]> git.proxmox.com Git - rustc.git/blame - src/librustc_data_structures/transitive_relation.rs
New upstream version 1.17.0+dfsg1
[rustc.git] / src / librustc_data_structures / transitive_relation.rs
CommitLineData
e9174d1e
SL
1// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11use bitvec::BitMatrix;
8bb4bdeb 12use rustc_serialize::{Encodable, Encoder, Decodable, Decoder};
e9174d1e
SL
13use std::cell::RefCell;
14use std::fmt::Debug;
15use std::mem;
16
17#[derive(Clone)]
54a0048b 18pub struct TransitiveRelation<T: Debug + PartialEq> {
e9174d1e
SL
19 // List of elements. This is used to map from a T to a usize. We
20 // expect domain to be small so just use a linear list versus a
21 // hashmap or something.
22 elements: Vec<T>,
23
24 // List of base edges in the graph. Require to compute transitive
25 // closure.
26 edges: Vec<Edge>,
27
28 // This is a cached transitive closure derived from the edges.
29 // Currently, we build it lazilly and just throw out any existing
30 // copy whenever a new edge is added. (The RefCell is to permit
31 // the lazy computation.) This is kind of silly, except for the
32 // fact its size is tied to `self.elements.len()`, so I wanted to
33 // wait before building it up to avoid reallocating as new edges
34 // are added with new elements. Perhaps better would be to ask the
35 // user for a batch of edges to minimize this effect, but I
36 // already wrote the code this way. :P -nmatsakis
54a0048b 37 closure: RefCell<Option<BitMatrix>>,
e9174d1e
SL
38}
39
8bb4bdeb 40#[derive(Clone, PartialEq, PartialOrd, RustcEncodable, RustcDecodable)]
e9174d1e
SL
41struct Index(usize);
42
8bb4bdeb 43#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable)]
e9174d1e
SL
44struct Edge {
45 source: Index,
46 target: Index,
47}
48
54a0048b 49impl<T: Debug + PartialEq> TransitiveRelation<T> {
e9174d1e 50 pub fn new() -> TransitiveRelation<T> {
54a0048b
SL
51 TransitiveRelation {
52 elements: vec![],
53 edges: vec![],
54 closure: RefCell::new(None),
55 }
e9174d1e
SL
56 }
57
8bb4bdeb
XL
58 pub fn is_empty(&self) -> bool {
59 self.edges.is_empty()
60 }
61
e9174d1e
SL
62 fn index(&self, a: &T) -> Option<Index> {
63 self.elements.iter().position(|e| *e == *a).map(Index)
64 }
65
66 fn add_index(&mut self, a: T) -> Index {
67 match self.index(&a) {
68 Some(i) => i,
69 None => {
70 self.elements.push(a);
71
72 // if we changed the dimensions, clear the cache
73 *self.closure.borrow_mut() = None;
74
75 Index(self.elements.len() - 1)
76 }
77 }
78 }
79
80 /// Indicate that `a < b` (where `<` is this relation)
81 pub fn add(&mut self, a: T, b: T) {
82 let a = self.add_index(a);
83 let b = self.add_index(b);
54a0048b
SL
84 let edge = Edge {
85 source: a,
86 target: b,
87 };
e9174d1e
SL
88 if !self.edges.contains(&edge) {
89 self.edges.push(edge);
90
91 // added an edge, clear the cache
92 *self.closure.borrow_mut() = None;
93 }
94 }
95
96 /// Check whether `a < target` (transitively)
97 pub fn contains(&self, a: &T, b: &T) -> bool {
98 match (self.index(a), self.index(b)) {
54a0048b
SL
99 (Some(a), Some(b)) => self.with_closure(|closure| closure.contains(a.0, b.0)),
100 (None, _) | (_, None) => false,
e9174d1e
SL
101 }
102 }
103
104 /// Picks what I am referring to as the "postdominating"
105 /// upper-bound for `a` and `b`. This is usually the least upper
106 /// bound, but in cases where there is no single least upper
107 /// bound, it is the "mutual immediate postdominator", if you
108 /// imagine a graph where `a < b` means `a -> b`.
109 ///
110 /// This function is needed because region inference currently
111 /// requires that we produce a single "UB", and there is no best
112 /// choice for the LUB. Rather than pick arbitrarily, I pick a
113 /// less good, but predictable choice. This should help ensure
114 /// that region inference yields predictable results (though it
115 /// itself is not fully sufficient).
116 ///
117 /// Examples are probably clearer than any prose I could write
118 /// (there are corresponding tests below, btw). In each case,
119 /// the query is `postdom_upper_bound(a, b)`:
120 ///
121 /// ```text
122 /// // returns Some(x), which is also LUB
123 /// a -> a1 -> x
124 /// ^
125 /// |
126 /// b -> b1 ---+
127 ///
128 /// // returns Some(x), which is not LUB (there is none)
129 /// // diagonal edges run left-to-right
130 /// a -> a1 -> x
131 /// \/ ^
132 /// /\ |
133 /// b -> b1 ---+
134 ///
135 /// // returns None
136 /// a -> a1
137 /// b -> b1
138 /// ```
139 pub fn postdom_upper_bound(&self, a: &T, b: &T) -> Option<&T> {
140 let mut mubs = self.minimal_upper_bounds(a, b);
141 loop {
142 match mubs.len() {
143 0 => return None,
144 1 => return Some(mubs[0]),
145 _ => {
146 let m = mubs.pop().unwrap();
147 let n = mubs.pop().unwrap();
148 mubs.extend(self.minimal_upper_bounds(n, m));
149 }
150 }
151 }
152 }
153
154 /// Returns the set of bounds `X` such that:
155 ///
156 /// - `a < X` and `b < X`
157 /// - there is no `Y != X` such that `a < Y` and `Y < X`
158 /// - except for the case where `X < a` (i.e., a strongly connected
159 /// component in the graph). In that case, the smallest
160 /// representative of the SCC is returned (as determined by the
161 /// internal indices).
162 ///
163 /// Note that this set can, in principle, have any size.
164 pub fn minimal_upper_bounds(&self, a: &T, b: &T) -> Vec<&T> {
165 let (mut a, mut b) = match (self.index(a), self.index(b)) {
166 (Some(a), Some(b)) => (a, b),
54a0048b
SL
167 (None, _) | (_, None) => {
168 return vec![];
169 }
e9174d1e
SL
170 };
171
172 // in some cases, there are some arbitrary choices to be made;
173 // it doesn't really matter what we pick, as long as we pick
174 // the same thing consistently when queried, so ensure that
175 // (a, b) are in a consistent relative order
176 if a > b {
177 mem::swap(&mut a, &mut b);
178 }
179
180 let lub_indices = self.with_closure(|closure| {
181 // Easy case is when either a < b or b < a:
182 if closure.contains(a.0, b.0) {
183 return vec![b.0];
184 }
185 if closure.contains(b.0, a.0) {
186 return vec![a.0];
187 }
188
189 // Otherwise, the tricky part is that there may be some c
190 // where a < c and b < c. In fact, there may be many such
191 // values. So here is what we do:
192 //
193 // 1. Find the vector `[X | a < X && b < X]` of all values
194 // `X` where `a < X` and `b < X`. In terms of the
195 // graph, this means all values reachable from both `a`
196 // and `b`. Note that this vector is also a set, but we
197 // use the term vector because the order matters
198 // to the steps below.
199 // - This vector contains upper bounds, but they are
200 // not minimal upper bounds. So you may have e.g.
201 // `[x, y, tcx, z]` where `x < tcx` and `y < tcx` and
202 // `z < x` and `z < y`:
203 //
204 // z --+---> x ----+----> tcx
205 // | |
206 // | |
207 // +---> y ----+
208 //
209 // In this case, we really want to return just `[z]`.
210 // The following steps below achieve this by gradually
211 // reducing the list.
212 // 2. Pare down the vector using `pare_down`. This will
213 // remove elements from the vector that can be reached
214 // by an earlier element.
215 // - In the example above, this would convert `[x, y,
216 // tcx, z]` to `[x, y, z]`. Note that `x` and `y` are
217 // still in the vector; this is because while `z < x`
218 // (and `z < y`) holds, `z` comes after them in the
219 // vector.
220 // 3. Reverse the vector and repeat the pare down process.
221 // - In the example above, we would reverse to
222 // `[z, y, x]` and then pare down to `[z]`.
223 // 4. Reverse once more just so that we yield a vector in
224 // increasing order of index. Not necessary, but why not.
225 //
226 // I believe this algorithm yields a minimal set. The
227 // argument is that, after step 2, we know that no element
228 // can reach its successors (in the vector, not the graph).
229 // After step 3, we know that no element can reach any of
230 // its predecesssors (because of step 2) nor successors
231 // (because we just called `pare_down`)
232
233 let mut candidates = closure.intersection(a.0, b.0); // (1)
234 pare_down(&mut candidates, closure); // (2)
235 candidates.reverse(); // (3a)
236 pare_down(&mut candidates, closure); // (3b)
237 candidates
238 });
239
240 lub_indices.into_iter()
241 .rev() // (4)
242 .map(|i| &self.elements[i])
243 .collect()
244 }
245
54a0048b 246 fn with_closure<OP, R>(&self, op: OP) -> R
e9174d1e
SL
247 where OP: FnOnce(&BitMatrix) -> R
248 {
249 let mut closure_cell = self.closure.borrow_mut();
250 let mut closure = closure_cell.take();
251 if closure.is_none() {
252 closure = Some(self.compute_closure());
253 }
254 let result = op(closure.as_ref().unwrap());
255 *closure_cell = closure;
256 result
257 }
258
259 fn compute_closure(&self) -> BitMatrix {
5bcae85e
SL
260 let mut matrix = BitMatrix::new(self.elements.len(),
261 self.elements.len());
e9174d1e
SL
262 let mut changed = true;
263 while changed {
264 changed = false;
265 for edge in self.edges.iter() {
266 // add an edge from S -> T
267 changed |= matrix.add(edge.source.0, edge.target.0);
268
269 // add all outgoing edges from T into S
270 changed |= matrix.merge(edge.target.0, edge.source.0);
271 }
272 }
273 matrix
274 }
275}
276
277/// Pare down is used as a step in the LUB computation. It edits the
278/// candidates array in place by removing any element j for which
279/// there exists an earlier element i<j such that i -> j. That is,
280/// after you run `pare_down`, you know that for all elements that
281/// remain in candidates, they cannot reach any of the elements that
282/// come after them.
283///
284/// Examples follow. Assume that a -> b -> c and x -> y -> z.
285///
286/// - Input: `[a, b, x]`. Output: `[a, x]`.
287/// - Input: `[b, a, x]`. Output: `[b, a, x]`.
288/// - Input: `[a, x, b, y]`. Output: `[a, x]`.
289fn pare_down(candidates: &mut Vec<usize>, closure: &BitMatrix) {
290 let mut i = 0;
291 while i < candidates.len() {
292 let candidate_i = candidates[i];
293 i += 1;
294
295 let mut j = i;
296 let mut dead = 0;
297 while j < candidates.len() {
298 let candidate_j = candidates[j];
299 if closure.contains(candidate_i, candidate_j) {
300 // If `i` can reach `j`, then we can remove `j`. So just
301 // mark it as dead and move on; subsequent indices will be
302 // shifted into its place.
303 dead += 1;
304 } else {
305 candidates[j - dead] = candidate_j;
306 }
307 j += 1;
308 }
309 candidates.truncate(j - dead);
310 }
311}
312
8bb4bdeb
XL
313impl<T> Encodable for TransitiveRelation<T>
314 where T: Encodable + Debug + PartialEq
315{
316 fn encode<E: Encoder>(&self, s: &mut E) -> Result<(), E::Error> {
317 s.emit_struct("TransitiveRelation", 2, |s| {
318 s.emit_struct_field("elements", 0, |s| self.elements.encode(s))?;
319 s.emit_struct_field("edges", 1, |s| self.edges.encode(s))?;
320 Ok(())
321 })
322 }
323}
324
325impl<T> Decodable for TransitiveRelation<T>
326 where T: Decodable + Debug + PartialEq
327{
328 fn decode<D: Decoder>(d: &mut D) -> Result<Self, D::Error> {
329 d.read_struct("TransitiveRelation", 2, |d| {
330 let elements = d.read_struct_field("elements", 0, |d| Decodable::decode(d))?;
331 let edges = d.read_struct_field("edges", 1, |d| Decodable::decode(d))?;
332 Ok(TransitiveRelation { elements, edges, closure: RefCell::new(None) })
333 })
334 }
335}
336
e9174d1e
SL
337#[test]
338fn test_one_step() {
339 let mut relation = TransitiveRelation::new();
340 relation.add("a", "b");
341 relation.add("a", "c");
342 assert!(relation.contains(&"a", &"c"));
343 assert!(relation.contains(&"a", &"b"));
344 assert!(!relation.contains(&"b", &"a"));
345 assert!(!relation.contains(&"a", &"d"));
346}
347
348#[test]
349fn test_many_steps() {
350 let mut relation = TransitiveRelation::new();
351 relation.add("a", "b");
352 relation.add("a", "c");
353 relation.add("a", "f");
354
355 relation.add("b", "c");
356 relation.add("b", "d");
357 relation.add("b", "e");
358
359 relation.add("e", "g");
360
361 assert!(relation.contains(&"a", &"b"));
362 assert!(relation.contains(&"a", &"c"));
363 assert!(relation.contains(&"a", &"d"));
364 assert!(relation.contains(&"a", &"e"));
365 assert!(relation.contains(&"a", &"f"));
366 assert!(relation.contains(&"a", &"g"));
367
368 assert!(relation.contains(&"b", &"g"));
369
370 assert!(!relation.contains(&"a", &"x"));
371 assert!(!relation.contains(&"b", &"f"));
372}
373
374#[test]
375fn mubs_triange() {
376 let mut relation = TransitiveRelation::new();
377 relation.add("a", "tcx");
378 relation.add("b", "tcx");
379 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"tcx"]);
380}
381
382#[test]
383fn mubs_best_choice1() {
384 // 0 -> 1 <- 3
385 // | ^ |
386 // | | |
387 // +--> 2 <--+
388 //
389 // mubs(0,3) = [1]
390
391 // This tests a particular state in the algorithm, in which we
392 // need the second pare down call to get the right result (after
393 // intersection, we have [1, 2], but 2 -> 1).
394
395 let mut relation = TransitiveRelation::new();
396 relation.add("0", "1");
397 relation.add("0", "2");
398
399 relation.add("2", "1");
400
401 relation.add("3", "1");
402 relation.add("3", "2");
403
404 assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"2"]);
405}
406
407#[test]
408fn mubs_best_choice2() {
409 // 0 -> 1 <- 3
410 // | | |
411 // | v |
412 // +--> 2 <--+
413 //
414 // mubs(0,3) = [2]
415
416 // Like the precedecing test, but in this case intersection is [2,
417 // 1], and hence we rely on the first pare down call.
418
419 let mut relation = TransitiveRelation::new();
420 relation.add("0", "1");
421 relation.add("0", "2");
422
423 relation.add("1", "2");
424
425 relation.add("3", "1");
426 relation.add("3", "2");
427
428 assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1"]);
429}
430
431#[test]
432fn mubs_no_best_choice() {
433 // in this case, the intersection yields [1, 2], and the "pare
434 // down" calls find nothing to remove.
435 let mut relation = TransitiveRelation::new();
436 relation.add("0", "1");
437 relation.add("0", "2");
438
439 relation.add("3", "1");
440 relation.add("3", "2");
441
442 assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1", &"2"]);
443}
444
445#[test]
446fn mubs_best_choice_scc() {
447 let mut relation = TransitiveRelation::new();
448 relation.add("0", "1");
449 relation.add("0", "2");
450
451 relation.add("1", "2");
452 relation.add("2", "1");
453
454 relation.add("3", "1");
455 relation.add("3", "2");
456
457 assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1"]);
458}
459
460#[test]
461fn pdub_crisscross() {
462 // diagonal edges run left-to-right
463 // a -> a1 -> x
464 // \/ ^
465 // /\ |
466 // b -> b1 ---+
467
468 let mut relation = TransitiveRelation::new();
54a0048b
SL
469 relation.add("a", "a1");
470 relation.add("a", "b1");
471 relation.add("b", "a1");
472 relation.add("b", "b1");
e9174d1e
SL
473 relation.add("a1", "x");
474 relation.add("b1", "x");
475
54a0048b
SL
476 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"),
477 vec![&"a1", &"b1"]);
e9174d1e
SL
478 assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
479}
480
481#[test]
482fn pdub_crisscross_more() {
483 // diagonal edges run left-to-right
484 // a -> a1 -> a2 -> a3 -> x
485 // \/ \/ ^
486 // /\ /\ |
487 // b -> b1 -> b2 ---------+
488
489 let mut relation = TransitiveRelation::new();
54a0048b
SL
490 relation.add("a", "a1");
491 relation.add("a", "b1");
492 relation.add("b", "a1");
493 relation.add("b", "b1");
e9174d1e 494
54a0048b
SL
495 relation.add("a1", "a2");
496 relation.add("a1", "b2");
497 relation.add("b1", "a2");
498 relation.add("b1", "b2");
e9174d1e
SL
499
500 relation.add("a2", "a3");
501
502 relation.add("a3", "x");
503 relation.add("b2", "x");
504
54a0048b
SL
505 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"),
506 vec![&"a1", &"b1"]);
507 assert_eq!(relation.minimal_upper_bounds(&"a1", &"b1"),
508 vec![&"a2", &"b2"]);
e9174d1e
SL
509 assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
510}
511
512#[test]
513fn pdub_lub() {
514 // a -> a1 -> x
515 // ^
516 // |
517 // b -> b1 ---+
518
519 let mut relation = TransitiveRelation::new();
54a0048b
SL
520 relation.add("a", "a1");
521 relation.add("b", "b1");
e9174d1e
SL
522 relation.add("a1", "x");
523 relation.add("b1", "x");
524
525 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"x"]);
526 assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
527}
528
529#[test]
530fn mubs_intermediate_node_on_one_side_only() {
531 // a -> c -> d
532 // ^
533 // |
534 // b
535
536 // "digraph { a -> c -> d; b -> d; }",
537 let mut relation = TransitiveRelation::new();
54a0048b
SL
538 relation.add("a", "c");
539 relation.add("c", "d");
540 relation.add("b", "d");
e9174d1e
SL
541
542 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"d"]);
543}
544
545#[test]
546fn mubs_scc_1() {
547 // +-------------+
548 // | +----+ |
549 // | v | |
550 // a -> c -> d <-+
551 // ^
552 // |
553 // b
554
555 // "digraph { a -> c -> d; d -> c; a -> d; b -> d; }",
556 let mut relation = TransitiveRelation::new();
54a0048b
SL
557 relation.add("a", "c");
558 relation.add("c", "d");
559 relation.add("d", "c");
560 relation.add("a", "d");
561 relation.add("b", "d");
e9174d1e
SL
562
563 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
564}
565
566#[test]
567fn mubs_scc_2() {
568 // +----+
569 // v |
570 // a -> c -> d
571 // ^ ^
572 // | |
573 // +--- b
574
575 // "digraph { a -> c -> d; d -> c; b -> d; b -> c; }",
576 let mut relation = TransitiveRelation::new();
54a0048b
SL
577 relation.add("a", "c");
578 relation.add("c", "d");
579 relation.add("d", "c");
580 relation.add("b", "d");
581 relation.add("b", "c");
e9174d1e
SL
582
583 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
584}
585
586#[test]
587fn mubs_scc_3() {
588 // +---------+
589 // v |
590 // a -> c -> d -> e
591 // ^ ^
592 // | |
593 // b ---+
594
595 // "digraph { a -> c -> d -> e -> c; b -> d; b -> e; }",
596 let mut relation = TransitiveRelation::new();
54a0048b
SL
597 relation.add("a", "c");
598 relation.add("c", "d");
599 relation.add("d", "e");
600 relation.add("e", "c");
601 relation.add("b", "d");
602 relation.add("b", "e");
e9174d1e
SL
603
604 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
605}
606
607#[test]
608fn mubs_scc_4() {
609 // +---------+
610 // v |
611 // a -> c -> d -> e
612 // | ^ ^
613 // +---------+ |
614 // |
615 // b ---+
616
617 // "digraph { a -> c -> d -> e -> c; a -> d; b -> e; }"
618 let mut relation = TransitiveRelation::new();
54a0048b
SL
619 relation.add("a", "c");
620 relation.add("c", "d");
621 relation.add("d", "e");
622 relation.add("e", "c");
623 relation.add("a", "d");
624 relation.add("b", "e");
e9174d1e
SL
625
626 assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
627}