]> git.proxmox.com Git - rustc.git/blame - src/librustc_const_eval/_match.rs
New upstream version 1.23.0+dfsg1
[rustc.git] / src / librustc_const_eval / _match.rs
CommitLineData
c30ab7b3
SL
1// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11use self::Constructor::*;
12use self::Usefulness::*;
13use self::WitnessPreference::*;
14
15use rustc::middle::const_val::ConstVal;
16use eval::{compare_const_vals};
17
18use rustc_const_math::ConstInt;
19
8bb4bdeb 20use rustc_data_structures::fx::FxHashMap;
c30ab7b3
SL
21use rustc_data_structures::indexed_vec::Idx;
22
23use pattern::{FieldPattern, Pattern, PatternKind};
24use pattern::{PatternFoldable, PatternFolder};
25
476ff2be 26use rustc::hir::def_id::DefId;
32a655c1 27use rustc::hir::RangeEnd;
abe05a73 28use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
c30ab7b3 29
32a655c1 30use rustc::mir::Field;
c30ab7b3
SL
31use rustc::util::common::ErrorReported;
32
c30ab7b3
SL
33use syntax_pos::{Span, DUMMY_SP};
34
35use arena::TypedArena;
36
476ff2be 37use std::cmp::{self, Ordering};
c30ab7b3
SL
38use std::fmt;
39use std::iter::{FromIterator, IntoIterator, repeat};
40
41pub fn expand_pattern<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>, pat: Pattern<'tcx>)
42 -> &'a Pattern<'tcx>
43{
44 cx.pattern_arena.alloc(LiteralExpander.fold_pattern(&pat))
45}
46
47struct LiteralExpander;
48impl<'tcx> PatternFolder<'tcx> for LiteralExpander {
49 fn fold_pattern(&mut self, pat: &Pattern<'tcx>) -> Pattern<'tcx> {
50 match (&pat.ty.sty, &*pat.kind) {
51 (&ty::TyRef(_, mt), &PatternKind::Constant { ref value }) => {
52 Pattern {
53 ty: pat.ty,
54 span: pat.span,
55 kind: box PatternKind::Deref {
56 subpattern: Pattern {
57 ty: mt.ty,
58 span: pat.span,
59 kind: box PatternKind::Constant { value: value.clone() },
60 }
61 }
62 }
63 }
64 (_, &PatternKind::Binding { subpattern: Some(ref s), .. }) => {
65 s.fold_with(self)
66 }
67 _ => pat.super_fold_with(self)
68 }
69 }
70}
71
c30ab7b3
SL
72impl<'tcx> Pattern<'tcx> {
73 fn is_wildcard(&self) -> bool {
74 match *self.kind {
75 PatternKind::Binding { subpattern: None, .. } | PatternKind::Wild =>
76 true,
77 _ => false
78 }
79 }
80}
81
82pub struct Matrix<'a, 'tcx: 'a>(Vec<Vec<&'a Pattern<'tcx>>>);
83
84impl<'a, 'tcx> Matrix<'a, 'tcx> {
85 pub fn empty() -> Self {
86 Matrix(vec![])
87 }
88
89 pub fn push(&mut self, row: Vec<&'a Pattern<'tcx>>) {
90 self.0.push(row)
91 }
92}
93
94/// Pretty-printer for matrices of patterns, example:
95/// ++++++++++++++++++++++++++
96/// + _ + [] +
97/// ++++++++++++++++++++++++++
98/// + true + [First] +
99/// ++++++++++++++++++++++++++
100/// + true + [Second(true)] +
101/// ++++++++++++++++++++++++++
102/// + false + [_] +
103/// ++++++++++++++++++++++++++
104/// + _ + [_, _, ..tail] +
105/// ++++++++++++++++++++++++++
106impl<'a, 'tcx> fmt::Debug for Matrix<'a, 'tcx> {
107 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
108 write!(f, "\n")?;
109
110 let &Matrix(ref m) = self;
111 let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
112 row.iter().map(|pat| format!("{:?}", pat)).collect()
113 }).collect();
114
115 let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
116 assert!(m.iter().all(|row| row.len() == column_count));
117 let column_widths: Vec<usize> = (0..column_count).map(|col| {
118 pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)
119 }).collect();
120
121 let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
122 let br = repeat('+').take(total_width).collect::<String>();
123 write!(f, "{}\n", br)?;
124 for row in pretty_printed_matrix {
125 write!(f, "+")?;
126 for (column, pat_str) in row.into_iter().enumerate() {
127 write!(f, " ")?;
128 write!(f, "{:1$}", pat_str, column_widths[column])?;
129 write!(f, " +")?;
130 }
131 write!(f, "\n")?;
132 write!(f, "{}\n", br)?;
133 }
134 Ok(())
135 }
136}
137
138impl<'a, 'tcx> FromIterator<Vec<&'a Pattern<'tcx>>> for Matrix<'a, 'tcx> {
139 fn from_iter<T: IntoIterator<Item=Vec<&'a Pattern<'tcx>>>>(iter: T) -> Self
140 {
141 Matrix(iter.into_iter().collect())
142 }
143}
144
145//NOTE: appears to be the only place other then InferCtxt to contain a ParamEnv
146pub struct MatchCheckCtxt<'a, 'tcx: 'a> {
147 pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
32a655c1
SL
148 /// The module in which the match occurs. This is necessary for
149 /// checking inhabited-ness of types because whether a type is (visibly)
150 /// inhabited can depend on whether it was defined in the current module or
151 /// not. eg. `struct Foo { _private: ! }` cannot be seen to be empty
152 /// outside it's module and should not be matchable with an empty match
153 /// statement.
154 pub module: DefId,
c30ab7b3 155 pub pattern_arena: &'a TypedArena<Pattern<'tcx>>,
476ff2be 156 pub byte_array_map: FxHashMap<*const Pattern<'tcx>, Vec<&'a Pattern<'tcx>>>,
c30ab7b3
SL
157}
158
159impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
160 pub fn create_and_enter<F, R>(
161 tcx: TyCtxt<'a, 'tcx, 'tcx>,
32a655c1 162 module: DefId,
c30ab7b3
SL
163 f: F) -> R
164 where F: for<'b> FnOnce(MatchCheckCtxt<'b, 'tcx>) -> R
165 {
c30ab7b3
SL
166 let pattern_arena = TypedArena::new();
167
168 f(MatchCheckCtxt {
3b2f2976
XL
169 tcx,
170 module,
c30ab7b3 171 pattern_arena: &pattern_arena,
476ff2be 172 byte_array_map: FxHashMap(),
c30ab7b3
SL
173 })
174 }
175
176 // convert a byte-string pattern to a list of u8 patterns.
32a655c1
SL
177 fn lower_byte_str_pattern<'p>(&mut self, pat: &'p Pattern<'tcx>) -> Vec<&'p Pattern<'tcx>>
178 where 'a: 'p
179 {
c30ab7b3
SL
180 let pattern_arena = &*self.pattern_arena;
181 let tcx = self.tcx;
182 self.byte_array_map.entry(pat).or_insert_with(|| {
183 match pat.kind {
184 box PatternKind::Constant {
ea8adc8c 185 value: &ty::Const { val: ConstVal::ByteStr(b), .. }
c30ab7b3 186 } => {
ea8adc8c 187 b.data.iter().map(|&b| &*pattern_arena.alloc(Pattern {
c30ab7b3
SL
188 ty: tcx.types.u8,
189 span: pat.span,
190 kind: box PatternKind::Constant {
ea8adc8c
XL
191 value: tcx.mk_const(ty::Const {
192 val: ConstVal::Integral(ConstInt::U8(b)),
193 ty: tcx.types.u8
194 })
c30ab7b3
SL
195 }
196 })).collect()
197 }
198 _ => span_bug!(pat.span, "unexpected byte array pattern {:?}", pat)
199 }
200 }).clone()
201 }
32a655c1
SL
202
203 fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
204 if self.tcx.sess.features.borrow().never_type {
abe05a73 205 self.tcx.is_ty_uninhabited_from(self.module, ty)
32a655c1
SL
206 } else {
207 false
208 }
209 }
210
abe05a73
XL
211 fn is_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
212 match ty.sty {
213 ty::TyAdt(adt_def, ..) => adt_def.is_enum() && adt_def.is_non_exhaustive(),
214 _ => false,
215 }
216 }
217
218 fn is_local(&self, ty: Ty<'tcx>) -> bool {
219 match ty.sty {
220 ty::TyAdt(adt_def, ..) => adt_def.did.is_local(),
221 _ => false,
222 }
223 }
224
32a655c1
SL
225 fn is_variant_uninhabited(&self,
226 variant: &'tcx ty::VariantDef,
abe05a73
XL
227 substs: &'tcx ty::subst::Substs<'tcx>)
228 -> bool
32a655c1
SL
229 {
230 if self.tcx.sess.features.borrow().never_type {
abe05a73 231 self.tcx.is_enum_variant_uninhabited_from(self.module, variant, substs)
32a655c1
SL
232 } else {
233 false
234 }
235 }
c30ab7b3
SL
236}
237
238#[derive(Clone, Debug, PartialEq)]
8bb4bdeb 239pub enum Constructor<'tcx> {
c30ab7b3
SL
240 /// The constructor of all patterns that don't vary by constructor,
241 /// e.g. struct patterns and fixed-length arrays.
242 Single,
243 /// Enum variants.
244 Variant(DefId),
245 /// Literal values.
ea8adc8c 246 ConstantValue(&'tcx ty::Const<'tcx>),
32a655c1 247 /// Ranges of literal values (`2...5` and `2..5`).
ea8adc8c 248 ConstantRange(&'tcx ty::Const<'tcx>, &'tcx ty::Const<'tcx>, RangeEnd),
c30ab7b3 249 /// Array patterns of length n.
ea8adc8c 250 Slice(u64),
c30ab7b3
SL
251}
252
8bb4bdeb 253impl<'tcx> Constructor<'tcx> {
32a655c1 254 fn variant_index_for_adt(&self, adt: &'tcx ty::AdtDef) -> usize {
c30ab7b3 255 match self {
32a655c1 256 &Variant(vid) => adt.variant_index_with_id(vid),
c30ab7b3
SL
257 &Single => {
258 assert_eq!(adt.variants.len(), 1);
32a655c1 259 0
c30ab7b3
SL
260 }
261 _ => bug!("bad constructor {:?} for adt {:?}", self, adt)
262 }
263 }
264}
265
32a655c1
SL
266#[derive(Clone)]
267pub enum Usefulness<'tcx> {
c30ab7b3 268 Useful,
32a655c1 269 UsefulWithWitness(Vec<Witness<'tcx>>),
c30ab7b3
SL
270 NotUseful
271}
272
32a655c1
SL
273impl<'tcx> Usefulness<'tcx> {
274 fn is_useful(&self) -> bool {
275 match *self {
276 NotUseful => false,
277 _ => true
278 }
279 }
280}
281
c30ab7b3
SL
282#[derive(Copy, Clone)]
283pub enum WitnessPreference {
284 ConstructWitness,
285 LeaveOutWitness
286}
287
288#[derive(Copy, Clone, Debug)]
289struct PatternContext<'tcx> {
290 ty: Ty<'tcx>,
ea8adc8c 291 max_slice_length: u64,
c30ab7b3
SL
292}
293
c30ab7b3 294/// A stack of patterns in reverse order of construction
32a655c1
SL
295#[derive(Clone)]
296pub struct Witness<'tcx>(Vec<Pattern<'tcx>>);
c30ab7b3 297
32a655c1
SL
298impl<'tcx> Witness<'tcx> {
299 pub fn single_pattern(&self) -> &Pattern<'tcx> {
c30ab7b3
SL
300 assert_eq!(self.0.len(), 1);
301 &self.0[0]
302 }
303
32a655c1 304 fn push_wild_constructor<'a>(
c30ab7b3
SL
305 mut self,
306 cx: &MatchCheckCtxt<'a, 'tcx>,
8bb4bdeb 307 ctor: &Constructor<'tcx>,
c30ab7b3
SL
308 ty: Ty<'tcx>)
309 -> Self
310 {
32a655c1
SL
311 let sub_pattern_tys = constructor_sub_pattern_tys(cx, ctor, ty);
312 self.0.extend(sub_pattern_tys.into_iter().map(|ty| {
313 Pattern {
3b2f2976 314 ty,
32a655c1
SL
315 span: DUMMY_SP,
316 kind: box PatternKind::Wild,
317 }
318 }));
c30ab7b3
SL
319 self.apply_constructor(cx, ctor, ty)
320 }
321
322
323 /// Constructs a partial witness for a pattern given a list of
324 /// patterns expanded by the specialization step.
325 ///
326 /// When a pattern P is discovered to be useful, this function is used bottom-up
327 /// to reconstruct a complete witness, e.g. a pattern P' that covers a subset
328 /// of values, V, where each value in that set is not covered by any previously
329 /// used patterns and is covered by the pattern P'. Examples:
330 ///
331 /// left_ty: tuple of 3 elements
332 /// pats: [10, 20, _] => (10, 20, _)
333 ///
334 /// left_ty: struct X { a: (bool, &'static str), b: usize}
335 /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
32a655c1 336 fn apply_constructor<'a>(
c30ab7b3
SL
337 mut self,
338 cx: &MatchCheckCtxt<'a,'tcx>,
8bb4bdeb 339 ctor: &Constructor<'tcx>,
c30ab7b3
SL
340 ty: Ty<'tcx>)
341 -> Self
342 {
343 let arity = constructor_arity(cx, ctor, ty);
344 let pat = {
ea8adc8c
XL
345 let len = self.0.len() as u64;
346 let mut pats = self.0.drain((len-arity) as usize..).rev();
c30ab7b3
SL
347
348 match ty.sty {
32a655c1
SL
349 ty::TyAdt(..) |
350 ty::TyTuple(..) => {
351 let pats = pats.enumerate().map(|(i, p)| {
352 FieldPattern {
353 field: Field::new(i),
354 pattern: p
c30ab7b3 355 }
32a655c1
SL
356 }).collect();
357
358 if let ty::TyAdt(adt, substs) = ty.sty {
359 if adt.variants.len() > 1 {
360 PatternKind::Variant {
361 adt_def: adt,
3b2f2976 362 substs,
32a655c1
SL
363 variant_index: ctor.variant_index_for_adt(adt),
364 subpatterns: pats
365 }
366 } else {
367 PatternKind::Leaf { subpatterns: pats }
c30ab7b3 368 }
32a655c1
SL
369 } else {
370 PatternKind::Leaf { subpatterns: pats }
c30ab7b3
SL
371 }
372 }
373
32a655c1
SL
374 ty::TyRef(..) => {
375 PatternKind::Deref { subpattern: pats.nth(0).unwrap() }
c30ab7b3
SL
376 }
377
378 ty::TySlice(_) | ty::TyArray(..) => {
32a655c1
SL
379 PatternKind::Slice {
380 prefix: pats.collect(),
381 slice: None,
382 suffix: vec![]
383 }
c30ab7b3
SL
384 }
385
386 _ => {
387 match *ctor {
ea8adc8c 388 ConstantValue(value) => PatternKind::Constant { value },
32a655c1 389 _ => PatternKind::Wild,
c30ab7b3
SL
390 }
391 }
392 }
393 };
394
32a655c1 395 self.0.push(Pattern {
3b2f2976 396 ty,
32a655c1
SL
397 span: DUMMY_SP,
398 kind: Box::new(pat),
399 });
c30ab7b3
SL
400
401 self
402 }
403}
404
c30ab7b3
SL
405/// This determines the set of all possible constructors of a pattern matching
406/// values of type `left_ty`. For vectors, this would normally be an infinite set
32a655c1
SL
407/// but is instead bounded by the maximum fixed length of slice patterns in
408/// the column of patterns being analyzed.
c30ab7b3
SL
409///
410/// This intentionally does not list ConstantValue specializations for
411/// non-booleans, because we currently assume that there is always a
412/// "non-standard constant" that matches. See issue #12483.
413///
32a655c1
SL
414/// We make sure to omit constructors that are statically impossible. eg for
415/// Option<!> we do not include Some(_) in the returned list of constructors.
416fn all_constructors<'a, 'tcx: 'a>(cx: &mut MatchCheckCtxt<'a, 'tcx>,
8bb4bdeb
XL
417 pcx: PatternContext<'tcx>)
418 -> Vec<Constructor<'tcx>>
32a655c1
SL
419{
420 debug!("all_constructors({:?})", pcx.ty);
c30ab7b3 421 match pcx.ty.sty {
ea8adc8c
XL
422 ty::TyBool => {
423 [true, false].iter().map(|&b| {
424 ConstantValue(cx.tcx.mk_const(ty::Const {
425 val: ConstVal::Bool(b),
426 ty: cx.tcx.types.bool
427 }))
428 }).collect()
429 }
430 ty::TyArray(ref sub_ty, len) if len.val.to_const_int().is_some() => {
431 let len = len.val.to_const_int().unwrap().to_u64().unwrap();
432 if len != 0 && cx.is_uninhabited(sub_ty) {
433 vec![]
434 } else {
435 vec![Slice(len)]
436 }
437 }
438 // Treat arrays of a constant but unknown length like slices.
439 ty::TyArray(ref sub_ty, _) |
32a655c1
SL
440 ty::TySlice(ref sub_ty) => {
441 if cx.is_uninhabited(sub_ty) {
442 vec![Slice(0)]
443 } else {
444 (0..pcx.max_slice_length+1).map(|length| Slice(length)).collect()
445 }
446 }
32a655c1
SL
447 ty::TyAdt(def, substs) if def.is_enum() && def.variants.len() != 1 => {
448 def.variants.iter()
449 .filter(|v| !cx.is_variant_uninhabited(v, substs))
450 .map(|v| Variant(v.did))
451 .collect()
452 }
453 _ => {
454 if cx.is_uninhabited(pcx.ty) {
455 vec![]
456 } else {
457 vec![Single]
458 }
459 }
c30ab7b3
SL
460 }
461}
462
32a655c1 463fn max_slice_length<'p, 'a: 'p, 'tcx: 'a, I>(
476ff2be 464 _cx: &mut MatchCheckCtxt<'a, 'tcx>,
ea8adc8c 465 patterns: I) -> u64
32a655c1 466 where I: Iterator<Item=&'p Pattern<'tcx>>
476ff2be
SL
467{
468 // The exhaustiveness-checking paper does not include any details on
469 // checking variable-length slice patterns. However, they are matched
470 // by an infinite collection of fixed-length array patterns.
471 //
472 // Checking the infinite set directly would take an infinite amount
473 // of time. However, it turns out that for each finite set of
474 // patterns `P`, all sufficiently large array lengths are equivalent:
475 //
476 // Each slice `s` with a "sufficiently-large" length `l ≥ L` that applies
477 // to exactly the subset `Pₜ` of `P` can be transformed to a slice
478 // `sₘ` for each sufficiently-large length `m` that applies to exactly
479 // the same subset of `P`.
480 //
481 // Because of that, each witness for reachability-checking from one
482 // of the sufficiently-large lengths can be transformed to an
483 // equally-valid witness from any other length, so we only have
484 // to check slice lengths from the "minimal sufficiently-large length"
485 // and below.
486 //
487 // Note that the fact that there is a *single* `sₘ` for each `m`
488 // not depending on the specific pattern in `P` is important: if
489 // you look at the pair of patterns
490 // `[true, ..]`
491 // `[.., false]`
492 // Then any slice of length ≥1 that matches one of these two
493 // patterns can be be trivially turned to a slice of any
494 // other length ≥1 that matches them and vice-versa - for
495 // but the slice from length 2 `[false, true]` that matches neither
496 // of these patterns can't be turned to a slice from length 1 that
497 // matches neither of these patterns, so we have to consider
498 // slices from length 2 there.
499 //
500 // Now, to see that that length exists and find it, observe that slice
501 // patterns are either "fixed-length" patterns (`[_, _, _]`) or
502 // "variable-length" patterns (`[_, .., _]`).
503 //
504 // For fixed-length patterns, all slices with lengths *longer* than
505 // the pattern's length have the same outcome (of not matching), so
506 // as long as `L` is greater than the pattern's length we can pick
507 // any `sₘ` from that length and get the same result.
508 //
509 // For variable-length patterns, the situation is more complicated,
510 // because as seen above the precise value of `sₘ` matters.
511 //
512 // However, for each variable-length pattern `p` with a prefix of length
513 // `plâ‚š` and suffix of length `slâ‚š`, only the first `plâ‚š` and the last
514 // `slâ‚š` elements are examined.
515 //
516 // Therefore, as long as `L` is positive (to avoid concerns about empty
517 // types), all elements after the maximum prefix length and before
518 // the maximum suffix length are not examined by any variable-length
519 // pattern, and therefore can be added/removed without affecting
520 // them - creating equivalent patterns from any sufficiently-large
521 // length.
522 //
523 // Of course, if fixed-length patterns exist, we must be sure
524 // that our length is large enough to miss them all, so
525 // we can pick `L = max(FIXED_LEN+1 ∪ {max(PREFIX_LEN) + max(SUFFIX_LEN)})`
526 //
527 // for example, with the above pair of patterns, all elements
528 // but the first and last can be added/removed, so any
529 // witness of length ≥2 (say, `[false, false, true]`) can be
530 // turned to a witness from any other length ≥2.
531
532 let mut max_prefix_len = 0;
533 let mut max_suffix_len = 0;
534 let mut max_fixed_len = 0;
535
536 for row in patterns {
537 match *row.kind {
ea8adc8c
XL
538 PatternKind::Constant { value: &ty::Const { val: ConstVal::ByteStr(b), .. } } => {
539 max_fixed_len = cmp::max(max_fixed_len, b.data.len() as u64);
476ff2be
SL
540 }
541 PatternKind::Slice { ref prefix, slice: None, ref suffix } => {
ea8adc8c 542 let fixed_len = prefix.len() as u64 + suffix.len() as u64;
476ff2be
SL
543 max_fixed_len = cmp::max(max_fixed_len, fixed_len);
544 }
545 PatternKind::Slice { ref prefix, slice: Some(_), ref suffix } => {
ea8adc8c
XL
546 max_prefix_len = cmp::max(max_prefix_len, prefix.len() as u64);
547 max_suffix_len = cmp::max(max_suffix_len, suffix.len() as u64);
476ff2be
SL
548 }
549 _ => {}
550 }
551 }
552
553 cmp::max(max_fixed_len + 1, max_prefix_len + max_suffix_len)
554}
555
c30ab7b3 556/// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
32a655c1
SL
557/// The algorithm from the paper has been modified to correctly handle empty
558/// types. The changes are:
559/// (0) We don't exit early if the pattern matrix has zero rows. We just
560/// continue to recurse over columns.
561/// (1) all_constructors will only return constructors that are statically
562/// possible. eg. it will only return Ok for Result<T, !>
c30ab7b3
SL
563///
564/// Whether a vector `v` of patterns is 'useful' in relation to a set of such
565/// vectors `m` is defined as there being a set of inputs that will match `v`
566/// but not any of the sets in `m`.
567///
568/// This is used both for reachability checking (if a pattern isn't useful in
569/// relation to preceding patterns, it is not reachable) and exhaustiveness
570/// checking (if a wildcard pattern is useful in relation to a matrix, the
571/// matrix isn't exhaustive).
32a655c1
SL
572pub fn is_useful<'p, 'a: 'p, 'tcx: 'a>(cx: &mut MatchCheckCtxt<'a, 'tcx>,
573 matrix: &Matrix<'p, 'tcx>,
574 v: &[&'p Pattern<'tcx>],
c30ab7b3 575 witness: WitnessPreference)
32a655c1 576 -> Usefulness<'tcx> {
c30ab7b3
SL
577 let &Matrix(ref rows) = matrix;
578 debug!("is_useful({:?}, {:?})", matrix, v);
c30ab7b3 579
32a655c1
SL
580 // The base case. We are pattern-matching on () and the return value is
581 // based on whether our matrix has a row or not.
582 // NOTE: This could potentially be optimized by checking rows.is_empty()
583 // first and then, if v is non-empty, the return value is based on whether
584 // the type of the tuple we're checking is inhabited or not.
585 if v.is_empty() {
586 return if rows.is_empty() {
587 match witness {
588 ConstructWitness => UsefulWithWitness(vec![Witness(vec![])]),
589 LeaveOutWitness => Useful,
590 }
591 } else {
592 NotUseful
593 }
594 };
476ff2be 595
32a655c1 596 assert!(rows.iter().all(|r| r.len() == v.len()));
476ff2be 597
c30ab7b3
SL
598 let pcx = PatternContext {
599 ty: rows.iter().map(|r| r[0].ty).find(|ty| !ty.references_error())
600 .unwrap_or(v[0].ty),
476ff2be 601 max_slice_length: max_slice_length(cx, rows.iter().map(|r| r[0]).chain(Some(v[0])))
c30ab7b3
SL
602 };
603
604 debug!("is_useful_expand_first_col: pcx={:?}, expanding {:?}", pcx, v[0]);
605
606 if let Some(constructors) = pat_constructors(cx, v[0], pcx) {
607 debug!("is_useful - expanding constructors: {:?}", constructors);
608 constructors.into_iter().map(|c|
609 is_useful_specialized(cx, matrix, v, c.clone(), pcx.ty, witness)
32a655c1 610 ).find(|result| result.is_useful()).unwrap_or(NotUseful)
c30ab7b3
SL
611 } else {
612 debug!("is_useful - expanding wildcard");
32a655c1
SL
613
614 let used_ctors: Vec<Constructor> = rows.iter().flat_map(|row| {
615 pat_constructors(cx, row[0], pcx).unwrap_or(vec![])
616 }).collect();
617 debug!("used_ctors = {:?}", used_ctors);
618 let all_ctors = all_constructors(cx, pcx);
619 debug!("all_ctors = {:?}", all_ctors);
620 let missing_ctors: Vec<Constructor> = all_ctors.iter().filter(|c| {
621 !used_ctors.contains(*c)
622 }).cloned().collect();
623
624 // `missing_ctors` is the set of constructors from the same type as the
625 // first column of `matrix` that are matched only by wildcard patterns
626 // from the first column.
627 //
628 // Therefore, if there is some pattern that is unmatched by `matrix`,
629 // it will still be unmatched if the first constructor is replaced by
630 // any of the constructors in `missing_ctors`
631 //
632 // However, if our scrutinee is *privately* an empty enum, we
633 // must treat it as though it had an "unknown" constructor (in
634 // that case, all other patterns obviously can't be variants)
635 // to avoid exposing its emptyness. See the `match_privately_empty`
636 // test for details.
637 //
638 // FIXME: currently the only way I know of something can
639 // be a privately-empty enum is when the never_type
640 // feature flag is not present, so this is only
641 // needed for that case.
642
643 let is_privately_empty =
644 all_ctors.is_empty() && !cx.is_uninhabited(pcx.ty);
abe05a73
XL
645 let is_declared_nonexhaustive =
646 cx.is_non_exhaustive_enum(pcx.ty) && !cx.is_local(pcx.ty);
647 debug!("missing_ctors={:?} is_privately_empty={:?} is_declared_nonexhaustive={:?}",
648 missing_ctors, is_privately_empty, is_declared_nonexhaustive);
649
650 // For privately empty and non-exhaustive enums, we work as if there were an "extra"
651 // `_` constructor for the type, so we can never match over all constructors.
652 let is_non_exhaustive = is_privately_empty || is_declared_nonexhaustive;
653
654 if missing_ctors.is_empty() && !is_non_exhaustive {
32a655c1 655 all_ctors.into_iter().map(|c| {
c30ab7b3 656 is_useful_specialized(cx, matrix, v, c.clone(), pcx.ty, witness)
32a655c1 657 }).find(|result| result.is_useful()).unwrap_or(NotUseful)
c30ab7b3
SL
658 } else {
659 let matrix = rows.iter().filter_map(|r| {
660 if r[0].is_wildcard() {
661 Some(r[1..].to_vec())
662 } else {
663 None
664 }
665 }).collect();
666 match is_useful(cx, &matrix, &v[1..], witness) {
667 UsefulWithWitness(pats) => {
668 let cx = &*cx;
abe05a73
XL
669 // In this case, there's at least one "free"
670 // constructor that is only matched against by
671 // wildcard patterns.
672 //
673 // There are 2 ways we can report a witness here.
674 // Commonly, we can report all the "free"
675 // constructors as witnesses, e.g. if we have:
676 //
677 // ```
678 // enum Direction { N, S, E, W }
679 // let Direction::N = ...;
680 // ```
681 //
682 // we can report 3 witnesses: `S`, `E`, and `W`.
683 //
684 // However, there are 2 cases where we don't want
685 // to do this and instead report a single `_` witness:
686 //
687 // 1) If the user is matching against a non-exhaustive
688 // enum, there is no point in enumerating all possible
689 // variants, because the user can't actually match
690 // against them himself, e.g. in an example like:
691 // ```
692 // let err: io::ErrorKind = ...;
693 // match err {
694 // io::ErrorKind::NotFound => {},
695 // }
696 // ```
697 // we don't want to show every possible IO error,
698 // but instead have `_` as the witness (this is
699 // actually *required* if the user specified *all*
700 // IO errors, but is probably what we want in every
701 // case).
702 //
703 // 2) If the user didn't actually specify a constructor
704 // in this arm, e.g. in
705 // ```
706 // let x: (Direction, Direction, bool) = ...;
707 // let (_, _, false) = x;
708 // ```
709 // we don't want to show all 16 possible witnesses
710 // `(<direction-1>, <direction-2>, true)` - we are
711 // satisfied with `(_, _, true)`. In this case,
712 // `used_ctors` is empty.
713 let new_witnesses = if is_non_exhaustive || used_ctors.is_empty() {
32a655c1
SL
714 // All constructors are unused. Add wild patterns
715 // rather than each individual constructor
716 pats.into_iter().map(|mut witness| {
717 witness.0.push(Pattern {
718 ty: pcx.ty,
719 span: DUMMY_SP,
720 kind: box PatternKind::Wild,
721 });
722 witness
723 }).collect()
724 } else {
725 pats.into_iter().flat_map(|witness| {
726 missing_ctors.iter().map(move |ctor| {
727 witness.clone().push_wild_constructor(cx, ctor, pcx.ty)
728 })
729 }).collect()
730 };
731 UsefulWithWitness(new_witnesses)
c30ab7b3
SL
732 }
733 result => result
734 }
735 }
736 }
737}
738
32a655c1 739fn is_useful_specialized<'p, 'a:'p, 'tcx: 'a>(
c30ab7b3 740 cx: &mut MatchCheckCtxt<'a, 'tcx>,
32a655c1
SL
741 &Matrix(ref m): &Matrix<'p, 'tcx>,
742 v: &[&'p Pattern<'tcx>],
8bb4bdeb 743 ctor: Constructor<'tcx>,
c30ab7b3 744 lty: Ty<'tcx>,
32a655c1 745 witness: WitnessPreference) -> Usefulness<'tcx>
c30ab7b3 746{
32a655c1
SL
747 debug!("is_useful_specialized({:?}, {:?}, {:?})", v, ctor, lty);
748 let sub_pat_tys = constructor_sub_pattern_tys(cx, &ctor, lty);
749 let wild_patterns_owned: Vec<_> = sub_pat_tys.iter().map(|ty| {
750 Pattern {
3b2f2976 751 ty,
32a655c1
SL
752 span: DUMMY_SP,
753 kind: box PatternKind::Wild,
754 }
755 }).collect();
756 let wild_patterns: Vec<_> = wild_patterns_owned.iter().collect();
c30ab7b3 757 let matrix = Matrix(m.iter().flat_map(|r| {
cc61c64b 758 specialize(cx, &r, &ctor, &wild_patterns)
c30ab7b3 759 }).collect());
32a655c1 760 match specialize(cx, v, &ctor, &wild_patterns) {
cc61c64b 761 Some(v) => match is_useful(cx, &matrix, &v, witness) {
c30ab7b3
SL
762 UsefulWithWitness(witnesses) => UsefulWithWitness(
763 witnesses.into_iter()
764 .map(|witness| witness.apply_constructor(cx, &ctor, lty))
765 .collect()
766 ),
767 result => result
768 },
769 None => NotUseful
770 }
771}
772
773/// Determines the constructors that the given pattern can be specialized to.
774///
775/// In most cases, there's only one constructor that a specific pattern
776/// represents, such as a specific enum variant or a specific literal value.
777/// Slice patterns, however, can match slices of different lengths. For instance,
778/// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
779///
780/// Returns None in case of a catch-all, which can't be specialized.
8bb4bdeb
XL
781fn pat_constructors<'tcx>(_cx: &mut MatchCheckCtxt,
782 pat: &Pattern<'tcx>,
783 pcx: PatternContext)
784 -> Option<Vec<Constructor<'tcx>>>
c30ab7b3
SL
785{
786 match *pat.kind {
787 PatternKind::Binding { .. } | PatternKind::Wild =>
788 None,
789 PatternKind::Leaf { .. } | PatternKind::Deref { .. } =>
790 Some(vec![Single]),
791 PatternKind::Variant { adt_def, variant_index, .. } =>
792 Some(vec![Variant(adt_def.variants[variant_index].did)]),
ea8adc8c
XL
793 PatternKind::Constant { value } =>
794 Some(vec![ConstantValue(value)]),
795 PatternKind::Range { lo, hi, end } =>
796 Some(vec![ConstantRange(lo, hi, end)]),
c30ab7b3 797 PatternKind::Array { .. } => match pcx.ty.sty {
ea8adc8c
XL
798 ty::TyArray(_, length) => Some(vec![
799 Slice(length.val.to_const_int().unwrap().to_u64().unwrap())
800 ]),
c30ab7b3
SL
801 _ => span_bug!(pat.span, "bad ty {:?} for array pattern", pcx.ty)
802 },
803 PatternKind::Slice { ref prefix, ref slice, ref suffix } => {
ea8adc8c 804 let pat_len = prefix.len() as u64 + suffix.len() as u64;
c30ab7b3
SL
805 if slice.is_some() {
806 Some((pat_len..pcx.max_slice_length+1).map(Slice).collect())
807 } else {
808 Some(vec![Slice(pat_len)])
809 }
810 }
811 }
812}
813
814/// This computes the arity of a constructor. The arity of a constructor
815/// is how many subpattern patterns of that constructor should be expanded to.
816///
817/// For instance, a tuple pattern (_, 42, Some([])) has the arity of 3.
818/// A struct pattern's arity is the number of fields it contains, etc.
ea8adc8c 819fn constructor_arity(_cx: &MatchCheckCtxt, ctor: &Constructor, ty: Ty) -> u64 {
c30ab7b3
SL
820 debug!("constructor_arity({:?}, {:?})", ctor, ty);
821 match ty.sty {
ea8adc8c 822 ty::TyTuple(ref fs, _) => fs.len() as u64,
c30ab7b3
SL
823 ty::TySlice(..) | ty::TyArray(..) => match *ctor {
824 Slice(length) => length,
825 ConstantValue(_) => 0,
826 _ => bug!("bad slice pattern {:?} {:?}", ctor, ty)
827 },
828 ty::TyRef(..) => 1,
829 ty::TyAdt(adt, _) => {
ea8adc8c 830 adt.variants[ctor.variant_index_for_adt(adt)].fields.len() as u64
c30ab7b3
SL
831 }
832 _ => 0
833 }
834}
835
32a655c1
SL
836/// This computes the types of the sub patterns that a constructor should be
837/// expanded to.
838///
839/// For instance, a tuple pattern (43u32, 'a') has sub pattern types [u32, char].
840fn constructor_sub_pattern_tys<'a, 'tcx: 'a>(cx: &MatchCheckCtxt<'a, 'tcx>,
841 ctor: &Constructor,
842 ty: Ty<'tcx>) -> Vec<Ty<'tcx>>
843{
844 debug!("constructor_sub_pattern_tys({:?}, {:?})", ctor, ty);
845 match ty.sty {
8bb4bdeb 846 ty::TyTuple(ref fs, _) => fs.into_iter().map(|t| *t).collect(),
32a655c1 847 ty::TySlice(ty) | ty::TyArray(ty, _) => match *ctor {
ea8adc8c 848 Slice(length) => (0..length).map(|_| ty).collect(),
32a655c1
SL
849 ConstantValue(_) => vec![],
850 _ => bug!("bad slice pattern {:?} {:?}", ctor, ty)
851 },
852 ty::TyRef(_, ref ty_and_mut) => vec![ty_and_mut.ty],
853 ty::TyAdt(adt, substs) => {
041b39d2
XL
854 if adt.is_box() {
855 // Use T as the sub pattern type of Box<T>.
856 vec![substs[0].as_type().unwrap()]
857 } else {
858 adt.variants[ctor.variant_index_for_adt(adt)].fields.iter().map(|field| {
859 let is_visible = adt.is_enum()
860 || field.vis.is_accessible_from(cx.module, cx.tcx);
861 if is_visible {
862 field.ty(cx.tcx, substs)
863 } else {
864 // Treat all non-visible fields as nil. They
865 // can't appear in any other pattern from
866 // this match (because they are private),
867 // so their type does not matter - but
868 // we don't want to know they are
869 // uninhabited.
870 cx.tcx.mk_nil()
871 }
872 }).collect()
873 }
32a655c1
SL
874 }
875 _ => vec![],
876 }
877}
878
c30ab7b3
SL
879fn slice_pat_covered_by_constructor(_tcx: TyCtxt, _span: Span,
880 ctor: &Constructor,
881 prefix: &[Pattern],
882 slice: &Option<Pattern>,
883 suffix: &[Pattern])
884 -> Result<bool, ErrorReported> {
885 let data = match *ctor {
ea8adc8c 886 ConstantValue(&ty::Const { val: ConstVal::ByteStr(b), .. }) => b.data,
c30ab7b3
SL
887 _ => bug!()
888 };
889
890 let pat_len = prefix.len() + suffix.len();
891 if data.len() < pat_len || (slice.is_none() && data.len() > pat_len) {
892 return Ok(false);
893 }
894
895 for (ch, pat) in
896 data[..prefix.len()].iter().zip(prefix).chain(
897 data[data.len()-suffix.len()..].iter().zip(suffix))
898 {
899 match pat.kind {
ea8adc8c 900 box PatternKind::Constant { value } => match value.val {
c30ab7b3
SL
901 ConstVal::Integral(ConstInt::U8(u)) => {
902 if u != *ch {
903 return Ok(false);
904 }
905 },
906 _ => span_bug!(pat.span, "bad const u8 {:?}", value)
907 },
908 _ => {}
909 }
910 }
911
912 Ok(true)
913}
914
041b39d2 915fn constructor_covered_by_range(tcx: TyCtxt, span: Span,
c30ab7b3 916 ctor: &Constructor,
32a655c1
SL
917 from: &ConstVal, to: &ConstVal,
918 end: RangeEnd)
c30ab7b3 919 -> Result<bool, ErrorReported> {
32a655c1
SL
920 let cmp_from = |c_from| Ok(compare_const_vals(tcx, span, c_from, from)? != Ordering::Less);
921 let cmp_to = |c_to| compare_const_vals(tcx, span, c_to, to);
922 match *ctor {
ea8adc8c
XL
923 ConstantValue(value) => {
924 let to = cmp_to(&value.val)?;
041b39d2
XL
925 let end = (to == Ordering::Less) ||
926 (end == RangeEnd::Included && to == Ordering::Equal);
ea8adc8c 927 Ok(cmp_from(&value.val)? && end)
32a655c1 928 },
ea8adc8c
XL
929 ConstantRange(from, to, RangeEnd::Included) => {
930 let to = cmp_to(&to.val)?;
041b39d2
XL
931 let end = (to == Ordering::Less) ||
932 (end == RangeEnd::Included && to == Ordering::Equal);
ea8adc8c 933 Ok(cmp_from(&from.val)? && end)
32a655c1 934 },
ea8adc8c
XL
935 ConstantRange(from, to, RangeEnd::Excluded) => {
936 let to = cmp_to(&to.val)?;
32a655c1
SL
937 let end = (to == Ordering::Less) ||
938 (end == RangeEnd::Excluded && to == Ordering::Equal);
ea8adc8c 939 Ok(cmp_from(&from.val)? && end)
32a655c1
SL
940 }
941 Single => Ok(true),
942 _ => bug!(),
943 }
c30ab7b3
SL
944}
945
32a655c1
SL
946fn patterns_for_variant<'p, 'a: 'p, 'tcx: 'a>(
947 subpatterns: &'p [FieldPattern<'tcx>],
948 wild_patterns: &[&'p Pattern<'tcx>])
949 -> Vec<&'p Pattern<'tcx>>
c30ab7b3 950{
32a655c1 951 let mut result = wild_patterns.to_owned();
c30ab7b3
SL
952
953 for subpat in subpatterns {
954 result[subpat.field.index()] = &subpat.pattern;
955 }
956
32a655c1 957 debug!("patterns_for_variant({:?}, {:?}) = {:?}", subpatterns, wild_patterns, result);
c30ab7b3
SL
958 result
959}
960
961/// This is the main specialization step. It expands the first pattern in the given row
962/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
963/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
964///
965/// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
966/// different patterns.
967/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
968/// fields filled with wild patterns.
32a655c1 969fn specialize<'p, 'a: 'p, 'tcx: 'a>(
c30ab7b3 970 cx: &mut MatchCheckCtxt<'a, 'tcx>,
32a655c1
SL
971 r: &[&'p Pattern<'tcx>],
972 constructor: &Constructor,
973 wild_patterns: &[&'p Pattern<'tcx>])
974 -> Option<Vec<&'p Pattern<'tcx>>>
c30ab7b3 975{
32a655c1 976 let pat = &r[0];
c30ab7b3
SL
977
978 let head: Option<Vec<&Pattern>> = match *pat.kind {
32a655c1
SL
979 PatternKind::Binding { .. } | PatternKind::Wild => {
980 Some(wild_patterns.to_owned())
981 },
c30ab7b3 982
32a655c1 983 PatternKind::Variant { adt_def, variant_index, ref subpatterns, .. } => {
c30ab7b3
SL
984 let ref variant = adt_def.variants[variant_index];
985 if *constructor == Variant(variant.did) {
32a655c1 986 Some(patterns_for_variant(subpatterns, wild_patterns))
c30ab7b3
SL
987 } else {
988 None
989 }
990 }
991
32a655c1
SL
992 PatternKind::Leaf { ref subpatterns } => {
993 Some(patterns_for_variant(subpatterns, wild_patterns))
994 }
995 PatternKind::Deref { ref subpattern } => {
996 Some(vec![subpattern])
997 }
c30ab7b3 998
ea8adc8c 999 PatternKind::Constant { value } => {
c30ab7b3 1000 match *constructor {
ea8adc8c
XL
1001 Slice(..) => match value.val {
1002 ConstVal::ByteStr(b) => {
1003 if wild_patterns.len() == b.data.len() {
c30ab7b3
SL
1004 Some(cx.lower_byte_str_pattern(pat))
1005 } else {
1006 None
1007 }
1008 }
1009 _ => span_bug!(pat.span,
1010 "unexpected const-val {:?} with ctor {:?}", value, constructor)
1011 },
1012 _ => {
041b39d2 1013 match constructor_covered_by_range(
ea8adc8c 1014 cx.tcx, pat.span, constructor, &value.val, &value.val, RangeEnd::Included
c30ab7b3
SL
1015 ) {
1016 Ok(true) => Some(vec![]),
1017 Ok(false) => None,
1018 Err(ErrorReported) => None,
1019 }
1020 }
1021 }
1022 }
1023
ea8adc8c 1024 PatternKind::Range { lo, hi, ref end } => {
041b39d2 1025 match constructor_covered_by_range(
ea8adc8c 1026 cx.tcx, pat.span, constructor, &lo.val, &hi.val, end.clone()
c30ab7b3
SL
1027 ) {
1028 Ok(true) => Some(vec![]),
1029 Ok(false) => None,
1030 Err(ErrorReported) => None,
1031 }
1032 }
1033
1034 PatternKind::Array { ref prefix, ref slice, ref suffix } |
1035 PatternKind::Slice { ref prefix, ref slice, ref suffix } => {
1036 match *constructor {
1037 Slice(..) => {
1038 let pat_len = prefix.len() + suffix.len();
32a655c1 1039 if let Some(slice_count) = wild_patterns.len().checked_sub(pat_len) {
c30ab7b3
SL
1040 if slice_count == 0 || slice.is_some() {
1041 Some(
1042 prefix.iter().chain(
32a655c1
SL
1043 wild_patterns.iter().map(|p| *p)
1044 .skip(prefix.len())
1045 .take(slice_count)
1046 .chain(
c30ab7b3
SL
1047 suffix.iter()
1048 )).collect())
1049 } else {
1050 None
1051 }
1052 } else {
1053 None
1054 }
1055 }
1056 ConstantValue(..) => {
1057 match slice_pat_covered_by_constructor(
1058 cx.tcx, pat.span, constructor, prefix, slice, suffix
1059 ) {
1060 Ok(true) => Some(vec![]),
1061 Ok(false) => None,
1062 Err(ErrorReported) => None
1063 }
1064 }
1065 _ => span_bug!(pat.span,
1066 "unexpected ctor {:?} for slice pat", constructor)
1067 }
1068 }
1069 };
32a655c1 1070 debug!("specialize({:?}, {:?}) = {:?}", r[0], wild_patterns, head);
c30ab7b3
SL
1071
1072 head.map(|mut head| {
32a655c1 1073 head.extend_from_slice(&r[1 ..]);
c30ab7b3
SL
1074 head
1075 })
1076}