]> git.proxmox.com Git - rustc.git/blame - src/librustc_codegen_ssa/base.rs
New upstream version 1.44.1+dfsg1
[rustc.git] / src / librustc_codegen_ssa / base.rs
CommitLineData
a1dfa0c6
XL
1//! Codegen the completed AST to the LLVM IR.
2//!
60c5eb7d
XL
3//! Some functions here, such as `codegen_block` and `codegen_expr`, return a value --
4//! the result of the codegen to LLVM -- while others, such as `codegen_fn`
5//! and `mono_item`, are called only for the side effect of adding a
a1dfa0c6
XL
6//! particular definition to the LLVM IR output we're producing.
7//!
8//! Hopefully useful general knowledge about codegen:
9//!
60c5eb7d 10//! * There's no way to find out the `Ty` type of a `Value`. Doing so
9fa01778
XL
11//! would be "trying to get the eggs out of an omelette" (credit:
12//! pcwalton). You can, instead, find out its `llvm::Type` by calling `val_ty`,
13//! but one `llvm::Type` corresponds to many `Ty`s; for instance, `tup(int, int,
14//! int)` and `rec(x=int, y=int, z=int)` will have the same `llvm::Type`.
a1dfa0c6 15
60c5eb7d 16use crate::back::write::{
dfeec247
XL
17 start_async_codegen, submit_codegened_module_to_llvm, submit_post_lto_module_to_llvm,
18 submit_pre_lto_module_to_llvm, OngoingCodegen,
60c5eb7d 19};
dfeec247 20use crate::common::{IntPredicate, RealPredicate, TypeKind};
60c5eb7d
XL
21use crate::meth;
22use crate::mir;
23use crate::mir::operand::OperandValue;
24use crate::mir::place::PlaceRef;
25use crate::traits::*;
dfeec247 26use crate::{CachedModuleCodegen, CrateInfo, MemFlags, ModuleCodegen, ModuleKind};
a1dfa0c6 27
74b04a01 28use rustc_attr as attr;
dfeec247
XL
29use rustc_data_structures::fx::FxHashMap;
30use rustc_data_structures::profiling::print_time_passes_entry;
31use rustc_data_structures::sync::{par_iter, Lock, ParallelIterator};
32use rustc_hir as hir;
33use rustc_hir::def_id::{DefId, LOCAL_CRATE};
ba9703b0 34use rustc_hir::lang_items::StartFnLangItem;
e74abb32 35use rustc_index::vec::Idx;
ba9703b0
XL
36use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
37use rustc_middle::middle::cstore::EncodedMetadata;
38use rustc_middle::middle::cstore::{self, LinkagePreference};
39use rustc_middle::middle::lang_items;
40use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem};
41use rustc_middle::ty::layout::{self, HasTyCtxt, TyAndLayout};
42use rustc_middle::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
43use rustc_middle::ty::query::Providers;
44use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
dfeec247 45use rustc_session::cgu_reuse_tracker::CguReuse;
ba9703b0
XL
46use rustc_session::config::{self, EntryFnType, Lto};
47use rustc_session::Session;
dfeec247 48use rustc_span::Span;
ba9703b0
XL
49use rustc_symbol_mangling::test as symbol_names_test;
50use rustc_target::abi::{Abi, Align, LayoutOf, Scalar, VariantIdx};
a1dfa0c6 51
a1dfa0c6
XL
52use std::cmp;
53use std::ops::{Deref, DerefMut};
dfeec247 54use std::time::{Duration, Instant};
a1dfa0c6 55
dfeec247 56pub fn bin_op_to_icmp_predicate(op: hir::BinOpKind, signed: bool) -> IntPredicate {
a1dfa0c6
XL
57 match op {
58 hir::BinOpKind::Eq => IntPredicate::IntEQ,
59 hir::BinOpKind::Ne => IntPredicate::IntNE,
dfeec247
XL
60 hir::BinOpKind::Lt => {
61 if signed {
62 IntPredicate::IntSLT
63 } else {
64 IntPredicate::IntULT
65 }
a1dfa0c6 66 }
dfeec247
XL
67 hir::BinOpKind::Le => {
68 if signed {
69 IntPredicate::IntSLE
70 } else {
71 IntPredicate::IntULE
72 }
73 }
74 hir::BinOpKind::Gt => {
75 if signed {
76 IntPredicate::IntSGT
77 } else {
78 IntPredicate::IntUGT
79 }
80 }
81 hir::BinOpKind::Ge => {
82 if signed {
83 IntPredicate::IntSGE
84 } else {
85 IntPredicate::IntUGE
86 }
87 }
88 op => bug!(
89 "comparison_op_to_icmp_predicate: expected comparison operator, \
90 found {:?}",
91 op
92 ),
a1dfa0c6
XL
93 }
94}
95
96pub fn bin_op_to_fcmp_predicate(op: hir::BinOpKind) -> RealPredicate {
97 match op {
98 hir::BinOpKind::Eq => RealPredicate::RealOEQ,
99 hir::BinOpKind::Ne => RealPredicate::RealUNE,
100 hir::BinOpKind::Lt => RealPredicate::RealOLT,
101 hir::BinOpKind::Le => RealPredicate::RealOLE,
102 hir::BinOpKind::Gt => RealPredicate::RealOGT,
103 hir::BinOpKind::Ge => RealPredicate::RealOGE,
104 op => {
dfeec247
XL
105 bug!(
106 "comparison_op_to_fcmp_predicate: expected comparison operator, \
107 found {:?}",
108 op
109 );
a1dfa0c6
XL
110 }
111 }
112}
113
dc9dc135 114pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
a1dfa0c6
XL
115 bx: &mut Bx,
116 lhs: Bx::Value,
117 rhs: Bx::Value,
118 t: Ty<'tcx>,
119 ret_ty: Bx::Type,
dc9dc135 120 op: hir::BinOpKind,
a1dfa0c6 121) -> Bx::Value {
e74abb32 122 let signed = match t.kind {
a1dfa0c6
XL
123 ty::Float(_) => {
124 let cmp = bin_op_to_fcmp_predicate(op);
125 let cmp = bx.fcmp(cmp, lhs, rhs);
126 return bx.sext(cmp, ret_ty);
dfeec247 127 }
a1dfa0c6
XL
128 ty::Uint(_) => false,
129 ty::Int(_) => true,
130 _ => bug!("compare_simd_types: invalid SIMD type"),
131 };
132
133 let cmp = bin_op_to_icmp_predicate(op, signed);
134 let cmp = bx.icmp(cmp, lhs, rhs);
135 // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
136 // to get the correctly sized type. This will compile to a single instruction
137 // once the IR is converted to assembly if the SIMD instruction is supported
138 // by the target architecture.
139 bx.sext(cmp, ret_ty)
140}
141
9fa01778 142/// Retrieves the information we are losing (making dynamic) in an unsizing
a1dfa0c6
XL
143/// adjustment.
144///
60c5eb7d
XL
145/// The `old_info` argument is a bit odd. It is intended for use in an upcast,
146/// where the new vtable for an object will be derived from the old one.
a1dfa0c6
XL
147pub fn unsized_info<'tcx, Cx: CodegenMethods<'tcx>>(
148 cx: &Cx,
149 source: Ty<'tcx>,
150 target: Ty<'tcx>,
151 old_info: Option<Cx::Value>,
152) -> Cx::Value {
416331ca
XL
153 let (source, target) =
154 cx.tcx().struct_lockstep_tails_erasing_lifetimes(source, target, cx.param_env());
e74abb32 155 match (&source.kind, &target.kind) {
a1dfa0c6 156 (&ty::Array(_, len), &ty::Slice(_)) => {
416331ca 157 cx.const_usize(len.eval_usize(cx.tcx(), ty::ParamEnv::reveal_all()))
a1dfa0c6
XL
158 }
159 (&ty::Dynamic(..), &ty::Dynamic(..)) => {
160 // For now, upcasts are limited to changes in marker
161 // traits, and hence never actually require an actual
162 // change to the vtable.
163 old_info.expect("unsized_info: missing old info for trait upcast")
164 }
165 (_, &ty::Dynamic(ref data, ..)) => {
dfeec247 166 let vtable_ptr = cx.layout_of(cx.tcx().mk_mut_ptr(target)).field(cx, FAT_PTR_EXTRA);
60c5eb7d
XL
167 cx.const_ptrcast(
168 meth::get_vtable(cx, source, data.principal()),
169 cx.backend_type(vtable_ptr),
170 )
a1dfa0c6 171 }
dfeec247 172 _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
a1dfa0c6
XL
173 }
174}
175
60c5eb7d 176/// Coerces `src` to `dst_ty`. `src_ty` must be a thin pointer.
dc9dc135 177pub fn unsize_thin_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
a1dfa0c6
XL
178 bx: &mut Bx,
179 src: Bx::Value,
180 src_ty: Ty<'tcx>,
dc9dc135 181 dst_ty: Ty<'tcx>,
a1dfa0c6
XL
182) -> (Bx::Value, Bx::Value) {
183 debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
e74abb32 184 match (&src_ty.kind, &dst_ty.kind) {
ba9703b0 185 (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
dfeec247 186 | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
a1dfa0c6
XL
187 assert!(bx.cx().type_is_sized(a));
188 let ptr_ty = bx.cx().type_ptr_to(bx.cx().backend_type(bx.cx().layout_of(b)));
189 (bx.pointercast(src, ptr_ty), unsized_info(bx.cx(), a, b, None))
190 }
a1dfa0c6
XL
191 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
192 assert_eq!(def_a, def_b);
193
194 let src_layout = bx.cx().layout_of(src_ty);
195 let dst_layout = bx.cx().layout_of(dst_ty);
196 let mut result = None;
197 for i in 0..src_layout.fields.count() {
198 let src_f = src_layout.field(bx.cx(), i);
199 assert_eq!(src_layout.fields.offset(i).bytes(), 0);
200 assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
201 if src_f.is_zst() {
202 continue;
203 }
204 assert_eq!(src_layout.size, src_f.size);
205
206 let dst_f = dst_layout.field(bx.cx(), i);
207 assert_ne!(src_f.ty, dst_f.ty);
208 assert_eq!(result, None);
209 result = Some(unsize_thin_ptr(bx, src, src_f.ty, dst_f.ty));
210 }
211 let (lldata, llextra) = result.unwrap();
212 // HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
e74abb32
XL
213 // FIXME(eddyb) move these out of this `match` arm, so they're always
214 // applied, uniformly, no matter the source/destination types.
dfeec247
XL
215 (
216 bx.bitcast(lldata, bx.cx().scalar_pair_element_backend_type(dst_layout, 0, true)),
217 bx.bitcast(llextra, bx.cx().scalar_pair_element_backend_type(dst_layout, 1, true)),
218 )
a1dfa0c6
XL
219 }
220 _ => bug!("unsize_thin_ptr: called on bad types"),
221 }
222}
223
60c5eb7d
XL
224/// Coerces `src`, which is a reference to a value of type `src_ty`,
225/// to a value of type `dst_ty`, and stores the result in `dst`.
dc9dc135 226pub fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
a1dfa0c6
XL
227 bx: &mut Bx,
228 src: PlaceRef<'tcx, Bx::Value>,
dc9dc135
XL
229 dst: PlaceRef<'tcx, Bx::Value>,
230) {
a1dfa0c6
XL
231 let src_ty = src.layout.ty;
232 let dst_ty = dst.layout.ty;
e74abb32 233 match (&src_ty.kind, &dst_ty.kind) {
ba9703b0 234 (&ty::Ref(..), &ty::Ref(..) | &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
e74abb32
XL
235 let (base, info) = match bx.load_operand(src).val {
236 OperandValue::Pair(base, info) => {
237 // fat-ptr to fat-ptr unsize preserves the vtable
238 // i.e., &'a fmt::Debug+Send => &'a fmt::Debug
239 // So we need to pointercast the base to ensure
240 // the types match up.
241 // FIXME(eddyb) use `scalar_pair_element_backend_type` here,
242 // like `unsize_thin_ptr` does.
243 let thin_ptr = dst.layout.field(bx.cx(), FAT_PTR_ADDR);
244 (bx.pointercast(base, bx.cx().backend_type(thin_ptr)), info)
245 }
dfeec247
XL
246 OperandValue::Immediate(base) => unsize_thin_ptr(bx, base, src_ty, dst_ty),
247 OperandValue::Ref(..) => bug!(),
e74abb32
XL
248 };
249 OperandValue::Pair(base, info).store(bx, dst);
a1dfa0c6
XL
250 }
251
252 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
253 assert_eq!(def_a, def_b);
254
255 for i in 0..def_a.variants[VariantIdx::new(0)].fields.len() {
256 let src_f = src.project_field(bx, i);
257 let dst_f = dst.project_field(bx, i);
258
259 if dst_f.layout.is_zst() {
260 continue;
261 }
262
263 if src_f.layout.ty == dst_f.layout.ty {
dfeec247
XL
264 memcpy_ty(
265 bx,
266 dst_f.llval,
267 dst_f.align,
268 src_f.llval,
269 src_f.align,
270 src_f.layout,
271 MemFlags::empty(),
272 );
a1dfa0c6
XL
273 } else {
274 coerce_unsized_into(bx, src_f, dst_f);
275 }
276 }
277 }
dfeec247 278 _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
a1dfa0c6
XL
279 }
280}
281
dc9dc135 282pub fn cast_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
a1dfa0c6
XL
283 bx: &mut Bx,
284 op: hir::BinOpKind,
285 lhs: Bx::Value,
dc9dc135 286 rhs: Bx::Value,
a1dfa0c6
XL
287) -> Bx::Value {
288 cast_shift_rhs(bx, op, lhs, rhs)
289}
290
dc9dc135 291fn cast_shift_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
a1dfa0c6
XL
292 bx: &mut Bx,
293 op: hir::BinOpKind,
294 lhs: Bx::Value,
295 rhs: Bx::Value,
296) -> Bx::Value {
297 // Shifts may have any size int on the rhs
298 if op.is_shift() {
299 let mut rhs_llty = bx.cx().val_ty(rhs);
300 let mut lhs_llty = bx.cx().val_ty(lhs);
301 if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
302 rhs_llty = bx.cx().element_type(rhs_llty)
303 }
304 if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
305 lhs_llty = bx.cx().element_type(lhs_llty)
306 }
307 let rhs_sz = bx.cx().int_width(rhs_llty);
308 let lhs_sz = bx.cx().int_width(lhs_llty);
309 if lhs_sz < rhs_sz {
310 bx.trunc(rhs, lhs_llty)
311 } else if lhs_sz > rhs_sz {
312 // FIXME (#1877: If in the future shifting by negative
313 // values is no longer undefined then this is wrong.
314 bx.zext(rhs, lhs_llty)
315 } else {
316 rhs
317 }
318 } else {
319 rhs
320 }
321}
322
9fa01778 323/// Returns `true` if this session's target will use SEH-based unwinding.
a1dfa0c6
XL
324///
325/// This is only true for MSVC targets, and even then the 64-bit MSVC target
326/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
327/// 64-bit MinGW) instead of "full SEH".
328pub fn wants_msvc_seh(sess: &Session) -> bool {
329 sess.target.target.options.is_like_msvc
330}
331
dc9dc135 332pub fn from_immediate<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
a1dfa0c6 333 bx: &mut Bx,
dc9dc135 334 val: Bx::Value,
a1dfa0c6 335) -> Bx::Value {
dfeec247 336 if bx.cx().val_ty(val) == bx.cx().type_i1() { bx.zext(val, bx.cx().type_i8()) } else { val }
a1dfa0c6
XL
337}
338
dc9dc135 339pub fn to_immediate<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
a1dfa0c6
XL
340 bx: &mut Bx,
341 val: Bx::Value,
ba9703b0 342 layout: layout::TyAndLayout<'_>,
a1dfa0c6 343) -> Bx::Value {
ba9703b0 344 if let Abi::Scalar(ref scalar) = layout.abi {
a1dfa0c6
XL
345 return to_immediate_scalar(bx, val, scalar);
346 }
347 val
348}
349
dc9dc135 350pub fn to_immediate_scalar<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
a1dfa0c6
XL
351 bx: &mut Bx,
352 val: Bx::Value,
ba9703b0 353 scalar: &Scalar,
a1dfa0c6
XL
354) -> Bx::Value {
355 if scalar.is_bool() {
356 return bx.trunc(val, bx.cx().type_i1());
357 }
358 val
359}
360
dc9dc135 361pub fn memcpy_ty<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
a1dfa0c6
XL
362 bx: &mut Bx,
363 dst: Bx::Value,
364 dst_align: Align,
365 src: Bx::Value,
366 src_align: Align,
ba9703b0 367 layout: TyAndLayout<'tcx>,
a1dfa0c6
XL
368 flags: MemFlags,
369) {
370 let size = layout.size.bytes();
371 if size == 0 {
372 return;
373 }
374
375 bx.memcpy(dst, dst_align, src, src_align, bx.cx().const_usize(size), flags);
376}
377
378pub fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
379 cx: &'a Bx::CodegenCx,
380 instance: Instance<'tcx>,
381) {
a1dfa0c6
XL
382 // this is an info! to allow collecting monomorphization statistics
383 // and to allow finding the last function before LLVM aborts from
384 // release builds.
385 info!("codegen_instance({})", instance);
386
60c5eb7d 387 mir::codegen_mir::<Bx>(cx, instance);
a1dfa0c6
XL
388}
389
9fa01778 390/// Creates the `main` function which will initialize the rust runtime and call
a1dfa0c6 391/// users main function.
74b04a01
XL
392pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
393 cx: &'a Bx::CodegenCx,
394) -> Option<Bx::Function> {
9fa01778 395 let (main_def_id, span) = match cx.tcx().entry_fn(LOCAL_CRATE) {
dfeec247 396 Some((def_id, _)) => (def_id, cx.tcx().def_span(def_id)),
74b04a01 397 None => return None,
a1dfa0c6
XL
398 };
399
400 let instance = Instance::mono(cx.tcx(), main_def_id);
401
402 if !cx.codegen_unit().contains_item(&MonoItem::Fn(instance)) {
403 // We want to create the wrapper in the same codegen unit as Rust's main
404 // function.
74b04a01 405 return None;
a1dfa0c6
XL
406 }
407
e74abb32 408 let main_llfn = cx.get_fn_addr(instance);
a1dfa0c6 409
74b04a01
XL
410 return cx.tcx().entry_fn(LOCAL_CRATE).map(|(_, et)| {
411 let use_start_lang_item = EntryFnType::Start != et;
412 create_entry_fn::<Bx>(cx, span, main_llfn, main_def_id, use_start_lang_item)
413 });
a1dfa0c6 414
dc9dc135 415 fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
a1dfa0c6
XL
416 cx: &'a Bx::CodegenCx,
417 sp: Span,
418 rust_main: Bx::Value,
419 rust_main_def_id: DefId,
420 use_start_lang_item: bool,
74b04a01 421 ) -> Bx::Function {
e74abb32
XL
422 // The entry function is either `int main(void)` or `int main(int argc, char **argv)`,
423 // depending on whether the target needs `argc` and `argv` to be passed in.
424 let llfty = if cx.sess().target.target.options.main_needs_argc_argv {
425 cx.type_func(&[cx.type_int(), cx.type_ptr_to(cx.type_i8p())], cx.type_int())
426 } else {
427 cx.type_func(&[], cx.type_int())
428 };
a1dfa0c6
XL
429
430 let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).output();
431 // Given that `main()` has no arguments,
432 // then its return type cannot have
433 // late-bound regions, since late-bound
434 // regions must appear in the argument
435 // listing.
dfeec247 436 let main_ret_ty = cx.tcx().erase_regions(&main_ret_ty.no_bound_vars().unwrap());
a1dfa0c6 437
74b04a01 438 if cx.get_declared_value("main").is_some() {
a1dfa0c6 439 // FIXME: We should be smart and show a better diagnostic here.
dfeec247 440 cx.sess()
74b04a01 441 .struct_span_err(sp, "entry symbol `main` declared multiple times")
dfeec247
XL
442 .help("did you use `#[no_mangle]` on `fn main`? Use `#[start]` instead")
443 .emit();
a1dfa0c6
XL
444 cx.sess().abort_if_errors();
445 bug!();
446 }
447 let llfn = cx.declare_cfn("main", llfty);
448
449 // `main` should respect same config for frame pointer elimination as rest of code
450 cx.set_frame_pointer_elimination(llfn);
451 cx.apply_target_cpu_attr(llfn);
452
453 let mut bx = Bx::new_block(&cx, llfn, "top");
454
455 bx.insert_reference_to_gdb_debug_scripts_section_global();
456
e74abb32 457 let (arg_argc, arg_argv) = get_argc_argv(cx, &mut bx);
a1dfa0c6
XL
458
459 let (start_fn, args) = if use_start_lang_item {
e1599b0c 460 let start_def_id = cx.tcx().require_lang_item(StartFnLangItem, None);
e74abb32
XL
461 let start_fn = cx.get_fn_addr(
462 ty::Instance::resolve(
463 cx.tcx(),
464 ty::ParamEnv::reveal_all(),
465 start_def_id,
466 cx.tcx().intern_substs(&[main_ret_ty.into()]),
dfeec247
XL
467 )
468 .unwrap(),
a1dfa0c6 469 );
dfeec247
XL
470 (
471 start_fn,
472 vec![bx.pointercast(rust_main, cx.type_ptr_to(cx.type_i8p())), arg_argc, arg_argv],
473 )
a1dfa0c6
XL
474 } else {
475 debug!("using user-defined start fn");
476 (rust_main, vec![arg_argc, arg_argv])
477 };
478
479 let result = bx.call(start_fn, &args, None);
480 let cast = bx.intcast(result, cx.type_int(), true);
481 bx.ret(cast);
74b04a01
XL
482
483 llfn
a1dfa0c6
XL
484 }
485}
486
e74abb32
XL
487/// Obtain the `argc` and `argv` values to pass to the rust start function.
488fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
489 cx: &'a Bx::CodegenCx,
dfeec247
XL
490 bx: &mut Bx,
491) -> (Bx::Value, Bx::Value) {
e74abb32
XL
492 if cx.sess().target.target.options.main_needs_argc_argv {
493 // Params from native `main()` used as args for rust start function
494 let param_argc = bx.get_param(0);
495 let param_argv = bx.get_param(1);
496 let arg_argc = bx.intcast(param_argc, cx.type_isize(), true);
497 let arg_argv = param_argv;
498 (arg_argc, arg_argv)
499 } else {
500 // The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
501 let arg_argc = bx.const_int(cx.type_int(), 0);
502 let arg_argv = bx.const_null(cx.type_ptr_to(cx.type_i8p()));
503 (arg_argc, arg_argv)
504 }
505}
506
ba9703b0 507pub const CODEGEN_WORKER_ID: usize = usize::MAX;
a1dfa0c6
XL
508
509pub fn codegen_crate<B: ExtraBackendMethods>(
510 backend: B,
dc9dc135 511 tcx: TyCtxt<'tcx>,
48663c56
XL
512 metadata: EncodedMetadata,
513 need_metadata_module: bool,
a1dfa0c6 514) -> OngoingCodegen<B> {
a1dfa0c6 515 // Skip crate items and just output metadata in -Z no-codegen mode.
dfeec247 516 if tcx.sess.opts.debugging_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
e74abb32 517 let ongoing_codegen = start_async_codegen(backend, tcx, metadata, 1);
a1dfa0c6 518
a1dfa0c6
XL
519 ongoing_codegen.codegen_finished(tcx);
520
dfeec247 521 finalize_tcx(tcx);
a1dfa0c6
XL
522
523 ongoing_codegen.check_for_errors(tcx.sess);
524
525 return ongoing_codegen;
526 }
527
48663c56
XL
528 let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
529
a1dfa0c6
XL
530 // Run the monomorphization collector and partition the collected items into
531 // codegen units.
532 let codegen_units = tcx.collect_and_partition_mono_items(LOCAL_CRATE).1;
a1dfa0c6
XL
533
534 // Force all codegen_unit queries so they are already either red or green
535 // when compile_codegen_unit accesses them. We are not able to re-execute
536 // the codegen_unit query from just the DepNode, so an unknown color would
537 // lead to having to re-execute compile_codegen_unit, possibly
538 // unnecessarily.
539 if tcx.dep_graph.is_fully_enabled() {
ba9703b0 540 for cgu in codegen_units {
e74abb32 541 tcx.codegen_unit(cgu.name());
a1dfa0c6
XL
542 }
543 }
544
e74abb32 545 let ongoing_codegen = start_async_codegen(backend.clone(), tcx, metadata, codegen_units.len());
a1dfa0c6
XL
546 let ongoing_codegen = AbortCodegenOnDrop::<B>(Some(ongoing_codegen));
547
548 // Codegen an allocator shim, if necessary.
549 //
550 // If the crate doesn't have an `allocator_kind` set then there's definitely
551 // no shim to generate. Otherwise we also check our dependency graph for all
552 // our output crate types. If anything there looks like its a `Dynamic`
553 // linkage, then it's already got an allocator shim and we'll be using that
554 // one instead. If nothing exists then it's our job to generate the
555 // allocator!
dfeec247 556 let any_dynamic_crate = tcx.dependency_formats(LOCAL_CRATE).iter().any(|(_, list)| {
ba9703b0 557 use rustc_middle::middle::dependency_format::Linkage;
dfeec247
XL
558 list.iter().any(|&linkage| linkage == Linkage::Dynamic)
559 });
a1dfa0c6
XL
560 let allocator_module = if any_dynamic_crate {
561 None
60c5eb7d 562 } else if let Some(kind) = tcx.allocator_kind() {
dfeec247
XL
563 let llmod_id =
564 cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
9fa01778 565 let mut modules = backend.new_metadata(tcx, &llmod_id);
dfeec247
XL
566 tcx.sess
567 .time("write_allocator_module", || backend.codegen_allocator(tcx, &mut modules, kind));
a1dfa0c6 568
dfeec247 569 Some(ModuleCodegen { name: llmod_id, module_llvm: modules, kind: ModuleKind::Allocator })
a1dfa0c6
XL
570 } else {
571 None
572 };
573
574 if let Some(allocator_module) = allocator_module {
575 ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, allocator_module);
576 }
577
48663c56
XL
578 if need_metadata_module {
579 // Codegen the encoded metadata.
dfeec247
XL
580 let metadata_cgu_name =
581 cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("metadata")).to_string();
48663c56 582 let mut metadata_llvm_module = backend.new_metadata(tcx, &metadata_cgu_name);
dfeec247
XL
583 tcx.sess.time("write_compressed_metadata", || {
584 backend.write_compressed_metadata(
585 tcx,
586 &ongoing_codegen.metadata,
587 &mut metadata_llvm_module,
588 );
48663c56 589 });
48663c56
XL
590
591 let metadata_module = ModuleCodegen {
592 name: metadata_cgu_name,
593 module_llvm: metadata_llvm_module,
594 kind: ModuleKind::Metadata,
595 };
596 ongoing_codegen.submit_pre_codegened_module_to_llvm(tcx, metadata_module);
597 }
a1dfa0c6
XL
598
599 // We sort the codegen units by size. This way we can schedule work for LLVM
600 // a bit more efficiently.
601 let codegen_units = {
ba9703b0 602 let mut codegen_units = codegen_units.iter().collect::<Vec<_>>();
a1dfa0c6
XL
603 codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate()));
604 codegen_units
605 };
606
dfeec247
XL
607 let total_codegen_time = Lock::new(Duration::new(0, 0));
608
609 // The non-parallel compiler can only translate codegen units to LLVM IR
610 // on a single thread, leading to a staircase effect where the N LLVM
611 // threads have to wait on the single codegen threads to generate work
612 // for them. The parallel compiler does not have this restriction, so
613 // we can pre-load the LLVM queue in parallel before handing off
614 // coordination to the OnGoingCodegen scheduler.
615 //
616 // This likely is a temporary measure. Once we don't have to support the
617 // non-parallel compiler anymore, we can compile CGUs end-to-end in
618 // parallel and get rid of the complicated scheduling logic.
619 let pre_compile_cgus = |cgu_reuse: &[CguReuse]| {
620 if cfg!(parallel_compiler) {
621 tcx.sess.time("compile_first_CGU_batch", || {
622 // Try to find one CGU to compile per thread.
623 let cgus: Vec<_> = cgu_reuse
624 .iter()
625 .enumerate()
626 .filter(|&(_, reuse)| reuse == &CguReuse::No)
627 .take(tcx.sess.threads())
628 .collect();
629
630 // Compile the found CGUs in parallel.
631 par_iter(cgus)
632 .map(|(i, _)| {
633 let start_time = Instant::now();
634 let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
635 let mut time = total_codegen_time.lock();
636 *time += start_time.elapsed();
637 (i, module)
638 })
639 .collect()
640 })
641 } else {
642 FxHashMap::default()
643 }
644 };
645
646 let mut cgu_reuse = Vec::new();
647 let mut pre_compiled_cgus: Option<FxHashMap<usize, _>> = None;
a1dfa0c6 648
dfeec247 649 for (i, cgu) in codegen_units.iter().enumerate() {
a1dfa0c6
XL
650 ongoing_codegen.wait_for_signal_to_codegen_item();
651 ongoing_codegen.check_for_errors(tcx.sess);
652
dfeec247
XL
653 // Do some setup work in the first iteration
654 if pre_compiled_cgus.is_none() {
655 // Calculate the CGU reuse
656 cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
657 codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, &cgu)).collect()
658 });
659 // Pre compile some CGUs
660 pre_compiled_cgus = Some(pre_compile_cgus(&cgu_reuse));
661 }
662
663 let cgu_reuse = cgu_reuse[i];
a1dfa0c6
XL
664 tcx.sess.cgu_reuse_tracker.set_actual_reuse(&cgu.name().as_str(), cgu_reuse);
665
666 match cgu_reuse {
667 CguReuse::No => {
dfeec247
XL
668 let (module, cost) =
669 if let Some(cgu) = pre_compiled_cgus.as_mut().unwrap().remove(&i) {
670 cgu
671 } else {
672 let start_time = Instant::now();
673 let module = backend.compile_codegen_unit(tcx, cgu.name());
674 let mut time = total_codegen_time.lock();
675 *time += start_time.elapsed();
676 module
677 };
678 submit_codegened_module_to_llvm(
679 &backend,
680 &ongoing_codegen.coordinator_send,
681 module,
682 cost,
683 );
a1dfa0c6
XL
684 false
685 }
686 CguReuse::PreLto => {
dfeec247
XL
687 submit_pre_lto_module_to_llvm(
688 &backend,
689 tcx,
690 &ongoing_codegen.coordinator_send,
691 CachedModuleCodegen {
692 name: cgu.name().to_string(),
693 source: cgu.work_product(tcx),
694 },
695 );
a1dfa0c6
XL
696 true
697 }
698 CguReuse::PostLto => {
dfeec247
XL
699 submit_post_lto_module_to_llvm(
700 &backend,
701 &ongoing_codegen.coordinator_send,
702 CachedModuleCodegen {
703 name: cgu.name().to_string(),
704 source: cgu.work_product(tcx),
705 },
706 );
a1dfa0c6
XL
707 true
708 }
709 };
710 }
711
712 ongoing_codegen.codegen_finished(tcx);
713
714 // Since the main thread is sometimes blocked during codegen, we keep track
715 // -Ztime-passes output manually.
dfeec247
XL
716 print_time_passes_entry(
717 tcx.sess.time_passes(),
718 "codegen_to_LLVM_IR",
719 total_codegen_time.into_inner(),
720 );
a1dfa0c6
XL
721
722 ::rustc_incremental::assert_module_sources::assert_module_sources(tcx);
723
724 symbol_names_test::report_symbol_names(tcx);
725
a1dfa0c6
XL
726 ongoing_codegen.check_for_errors(tcx.sess);
727
dfeec247
XL
728 finalize_tcx(tcx);
729
a1dfa0c6
XL
730 ongoing_codegen.into_inner()
731}
732
733/// A curious wrapper structure whose only purpose is to call `codegen_aborted`
734/// when it's dropped abnormally.
735///
736/// In the process of working on rust-lang/rust#55238 a mysterious segfault was
737/// stumbled upon. The segfault was never reproduced locally, but it was
738/// suspected to be related to the fact that codegen worker threads were
739/// sticking around by the time the main thread was exiting, causing issues.
740///
741/// This structure is an attempt to fix that issue where the `codegen_aborted`
742/// message will block until all workers have finished. This should ensure that
743/// even if the main codegen thread panics we'll wait for pending work to
744/// complete before returning from the main thread, hopefully avoiding
745/// segfaults.
746///
747/// If you see this comment in the code, then it means that this workaround
748/// worked! We may yet one day track down the mysterious cause of that
749/// segfault...
750struct AbortCodegenOnDrop<B: ExtraBackendMethods>(Option<OngoingCodegen<B>>);
751
752impl<B: ExtraBackendMethods> AbortCodegenOnDrop<B> {
753 fn into_inner(mut self) -> OngoingCodegen<B> {
754 self.0.take().unwrap()
755 }
756}
757
758impl<B: ExtraBackendMethods> Deref for AbortCodegenOnDrop<B> {
759 type Target = OngoingCodegen<B>;
760
761 fn deref(&self) -> &OngoingCodegen<B> {
762 self.0.as_ref().unwrap()
763 }
764}
765
766impl<B: ExtraBackendMethods> DerefMut for AbortCodegenOnDrop<B> {
767 fn deref_mut(&mut self) -> &mut OngoingCodegen<B> {
768 self.0.as_mut().unwrap()
769 }
770}
771
772impl<B: ExtraBackendMethods> Drop for AbortCodegenOnDrop<B> {
773 fn drop(&mut self) {
774 if let Some(codegen) = self.0.take() {
775 codegen.codegen_aborted();
776 }
777 }
778}
779
dfeec247
XL
780fn finalize_tcx(tcx: TyCtxt<'_>) {
781 tcx.sess.time("assert_dep_graph", || ::rustc_incremental::assert_dep_graph(tcx));
782 tcx.sess.time("serialize_dep_graph", || ::rustc_incremental::save_dep_graph(tcx));
a1dfa0c6 783
dfeec247
XL
784 // We assume that no queries are run past here. If there are new queries
785 // after this point, they'll show up as "<unknown>" in self-profiling data.
786 {
787 let _prof_timer = tcx.prof.generic_activity("self_profile_alloc_query_strings");
788 tcx.alloc_self_profile_query_strings();
789 }
a1dfa0c6
XL
790}
791
792impl CrateInfo {
dc9dc135 793 pub fn new(tcx: TyCtxt<'_>) -> CrateInfo {
a1dfa0c6
XL
794 let mut info = CrateInfo {
795 panic_runtime: None,
796 compiler_builtins: None,
797 profiler_runtime: None,
a1dfa0c6
XL
798 is_no_builtins: Default::default(),
799 native_libraries: Default::default(),
800 used_libraries: tcx.native_libraries(LOCAL_CRATE),
801 link_args: tcx.link_args(LOCAL_CRATE),
802 crate_name: Default::default(),
803 used_crates_dynamic: cstore::used_crates(tcx, LinkagePreference::RequireDynamic),
804 used_crates_static: cstore::used_crates(tcx, LinkagePreference::RequireStatic),
805 used_crate_source: Default::default(),
a1dfa0c6
XL
806 lang_item_to_crate: Default::default(),
807 missing_lang_items: Default::default(),
e74abb32 808 dependency_formats: tcx.dependency_formats(LOCAL_CRATE),
a1dfa0c6
XL
809 };
810 let lang_items = tcx.lang_items();
811
a1dfa0c6
XL
812 let crates = tcx.crates();
813
814 let n_crates = crates.len();
815 info.native_libraries.reserve(n_crates);
816 info.crate_name.reserve(n_crates);
817 info.used_crate_source.reserve(n_crates);
818 info.missing_lang_items.reserve(n_crates);
819
820 for &cnum in crates.iter() {
821 info.native_libraries.insert(cnum, tcx.native_libraries(cnum));
822 info.crate_name.insert(cnum, tcx.crate_name(cnum).to_string());
823 info.used_crate_source.insert(cnum, tcx.used_crate_source(cnum));
824 if tcx.is_panic_runtime(cnum) {
825 info.panic_runtime = Some(cnum);
826 }
827 if tcx.is_compiler_builtins(cnum) {
828 info.compiler_builtins = Some(cnum);
829 }
830 if tcx.is_profiler_runtime(cnum) {
831 info.profiler_runtime = Some(cnum);
832 }
a1dfa0c6
XL
833 if tcx.is_no_builtins(cnum) {
834 info.is_no_builtins.insert(cnum);
835 }
a1dfa0c6
XL
836 let missing = tcx.missing_lang_items(cnum);
837 for &item in missing.iter() {
838 if let Ok(id) = lang_items.require(item) {
839 info.lang_item_to_crate.insert(item, id.krate);
840 }
841 }
842
843 // No need to look for lang items that are whitelisted and don't
844 // actually need to exist.
74b04a01
XL
845 let missing =
846 missing.iter().cloned().filter(|&l| !lang_items::whitelisted(tcx, l)).collect();
a1dfa0c6
XL
847 info.missing_lang_items.insert(cnum, missing);
848 }
849
ba9703b0 850 info
a1dfa0c6 851 }
a1dfa0c6
XL
852}
853
9fa01778
XL
854pub fn provide_both(providers: &mut Providers<'_>) {
855 providers.backend_optimization_level = |tcx, cratenum| {
856 let for_speed = match tcx.sess.opts.optimize {
857 // If globally no optimisation is done, #[optimize] has no effect.
858 //
859 // This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
860 // pass manager and it is likely that some module-wide passes (such as inliner or
861 // cross-function constant propagation) would ignore the `optnone` annotation we put
862 // on the functions, thus necessarily involving these functions into optimisations.
863 config::OptLevel::No => return config::OptLevel::No,
864 // If globally optimise-speed is already specified, just use that level.
865 config::OptLevel::Less => return config::OptLevel::Less,
866 config::OptLevel::Default => return config::OptLevel::Default,
867 config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
868 // If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
869 // are present).
870 config::OptLevel::Size => config::OptLevel::Default,
871 config::OptLevel::SizeMin => config::OptLevel::Default,
872 };
873
874 let (defids, _) = tcx.collect_and_partition_mono_items(cratenum);
875 for id in &*defids {
dfeec247 876 let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
9fa01778
XL
877 match optimize {
878 attr::OptimizeAttr::None => continue,
879 attr::OptimizeAttr::Size => continue,
880 attr::OptimizeAttr::Speed => {
881 return for_speed;
882 }
883 }
884 }
ba9703b0 885 tcx.sess.opts.optimize
9fa01778
XL
886 };
887
a1dfa0c6
XL
888 providers.dllimport_foreign_items = |tcx, krate| {
889 let module_map = tcx.foreign_modules(krate);
dfeec247
XL
890 let module_map =
891 module_map.iter().map(|lib| (lib.def_id, lib)).collect::<FxHashMap<_, _>>();
a1dfa0c6 892
dfeec247
XL
893 let dllimports = tcx
894 .native_libraries(krate)
a1dfa0c6
XL
895 .iter()
896 .filter(|lib| {
897 if lib.kind != cstore::NativeLibraryKind::NativeUnknown {
dfeec247 898 return false;
a1dfa0c6
XL
899 }
900 let cfg = match lib.cfg {
901 Some(ref cfg) => cfg,
902 None => return true,
903 };
904 attr::cfg_matches(cfg, &tcx.sess.parse_sess, None)
905 })
906 .filter_map(|lib| lib.foreign_module)
907 .map(|id| &module_map[&id])
908 .flat_map(|module| module.foreign_items.iter().cloned())
909 .collect();
dc9dc135 910 tcx.arena.alloc(dllimports)
a1dfa0c6
XL
911 };
912
dfeec247
XL
913 providers.is_dllimport_foreign_item =
914 |tcx, def_id| tcx.dllimport_foreign_items(def_id.krate).contains(&def_id);
a1dfa0c6
XL
915}
916
dc9dc135 917fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
a1dfa0c6 918 if !tcx.dep_graph.is_fully_enabled() {
dfeec247 919 return CguReuse::No;
a1dfa0c6
XL
920 }
921
922 let work_product_id = &cgu.work_product_id();
923 if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
924 // We don't have anything cached for this CGU. This can happen
925 // if the CGU did not exist in the previous session.
dfeec247 926 return CguReuse::No;
a1dfa0c6
XL
927 }
928
929 // Try to mark the CGU as green. If it we can do so, it means that nothing
930 // affecting the LLVM module has changed and we can re-use a cached version.
931 // If we compile with any kind of LTO, this means we can re-use the bitcode
932 // of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
933 // know that later). If we are not doing LTO, there is only one optimized
934 // version of each module, so we re-use that.
935 let dep_node = cgu.codegen_dep_node(tcx);
dfeec247
XL
936 assert!(
937 !tcx.dep_graph.dep_node_exists(&dep_node),
a1dfa0c6 938 "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
dfeec247
XL
939 cgu.name()
940 );
a1dfa0c6
XL
941
942 if tcx.dep_graph.try_mark_green(tcx, &dep_node).is_some() {
943 // We can re-use either the pre- or the post-thinlto state
dfeec247 944 if tcx.sess.lto() != Lto::No { CguReuse::PreLto } else { CguReuse::PostLto }
a1dfa0c6
XL
945 } else {
946 CguReuse::No
947 }
948}