]> git.proxmox.com Git - rustc.git/blame - src/librustc_data_structures/transitive_relation.rs
New upstream version 1.31.0~beta.4+dfsg1
[rustc.git] / src / librustc_data_structures / transitive_relation.rs
CommitLineData
e9174d1e
SL
1// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
0bf4aa26 11use bit_set::BitMatrix;
7cac9316 12use fx::FxHashMap;
0531ce1d 13use sync::Lock;
8bb4bdeb 14use rustc_serialize::{Encodable, Encoder, Decodable, Decoder};
7cac9316 15use stable_hasher::{HashStable, StableHasher, StableHasherResult};
e9174d1e 16use std::fmt::Debug;
7cac9316 17use std::hash::Hash;
e9174d1e
SL
18use std::mem;
19
cc61c64b 20
ea8adc8c 21#[derive(Clone, Debug)]
0531ce1d 22pub struct TransitiveRelation<T: Clone + Debug + Eq + Hash> {
7cac9316 23 // List of elements. This is used to map from a T to a usize.
e9174d1e
SL
24 elements: Vec<T>,
25
7cac9316
XL
26 // Maps each element to an index.
27 map: FxHashMap<T, Index>,
28
e9174d1e
SL
29 // List of base edges in the graph. Require to compute transitive
30 // closure.
31 edges: Vec<Edge>,
32
33 // This is a cached transitive closure derived from the edges.
34 // Currently, we build it lazilly and just throw out any existing
0531ce1d 35 // copy whenever a new edge is added. (The Lock is to permit
e9174d1e
SL
36 // the lazy computation.) This is kind of silly, except for the
37 // fact its size is tied to `self.elements.len()`, so I wanted to
38 // wait before building it up to avoid reallocating as new edges
39 // are added with new elements. Perhaps better would be to ask the
40 // user for a batch of edges to minimize this effect, but I
41 // already wrote the code this way. :P -nmatsakis
8faf50e0 42 closure: Lock<Option<BitMatrix<usize, usize>>>,
e9174d1e
SL
43}
44
ea8adc8c 45#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable, Debug)]
e9174d1e
SL
46struct Index(usize);
47
ea8adc8c 48#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Debug)]
e9174d1e
SL
49struct Edge {
50 source: Index,
51 target: Index,
52}
53
0bf4aa26
XL
54impl<T: Clone + Debug + Eq + Hash> Default for TransitiveRelation<T> {
55 fn default() -> TransitiveRelation<T> {
54a0048b
SL
56 TransitiveRelation {
57 elements: vec![],
0bf4aa26 58 map: FxHashMap::default(),
54a0048b 59 edges: vec![],
0531ce1d 60 closure: Lock::new(None),
54a0048b 61 }
e9174d1e 62 }
0bf4aa26 63}
e9174d1e 64
0bf4aa26 65impl<T: Clone + Debug + Eq + Hash> TransitiveRelation<T> {
8bb4bdeb
XL
66 pub fn is_empty(&self) -> bool {
67 self.edges.is_empty()
68 }
69
e9174d1e 70 fn index(&self, a: &T) -> Option<Index> {
7cac9316 71 self.map.get(a).cloned()
e9174d1e
SL
72 }
73
74 fn add_index(&mut self, a: T) -> Index {
7cac9316
XL
75 let &mut TransitiveRelation {
76 ref mut elements,
0531ce1d 77 ref mut closure,
7cac9316
XL
78 ref mut map,
79 ..
80 } = self;
81
b7449926 82 *map.entry(a.clone())
7cac9316
XL
83 .or_insert_with(|| {
84 elements.push(a);
85
86 // if we changed the dimensions, clear the cache
0531ce1d 87 *closure.get_mut() = None;
7cac9316
XL
88
89 Index(elements.len() - 1)
90 })
7cac9316 91 }
e9174d1e 92
7cac9316
XL
93 /// Applies the (partial) function to each edge and returns a new
94 /// relation. If `f` returns `None` for any end-point, returns
95 /// `None`.
96 pub fn maybe_map<F, U>(&self, mut f: F) -> Option<TransitiveRelation<U>>
97 where F: FnMut(&T) -> Option<U>,
98 U: Clone + Debug + Eq + Hash + Clone,
99 {
0bf4aa26 100 let mut result = TransitiveRelation::default();
7cac9316 101 for edge in &self.edges {
b7449926 102 result.add(f(&self.elements[edge.source.0])?, f(&self.elements[edge.target.0])?);
e9174d1e 103 }
7cac9316 104 Some(result)
e9174d1e
SL
105 }
106
107 /// Indicate that `a < b` (where `<` is this relation)
108 pub fn add(&mut self, a: T, b: T) {
109 let a = self.add_index(a);
110 let b = self.add_index(b);
54a0048b
SL
111 let edge = Edge {
112 source: a,
113 target: b,
114 };
e9174d1e
SL
115 if !self.edges.contains(&edge) {
116 self.edges.push(edge);
117
118 // added an edge, clear the cache
0531ce1d 119 *self.closure.get_mut() = None;
e9174d1e
SL
120 }
121 }
122
123 /// Check whether `a < target` (transitively)
124 pub fn contains(&self, a: &T, b: &T) -> bool {
125 match (self.index(a), self.index(b)) {
54a0048b
SL
126 (Some(a), Some(b)) => self.with_closure(|closure| closure.contains(a.0, b.0)),
127 (None, _) | (_, None) => false,
e9174d1e
SL
128 }
129 }
130
ff7c6d11
XL
131 /// Thinking of `x R y` as an edge `x -> y` in a graph, this
132 /// returns all things reachable from `a`.
7cac9316
XL
133 ///
134 /// Really this probably ought to be `impl Iterator<Item=&T>`, but
135 /// I'm too lazy to make that work, and -- given the caching
136 /// strategy -- it'd be a touch tricky anyhow.
ff7c6d11 137 pub fn reachable_from(&self, a: &T) -> Vec<&T> {
7cac9316
XL
138 match self.index(a) {
139 Some(a) => self.with_closure(|closure| {
140 closure.iter(a.0).map(|i| &self.elements[i]).collect()
141 }),
142 None => vec![],
143 }
144 }
145
e9174d1e
SL
146 /// Picks what I am referring to as the "postdominating"
147 /// upper-bound for `a` and `b`. This is usually the least upper
148 /// bound, but in cases where there is no single least upper
149 /// bound, it is the "mutual immediate postdominator", if you
150 /// imagine a graph where `a < b` means `a -> b`.
151 ///
152 /// This function is needed because region inference currently
153 /// requires that we produce a single "UB", and there is no best
154 /// choice for the LUB. Rather than pick arbitrarily, I pick a
155 /// less good, but predictable choice. This should help ensure
156 /// that region inference yields predictable results (though it
157 /// itself is not fully sufficient).
158 ///
159 /// Examples are probably clearer than any prose I could write
160 /// (there are corresponding tests below, btw). In each case,
161 /// the query is `postdom_upper_bound(a, b)`:
162 ///
163 /// ```text
164 /// // returns Some(x), which is also LUB
165 /// a -> a1 -> x
166 /// ^
167 /// |
168 /// b -> b1 ---+
169 ///
170 /// // returns Some(x), which is not LUB (there is none)
171 /// // diagonal edges run left-to-right
172 /// a -> a1 -> x
173 /// \/ ^
174 /// /\ |
175 /// b -> b1 ---+
176 ///
177 /// // returns None
178 /// a -> a1
179 /// b -> b1
180 /// ```
181 pub fn postdom_upper_bound(&self, a: &T, b: &T) -> Option<&T> {
ff7c6d11
XL
182 let mubs = self.minimal_upper_bounds(a, b);
183 self.mutual_immediate_postdominator(mubs)
184 }
185
186 /// Viewing the relation as a graph, computes the "mutual
187 /// immediate postdominator" of a set of points (if one
188 /// exists). See `postdom_upper_bound` for details.
189 pub fn mutual_immediate_postdominator<'a>(&'a self, mut mubs: Vec<&'a T>) -> Option<&'a T> {
e9174d1e
SL
190 loop {
191 match mubs.len() {
192 0 => return None,
193 1 => return Some(mubs[0]),
194 _ => {
195 let m = mubs.pop().unwrap();
196 let n = mubs.pop().unwrap();
197 mubs.extend(self.minimal_upper_bounds(n, m));
198 }
199 }
200 }
201 }
202
203 /// Returns the set of bounds `X` such that:
204 ///
205 /// - `a < X` and `b < X`
206 /// - there is no `Y != X` such that `a < Y` and `Y < X`
207 /// - except for the case where `X < a` (i.e., a strongly connected
208 /// component in the graph). In that case, the smallest
209 /// representative of the SCC is returned (as determined by the
210 /// internal indices).
211 ///
212 /// Note that this set can, in principle, have any size.
213 pub fn minimal_upper_bounds(&self, a: &T, b: &T) -> Vec<&T> {
214 let (mut a, mut b) = match (self.index(a), self.index(b)) {
215 (Some(a), Some(b)) => (a, b),
54a0048b
SL
216 (None, _) | (_, None) => {
217 return vec![];
218 }
e9174d1e
SL
219 };
220
221 // in some cases, there are some arbitrary choices to be made;
222 // it doesn't really matter what we pick, as long as we pick
223 // the same thing consistently when queried, so ensure that
224 // (a, b) are in a consistent relative order
225 if a > b {
226 mem::swap(&mut a, &mut b);
227 }
228
229 let lub_indices = self.with_closure(|closure| {
230 // Easy case is when either a < b or b < a:
231 if closure.contains(a.0, b.0) {
232 return vec![b.0];
233 }
234 if closure.contains(b.0, a.0) {
235 return vec![a.0];
236 }
237
238 // Otherwise, the tricky part is that there may be some c
239 // where a < c and b < c. In fact, there may be many such
240 // values. So here is what we do:
241 //
242 // 1. Find the vector `[X | a < X && b < X]` of all values
243 // `X` where `a < X` and `b < X`. In terms of the
244 // graph, this means all values reachable from both `a`
245 // and `b`. Note that this vector is also a set, but we
246 // use the term vector because the order matters
247 // to the steps below.
248 // - This vector contains upper bounds, but they are
249 // not minimal upper bounds. So you may have e.g.
250 // `[x, y, tcx, z]` where `x < tcx` and `y < tcx` and
251 // `z < x` and `z < y`:
252 //
253 // z --+---> x ----+----> tcx
254 // | |
255 // | |
256 // +---> y ----+
257 //
258 // In this case, we really want to return just `[z]`.
259 // The following steps below achieve this by gradually
260 // reducing the list.
261 // 2. Pare down the vector using `pare_down`. This will
262 // remove elements from the vector that can be reached
263 // by an earlier element.
264 // - In the example above, this would convert `[x, y,
265 // tcx, z]` to `[x, y, z]`. Note that `x` and `y` are
266 // still in the vector; this is because while `z < x`
267 // (and `z < y`) holds, `z` comes after them in the
268 // vector.
269 // 3. Reverse the vector and repeat the pare down process.
270 // - In the example above, we would reverse to
271 // `[z, y, x]` and then pare down to `[z]`.
272 // 4. Reverse once more just so that we yield a vector in
273 // increasing order of index. Not necessary, but why not.
274 //
275 // I believe this algorithm yields a minimal set. The
276 // argument is that, after step 2, we know that no element
277 // can reach its successors (in the vector, not the graph).
278 // After step 3, we know that no element can reach any of
279 // its predecesssors (because of step 2) nor successors
280 // (because we just called `pare_down`)
ff7c6d11
XL
281 //
282 // This same algorithm is used in `parents` below.
e9174d1e 283
0bf4aa26 284 let mut candidates = closure.intersect_rows(a.0, b.0); // (1)
e9174d1e
SL
285 pare_down(&mut candidates, closure); // (2)
286 candidates.reverse(); // (3a)
287 pare_down(&mut candidates, closure); // (3b)
288 candidates
289 });
290
291 lub_indices.into_iter()
292 .rev() // (4)
293 .map(|i| &self.elements[i])
294 .collect()
295 }
296
ff7c6d11
XL
297 /// Given an element A, returns the maximal set {B} of elements B
298 /// such that
299 ///
300 /// - A != B
301 /// - A R B is true
302 /// - for each i, j: B[i] R B[j] does not hold
303 ///
304 /// The intuition is that this moves "one step up" through a lattice
305 /// (where the relation is encoding the `<=` relation for the lattice).
306 /// So e.g. if the relation is `->` and we have
307 ///
308 /// ```
309 /// a -> b -> d -> f
310 /// | ^
311 /// +--> c -> e ---+
312 /// ```
313 ///
314 /// then `parents(a)` returns `[b, c]`. The `postdom_parent` function
315 /// would further reduce this to just `f`.
316 pub fn parents(&self, a: &T) -> Vec<&T> {
317 let a = match self.index(a) {
318 Some(a) => a,
319 None => return vec![]
320 };
321
322 // Steal the algorithm for `minimal_upper_bounds` above, but
323 // with a slight tweak. In the case where `a R a`, we remove
324 // that from the set of candidates.
325 let ancestors = self.with_closure(|closure| {
0bf4aa26 326 let mut ancestors = closure.intersect_rows(a.0, a.0);
ff7c6d11
XL
327
328 // Remove anything that can reach `a`. If this is a
329 // reflexive relation, this will include `a` itself.
330 ancestors.retain(|&e| !closure.contains(e, a.0));
331
332 pare_down(&mut ancestors, closure); // (2)
333 ancestors.reverse(); // (3a)
334 pare_down(&mut ancestors, closure); // (3b)
335 ancestors
336 });
337
338 ancestors.into_iter()
339 .rev() // (4)
340 .map(|i| &self.elements[i])
341 .collect()
342 }
343
344 /// A "best" parent in some sense. See `parents` and
345 /// `postdom_upper_bound` for more details.
346 pub fn postdom_parent(&self, a: &T) -> Option<&T> {
347 self.mutual_immediate_postdominator(self.parents(a))
348 }
349
54a0048b 350 fn with_closure<OP, R>(&self, op: OP) -> R
8faf50e0 351 where OP: FnOnce(&BitMatrix<usize, usize>) -> R
e9174d1e
SL
352 {
353 let mut closure_cell = self.closure.borrow_mut();
354 let mut closure = closure_cell.take();
355 if closure.is_none() {
356 closure = Some(self.compute_closure());
357 }
358 let result = op(closure.as_ref().unwrap());
359 *closure_cell = closure;
360 result
361 }
362
8faf50e0 363 fn compute_closure(&self) -> BitMatrix<usize, usize> {
5bcae85e
SL
364 let mut matrix = BitMatrix::new(self.elements.len(),
365 self.elements.len());
e9174d1e
SL
366 let mut changed = true;
367 while changed {
368 changed = false;
b7449926 369 for edge in &self.edges {
e9174d1e 370 // add an edge from S -> T
0bf4aa26 371 changed |= matrix.insert(edge.source.0, edge.target.0);
e9174d1e
SL
372
373 // add all outgoing edges from T into S
0bf4aa26 374 changed |= matrix.union_rows(edge.target.0, edge.source.0);
e9174d1e
SL
375 }
376 }
377 matrix
378 }
379}
380
381/// Pare down is used as a step in the LUB computation. It edits the
382/// candidates array in place by removing any element j for which
383/// there exists an earlier element i<j such that i -> j. That is,
384/// after you run `pare_down`, you know that for all elements that
385/// remain in candidates, they cannot reach any of the elements that
386/// come after them.
387///
388/// Examples follow. Assume that a -> b -> c and x -> y -> z.
389///
390/// - Input: `[a, b, x]`. Output: `[a, x]`.
391/// - Input: `[b, a, x]`. Output: `[b, a, x]`.
392/// - Input: `[a, x, b, y]`. Output: `[a, x]`.
8faf50e0 393fn pare_down(candidates: &mut Vec<usize>, closure: &BitMatrix<usize, usize>) {
e9174d1e
SL
394 let mut i = 0;
395 while i < candidates.len() {
396 let candidate_i = candidates[i];
397 i += 1;
398
399 let mut j = i;
400 let mut dead = 0;
401 while j < candidates.len() {
402 let candidate_j = candidates[j];
403 if closure.contains(candidate_i, candidate_j) {
404 // If `i` can reach `j`, then we can remove `j`. So just
405 // mark it as dead and move on; subsequent indices will be
406 // shifted into its place.
407 dead += 1;
408 } else {
409 candidates[j - dead] = candidate_j;
410 }
411 j += 1;
412 }
413 candidates.truncate(j - dead);
414 }
415}
416
8bb4bdeb 417impl<T> Encodable for TransitiveRelation<T>
7cac9316 418 where T: Clone + Encodable + Debug + Eq + Hash + Clone
8bb4bdeb
XL
419{
420 fn encode<E: Encoder>(&self, s: &mut E) -> Result<(), E::Error> {
421 s.emit_struct("TransitiveRelation", 2, |s| {
422 s.emit_struct_field("elements", 0, |s| self.elements.encode(s))?;
423 s.emit_struct_field("edges", 1, |s| self.edges.encode(s))?;
424 Ok(())
425 })
426 }
427}
428
429impl<T> Decodable for TransitiveRelation<T>
7cac9316 430 where T: Clone + Decodable + Debug + Eq + Hash + Clone
8bb4bdeb
XL
431{
432 fn decode<D: Decoder>(d: &mut D) -> Result<Self, D::Error> {
433 d.read_struct("TransitiveRelation", 2, |d| {
7cac9316 434 let elements: Vec<T> = d.read_struct_field("elements", 0, |d| Decodable::decode(d))?;
8bb4bdeb 435 let edges = d.read_struct_field("edges", 1, |d| Decodable::decode(d))?;
7cac9316
XL
436 let map = elements.iter()
437 .enumerate()
438 .map(|(index, elem)| (elem.clone(), Index(index)))
439 .collect();
0531ce1d 440 Ok(TransitiveRelation { elements, edges, map, closure: Lock::new(None) })
8bb4bdeb
XL
441 })
442 }
443}
444
cc61c64b 445impl<CTX, T> HashStable<CTX> for TransitiveRelation<T>
7cac9316 446 where T: HashStable<CTX> + Eq + Debug + Clone + Hash
cc61c64b
XL
447{
448 fn hash_stable<W: StableHasherResult>(&self,
449 hcx: &mut CTX,
450 hasher: &mut StableHasher<W>) {
451 // We are assuming here that the relation graph has been built in a
452 // deterministic way and we can just hash it the way it is.
453 let TransitiveRelation {
454 ref elements,
455 ref edges,
7cac9316
XL
456 // "map" is just a copy of elements vec
457 map: _,
cc61c64b
XL
458 // "closure" is just a copy of the data above
459 closure: _
460 } = *self;
461
462 elements.hash_stable(hcx, hasher);
463 edges.hash_stable(hcx, hasher);
464 }
465}
466
467impl<CTX> HashStable<CTX> for Edge {
468 fn hash_stable<W: StableHasherResult>(&self,
469 hcx: &mut CTX,
470 hasher: &mut StableHasher<W>) {
471 let Edge {
472 ref source,
473 ref target,
474 } = *self;
475
476 source.hash_stable(hcx, hasher);
477 target.hash_stable(hcx, hasher);
478 }
479}
480
481impl<CTX> HashStable<CTX> for Index {
482 fn hash_stable<W: StableHasherResult>(&self,
483 hcx: &mut CTX,
484 hasher: &mut StableHasher<W>) {
485 let Index(idx) = *self;
486 idx.hash_stable(hcx, hasher);
487 }
488}
489
e9174d1e
SL
490#[test]
491fn test_one_step() {
0bf4aa26 492 let mut relation = TransitiveRelation::default();
e9174d1e
SL
493 relation.add("a", "b");
494 relation.add("a", "c");
495 assert!(relation.contains(&"a", &"c"));
496 assert!(relation.contains(&"a", &"b"));
497 assert!(!relation.contains(&"b", &"a"));
498 assert!(!relation.contains(&"a", &"d"));
499}
500
501#[test]
502fn test_many_steps() {
0bf4aa26 503 let mut relation = TransitiveRelation::default();
e9174d1e
SL
504 relation.add("a", "b");
505 relation.add("a", "c");
506 relation.add("a", "f");
507
508 relation.add("b", "c");
509 relation.add("b", "d");
510 relation.add("b", "e");
511
512 relation.add("e", "g");
513
514 assert!(relation.contains(&"a", &"b"));
515 assert!(relation.contains(&"a", &"c"));
516 assert!(relation.contains(&"a", &"d"));
517 assert!(relation.contains(&"a", &"e"));
518 assert!(relation.contains(&"a", &"f"));
519 assert!(relation.contains(&"a", &"g"));
520
521 assert!(relation.contains(&"b", &"g"));
522
523 assert!(!relation.contains(&"a", &"x"));
524 assert!(!relation.contains(&"b", &"f"));
525}
526
527#[test]
ff7c6d11
XL
528fn mubs_triangle() {
529 // a -> tcx
530 // ^
531 // |
532 // b
0bf4aa26 533 let mut relation = TransitiveRelation::default();
e9174d1e
SL
534 relation.add("a", "tcx");
535 relation.add("b", "tcx");
536 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"tcx"]);
ff7c6d11
XL
537 assert_eq!(relation.parents(&"a"), vec![&"tcx"]);
538 assert_eq!(relation.parents(&"b"), vec![&"tcx"]);
e9174d1e
SL
539}
540
541#[test]
542fn mubs_best_choice1() {
543 // 0 -> 1 <- 3
544 // | ^ |
545 // | | |
546 // +--> 2 <--+
547 //
548 // mubs(0,3) = [1]
549
550 // This tests a particular state in the algorithm, in which we
551 // need the second pare down call to get the right result (after
552 // intersection, we have [1, 2], but 2 -> 1).
553
0bf4aa26 554 let mut relation = TransitiveRelation::default();
e9174d1e
SL
555 relation.add("0", "1");
556 relation.add("0", "2");
557
558 relation.add("2", "1");
559
560 relation.add("3", "1");
561 relation.add("3", "2");
562
563 assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"2"]);
ff7c6d11
XL
564 assert_eq!(relation.parents(&"0"), vec![&"2"]);
565 assert_eq!(relation.parents(&"2"), vec![&"1"]);
566 assert!(relation.parents(&"1").is_empty());
e9174d1e
SL
567}
568
569#[test]
570fn mubs_best_choice2() {
571 // 0 -> 1 <- 3
572 // | | |
573 // | v |
574 // +--> 2 <--+
575 //
576 // mubs(0,3) = [2]
577
578 // Like the precedecing test, but in this case intersection is [2,
579 // 1], and hence we rely on the first pare down call.
580
0bf4aa26 581 let mut relation = TransitiveRelation::default();
e9174d1e
SL
582 relation.add("0", "1");
583 relation.add("0", "2");
584
585 relation.add("1", "2");
586
587 relation.add("3", "1");
588 relation.add("3", "2");
589
590 assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1"]);
ff7c6d11
XL
591 assert_eq!(relation.parents(&"0"), vec![&"1"]);
592 assert_eq!(relation.parents(&"1"), vec![&"2"]);
593 assert!(relation.parents(&"2").is_empty());
e9174d1e
SL
594}
595
596#[test]
597fn mubs_no_best_choice() {
598 // in this case, the intersection yields [1, 2], and the "pare
599 // down" calls find nothing to remove.
0bf4aa26 600 let mut relation = TransitiveRelation::default();
e9174d1e
SL
601 relation.add("0", "1");
602 relation.add("0", "2");
603
604 relation.add("3", "1");
605 relation.add("3", "2");
606
607 assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1", &"2"]);
ff7c6d11
XL
608 assert_eq!(relation.parents(&"0"), vec![&"1", &"2"]);
609 assert_eq!(relation.parents(&"3"), vec![&"1", &"2"]);
e9174d1e
SL
610}
611
612#[test]
613fn mubs_best_choice_scc() {
ff7c6d11
XL
614 // in this case, 1 and 2 form a cycle; we pick arbitrarily (but
615 // consistently).
616
0bf4aa26 617 let mut relation = TransitiveRelation::default();
e9174d1e
SL
618 relation.add("0", "1");
619 relation.add("0", "2");
620
621 relation.add("1", "2");
622 relation.add("2", "1");
623
624 relation.add("3", "1");
625 relation.add("3", "2");
626
627 assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1"]);
ff7c6d11 628 assert_eq!(relation.parents(&"0"), vec![&"1"]);
e9174d1e
SL
629}
630
631#[test]
632fn pdub_crisscross() {
633 // diagonal edges run left-to-right
634 // a -> a1 -> x
635 // \/ ^
636 // /\ |
637 // b -> b1 ---+
638
0bf4aa26 639 let mut relation = TransitiveRelation::default();
54a0048b
SL
640 relation.add("a", "a1");
641 relation.add("a", "b1");
642 relation.add("b", "a1");
643 relation.add("b", "b1");
e9174d1e
SL
644 relation.add("a1", "x");
645 relation.add("b1", "x");
646
54a0048b
SL
647 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"),
648 vec![&"a1", &"b1"]);
e9174d1e 649 assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
ff7c6d11
XL
650 assert_eq!(relation.postdom_parent(&"a"), Some(&"x"));
651 assert_eq!(relation.postdom_parent(&"b"), Some(&"x"));
e9174d1e
SL
652}
653
654#[test]
655fn pdub_crisscross_more() {
656 // diagonal edges run left-to-right
657 // a -> a1 -> a2 -> a3 -> x
658 // \/ \/ ^
659 // /\ /\ |
660 // b -> b1 -> b2 ---------+
661
0bf4aa26 662 let mut relation = TransitiveRelation::default();
54a0048b
SL
663 relation.add("a", "a1");
664 relation.add("a", "b1");
665 relation.add("b", "a1");
666 relation.add("b", "b1");
e9174d1e 667
54a0048b
SL
668 relation.add("a1", "a2");
669 relation.add("a1", "b2");
670 relation.add("b1", "a2");
671 relation.add("b1", "b2");
e9174d1e
SL
672
673 relation.add("a2", "a3");
674
675 relation.add("a3", "x");
676 relation.add("b2", "x");
677
54a0048b
SL
678 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"),
679 vec![&"a1", &"b1"]);
680 assert_eq!(relation.minimal_upper_bounds(&"a1", &"b1"),
681 vec![&"a2", &"b2"]);
e9174d1e 682 assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
ff7c6d11
XL
683
684 assert_eq!(relation.postdom_parent(&"a"), Some(&"x"));
685 assert_eq!(relation.postdom_parent(&"b"), Some(&"x"));
e9174d1e
SL
686}
687
688#[test]
689fn pdub_lub() {
690 // a -> a1 -> x
691 // ^
692 // |
693 // b -> b1 ---+
694
0bf4aa26 695 let mut relation = TransitiveRelation::default();
54a0048b
SL
696 relation.add("a", "a1");
697 relation.add("b", "b1");
e9174d1e
SL
698 relation.add("a1", "x");
699 relation.add("b1", "x");
700
701 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"x"]);
702 assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
ff7c6d11
XL
703
704 assert_eq!(relation.postdom_parent(&"a"), Some(&"a1"));
705 assert_eq!(relation.postdom_parent(&"b"), Some(&"b1"));
706 assert_eq!(relation.postdom_parent(&"a1"), Some(&"x"));
707 assert_eq!(relation.postdom_parent(&"b1"), Some(&"x"));
e9174d1e
SL
708}
709
710#[test]
711fn mubs_intermediate_node_on_one_side_only() {
712 // a -> c -> d
713 // ^
714 // |
715 // b
716
717 // "digraph { a -> c -> d; b -> d; }",
0bf4aa26 718 let mut relation = TransitiveRelation::default();
54a0048b
SL
719 relation.add("a", "c");
720 relation.add("c", "d");
721 relation.add("b", "d");
e9174d1e
SL
722
723 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"d"]);
724}
725
726#[test]
727fn mubs_scc_1() {
728 // +-------------+
729 // | +----+ |
730 // | v | |
731 // a -> c -> d <-+
732 // ^
733 // |
734 // b
735
736 // "digraph { a -> c -> d; d -> c; a -> d; b -> d; }",
0bf4aa26 737 let mut relation = TransitiveRelation::default();
54a0048b
SL
738 relation.add("a", "c");
739 relation.add("c", "d");
740 relation.add("d", "c");
741 relation.add("a", "d");
742 relation.add("b", "d");
e9174d1e
SL
743
744 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
745}
746
747#[test]
748fn mubs_scc_2() {
749 // +----+
750 // v |
751 // a -> c -> d
752 // ^ ^
753 // | |
754 // +--- b
755
756 // "digraph { a -> c -> d; d -> c; b -> d; b -> c; }",
0bf4aa26 757 let mut relation = TransitiveRelation::default();
54a0048b
SL
758 relation.add("a", "c");
759 relation.add("c", "d");
760 relation.add("d", "c");
761 relation.add("b", "d");
762 relation.add("b", "c");
e9174d1e
SL
763
764 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
765}
766
767#[test]
768fn mubs_scc_3() {
769 // +---------+
770 // v |
771 // a -> c -> d -> e
772 // ^ ^
773 // | |
774 // b ---+
775
776 // "digraph { a -> c -> d -> e -> c; b -> d; b -> e; }",
0bf4aa26 777 let mut relation = TransitiveRelation::default();
54a0048b
SL
778 relation.add("a", "c");
779 relation.add("c", "d");
780 relation.add("d", "e");
781 relation.add("e", "c");
782 relation.add("b", "d");
783 relation.add("b", "e");
e9174d1e
SL
784
785 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
786}
787
788#[test]
789fn mubs_scc_4() {
790 // +---------+
791 // v |
792 // a -> c -> d -> e
793 // | ^ ^
794 // +---------+ |
795 // |
796 // b ---+
797
798 // "digraph { a -> c -> d -> e -> c; a -> d; b -> e; }"
0bf4aa26 799 let mut relation = TransitiveRelation::default();
54a0048b
SL
800 relation.add("a", "c");
801 relation.add("c", "d");
802 relation.add("d", "e");
803 relation.add("e", "c");
804 relation.add("a", "d");
805 relation.add("b", "e");
e9174d1e
SL
806
807 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
808}
ff7c6d11
XL
809
810#[test]
811fn parent() {
812 // An example that was misbehaving in the compiler.
813 //
814 // 4 -> 1 -> 3
815 // \ | /
816 // \ v /
817 // 2 -> 0
818 //
819 // plus a bunch of self-loops
820 //
821 // Here `->` represents `<=` and `0` is `'static`.
822
823 let pairs = vec![
824 (2, /*->*/ 0),
825 (2, /*->*/ 2),
826 (0, /*->*/ 0),
827 (0, /*->*/ 0),
828 (1, /*->*/ 0),
829 (1, /*->*/ 1),
830 (3, /*->*/ 0),
831 (3, /*->*/ 3),
832 (4, /*->*/ 0),
833 (4, /*->*/ 1),
834 (1, /*->*/ 3),
835 ];
836
0bf4aa26 837 let mut relation = TransitiveRelation::default();
ff7c6d11
XL
838 for (a, b) in pairs {
839 relation.add(a, b);
840 }
841
842 let p = relation.postdom_parent(&3);
843 assert_eq!(p, Some(&0));
844}