
257 }
258
b7449926 259 ty::Array(subty, len) => {
9e0c209e 260 self.require_sized(subty, traits::SliceOrArrayElem);
0731742a 261 self.compute_array_len(*len);
a7813a04
XL
262 }
263
b7449926 264 ty::Tuple(ref tys) => {
a7813a04
XL
265 if let Some((_last, rest)) = tys.split_last() {
266 for elem in rest {
9e0c209e 267 self.require_sized(elem, traits::TupleElem);
e9174d1e 268 }
9cc50fc6 269 }
e9174d1e
SL
270 }
271
b7449926 272 ty::RawPtr(_) => {
e9174d1e
SL
273 // simple cases that are WF if their type args are WF
274 }
275
b7449926 276 ty::Projection(data) => {
e9174d1e
SL
277 subtys.skip_current_subtree(); // subtree handled by compute_projection
278 self.compute_projection(data);
279 }
280
0bf4aa26
XL
281 ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
282
b7449926 283 ty::Adt(def, substs) => {
e9174d1e
SL
284 // WfNominalType
285 let obligations = self.nominal_obligations(def.did, substs);
286 self.out.extend(obligations);
287 }
288
0731742a
XL
289 ty::FnDef(did, substs) => {
290 let obligations = self.nominal_obligations(did, substs);
291 self.out.extend(obligations);
292 }
293
b7449926 294 ty::Ref(r, rty, _) => {
e9174d1e 295 // WfReference
a1dfa0c6 296 if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
e9174d1e
SL
297 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
298 self.out.push(
299 traits::Obligation::new(
300 cause,
7cac9316 301 param_env,
e9174d1e 302 ty::Predicate::TypeOutlives(
83c7162d 303 ty::Binder::dummy(
94b46f34 304 ty::OutlivesPredicate(rty, r)))));
e9174d1e
SL
305 }
306 }
307
b7449926 308 ty::Generator(..) => {
ff7c6d11
XL
309 // Walk ALL the types in the generator: this will
310 // include the upvar types as well as the yield
311 // type. Note that this is mildly distinct from
312 // the closure case, where we have to be careful
313 // about the signature of the closure. We don't
314 // have the problem of implied bounds here since
315 // generators don't take arguments.
316 }
317
b7449926 318 ty::Closure(def_id, substs) => {
ff7c6d11
XL
319 // Only check the upvar types for WF, not the rest
320 // of the types within. This is needed because we
321 // capture the signature and it may not be WF
322 // without the implied bounds. Consider a closure
323 // like `|x: &'a T|` -- it may be that `T: 'a` is
324 // not known to hold in the creator's context (and
325 // indeed the closure may not be invoked by its
326 // creator, but rather turned to someone who *can*
327 // verify that).
328 //
329 // The special treatment of closures here really
330 // ought not to be necessary either; the problem
331 // is related to #25860 -- there is no way for us
332 // to express a fn type complete with the implied
333 // bounds that it is assuming. I think in reality
334 // the WF rules around fn are a bit messed up, and
335 // that is the rot problem: `fn(&'a T)` should
336 // probably always be WF, because it should be
337 // shorthand for something like `where(T: 'a) {
338 // fn(&'a T) }`, as discussed in #25860.
9cc50fc6 339 //
ff7c6d11
XL
340 // Note that we are also skipping the generic
341 // types. This is consistent with the `outlives`
342 // code, but anyway doesn't matter: within the fn
343 // body where they are created, the generics will
344 // always be WF, and outside of that fn body we
345 // are not directly inspecting closure types
346 // anyway, except via auto trait matching (which
347 // only inspects the upvar types).
348 subtys.skip_current_subtree(); // subtree handled by compute_projection
349 for upvar_ty in substs.upvar_tys(def_id, self.infcx.tcx) {
350 self.compute(upvar_ty);
351 }
e9174d1e
SL
352 }
353
0731742a 354 ty::FnPtr(_) => {
54a0048b 355 // let the loop iterate into the argument/return
9cc50fc6 356 // types appearing in the fn signature
e9174d1e
SL
357 }
358
b7449926 359 ty::Opaque(did, substs) => {
5bcae85e
SL
360 // all of the requirements on type parameters
361 // should've been checked by the instantiation
362 // of whatever returned this exact `impl Trait`.
8faf50e0
XL
363
364 // for named existential types we still need to check them
365 if super::is_impl_trait_defn(self.infcx.tcx, did).is_none() {
366 let obligations = self.nominal_obligations(did, substs);
367 self.out.extend(obligations);
368 }
5bcae85e
SL
369 }
370
b7449926 371 ty::Dynamic(data, r) => {
e9174d1e
SL
372 // WfObject
373 //
374 // Here, we defer WF checking due to higher-ranked
375 // regions. This is perhaps not ideal.
476ff2be 376 self.from_object_ty(ty, data, r);
e9174d1e
SL
377
378 // FIXME(#27579) RFC also considers adding trait
379 // obligations that don't refer to Self and
380 // checking those
381
382 let cause = self.cause(traits::MiscObligation);
a7813a04 383 let component_traits =
0731742a 384 data.auto_traits().chain(data.principal_def_id());
a7813a04 385 self.out.extend(
476ff2be 386 component_traits.map(|did| traits::Obligation::new(
a7813a04 387 cause.clone(),
7cac9316 388 param_env,
9e0c209e 389 ty::Predicate::ObjectSafe(did)
476ff2be 390 ))
a7813a04 391 );
e9174d1e
SL
392 }
393
394 // Inference variables are the complicated case, since we don't
395 // know what type they are. We do two things:
396 //
397 // 1. Check if they have been resolved, and if so proceed with
398 // THAT type.
399 // 2. If not, check whether this is the type that we
400 // started with (ty0). In that case, we've made no
401 // progress at all, so return false. Otherwise,
402 // we've at least simplified things (i.e., we went
403 // from `Vec<$0>: WF` to `$0: WF`, so we can
404 // register a pending obligation and keep
405 // moving. (Goal is that an "inductive hypothesis"
406 // is satisfied to ensure termination.)
b7449926 407 ty::Infer(_) => {
e9174d1e 408 let ty = self.infcx.shallow_resolve(ty);
b7449926 409 if let ty::Infer(_) = ty.sty { // not yet resolved...
e9174d1e
SL
410 if ty == ty0 { // ...this is the type we started from! no progress.
411 return false;
412 }
413
414 let cause = self.cause(traits::MiscObligation);
415 self.out.push( // ...not the type we started from, so we made progress.
7cac9316
XL
416 traits::Obligation::new(cause,
417 self.param_env,
418 ty::Predicate::WellFormed(ty)));
e9174d1e
SL
419 } else {
420 // Yes, resolved, proceed with the
421 // result. Should never return false because
b7449926 422 // `ty` is not a Infer.
e9174d1e
SL
423 assert!(self.compute(ty));
424 }
425 }
426 }
427 }
428
429 // if we made it through that loop above, we made progress!
430 return true;
431 }
432
433 fn nominal_obligations(&mut self,
434 def_id: DefId,
435 substs: &Substs<'tcx>)
436 -> Vec<traits::PredicateObligation<'tcx>>
437 {
438 let predicates =
7cac9316 439 self.infcx.tcx.predicates_of(def_id)
e9174d1e
SL
440 .instantiate(self.infcx.tcx, substs);
441 let cause = self.cause(traits::ItemObligation(def_id));
442 predicates.predicates
443 .into_iter()
7cac9316
XL
444 .map(|pred| traits::Obligation::new(cause.clone(),
445 self.param_env,
446 pred))
a1dfa0c6 447 .filter(|pred| !pred.has_escaping_bound_vars())
e9174d1e
SL
448 .collect()
449 }
450
476ff2be 451 fn from_object_ty(&mut self, ty: Ty<'tcx>,
b7449926 452 data: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
7cac9316 453 region: ty::Region<'tcx>) {
e9174d1e
SL
454 // Imagine a type like this:
455 //
456 // trait Foo { }
457 // trait Bar<'c> : 'c { }
458 //
459 // &'b (Foo+'c+Bar<'d>)
460 // ^
461 //
462 // In this case, the following relationships must hold:
463 //
464 // 'b <= 'c
465 // 'd <= 'c
466 //
467 // The first conditions is due to the normal region pointer
468 // rules, which say that a reference cannot outlive its
469 // referent.
470 //
471 // The final condition may be a bit surprising. In particular,
472 // you may expect that it would have been `'c <= 'd`, since
473 // usually lifetimes of outer things are conservative
474 // approximations for inner things. However, it works somewhat
475 // differently with trait objects: here the idea is that if the
476 // user specifies a region bound (`'c`, in this case) it is the
477 // "master bound" that *implies* that bounds from other traits are
478 // all met. (Remember that *all bounds* in a type like
479 // `Foo+Bar+Zed` must be met, not just one, hence if we write
480 // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
481 // 'y.)
482 //
483 // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
484 // am looking forward to the future here.
485
a1dfa0c6 486 if !data.has_escaping_bound_vars() {
e9174d1e 487 let implicit_bounds =
476ff2be 488 object_region_bounds(self.infcx.tcx, data);
e9174d1e 489
476ff2be 490 let explicit_bound = region;
e9174d1e 491
0bf4aa26 492 self.out.reserve(implicit_bounds.len());
e9174d1e 493 for implicit_bound in implicit_bounds {
c30ab7b3 494 let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
83c7162d
XL
495 let outlives = ty::Binder::dummy(
496 ty::OutlivesPredicate(explicit_bound, implicit_bound));
7cac9316
XL
497 self.out.push(traits::Obligation::new(cause,
498 self.param_env,
499 outlives.to_predicate()));
e9174d1e
SL
500 }
501 }
502 }
503}
504
9fa01778 505/// Given an object type like `SomeTrait + Send`, computes the lifetime
e9174d1e
SL
506/// bounds that must hold on the elided self type. These are derived
507/// from the declarations of `SomeTrait`, `Send`, and friends -- if
508/// they declare `trait SomeTrait : 'static`, for example, then
509/// `'static` would appear in the list. The hard work is done by
510/// `ty::required_region_bounds`, see that for more information.
a7813a04
XL
511pub fn object_region_bounds<'a, 'gcx, 'tcx>(
512 tcx: TyCtxt<'a, 'gcx, 'tcx>,
b7449926 513 existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>)
7cac9316 514 -> Vec<ty::Region<'tcx>>
e9174d1e
SL
515{
516 // Since we don't actually *know* the self type for an object,
517 // this "open(err)" serves as a kind of dummy standin -- basically
0bf4aa26 518 // a placeholder type.
e9174d1e
SL
519 let open_ty = tcx.mk_infer(ty::FreshTy(0));
520
476ff2be
SL
521 let predicates = existential_predicates.iter().filter_map(|predicate| {
522 if let ty::ExistentialPredicate::Projection(_) = *predicate.skip_binder() {
523 None
524 } else {
525 Some(predicate.with_self_ty(tcx, open_ty))
526 }
527 }).collect();
e9174d1e
SL
528
529 tcx.required_region_bounds(open_ty, predicates)
530}