]> git.proxmox.com Git - rustc.git/blame - src/librustc_middle/infer/canonical.rs
New upstream version 1.47.0+dfsg1
[rustc.git] / src / librustc_middle / infer / canonical.rs
CommitLineData
8faf50e0
XL
1//! **Canonicalization** is the key to constructing a query in the
2//! middle of type inference. Ordinarily, it is not possible to store
3//! types from type inference in query keys, because they contain
4//! references to inference variables whose lifetimes are too short
5//! and so forth. Canonicalizing a value T1 using `canonicalize_query`
6//! produces two things:
7//!
8//! - a value T2 where each unbound inference variable has been
9//! replaced with a **canonical variable**;
10//! - a map M (of type `CanonicalVarValues`) from those canonical
11//! variables back to the original.
12//!
a1dfa0c6 13//! We can then do queries using T2. These will give back constraints
8faf50e0
XL
14//! on the canonical variables which can be translated, using the map
15//! M, into constraints in our source context. This process of
16//! translating the results back is done by the
17//! `instantiate_query_result` method.
18//!
19//! For a more detailed look at what is happening here, check
ba9703b0 20//! out the [chapter in the rustc dev guide][c].
8faf50e0 21//!
f9f354fc 22//! [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html
8faf50e0 23
74b04a01 24use crate::infer::MemberConstraint;
dfeec247
XL
25use crate::ty::subst::GenericArg;
26use crate::ty::{self, BoundVar, List, Region, TyCtxt};
e74abb32 27use rustc_index::vec::IndexVec;
532ac7d7 28use rustc_macros::HashStable;
a1dfa0c6 29use smallvec::SmallVec;
8faf50e0 30use std::ops::Index;
8faf50e0 31
8faf50e0 32/// A "canonicalized" type `V` is one where all free inference
b7449926 33/// variables have been rewritten to "canonical vars". These are
8faf50e0 34/// numbered starting from 0 in order of first appearance.
3dfed10e 35#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyDecodable, TyEncodable)]
60c5eb7d 36#[derive(HashStable, TypeFoldable, Lift)]
dc9dc135 37pub struct Canonical<'tcx, V> {
a1dfa0c6 38 pub max_universe: ty::UniverseIndex,
dc9dc135 39 pub variables: CanonicalVarInfos<'tcx>,
8faf50e0
XL
40 pub value: V,
41}
42
dc9dc135 43pub type CanonicalVarInfos<'tcx> = &'tcx List<CanonicalVarInfo>;
8faf50e0 44
8faf50e0
XL
45/// A set of values corresponding to the canonical variables from some
46/// `Canonical`. You can give these values to
47/// `canonical_value.substitute` to substitute them into the canonical
48/// value at the right places.
49///
50/// When you canonicalize a value `V`, you get back one of these
51/// vectors with the original values that were replaced by canonical
52/// variables. You will need to supply it later to instantiate the
53/// canonicalized query response.
3dfed10e 54#[derive(Clone, Debug, PartialEq, Eq, Hash, TyDecodable, TyEncodable)]
60c5eb7d 55#[derive(HashStable, TypeFoldable, Lift)]
8faf50e0 56pub struct CanonicalVarValues<'tcx> {
e74abb32 57 pub var_values: IndexVec<BoundVar, GenericArg<'tcx>>,
8faf50e0
XL
58}
59
0bf4aa26
XL
60/// When we canonicalize a value to form a query, we wind up replacing
61/// various parts of it with canonical variables. This struct stores
62/// those replaced bits to remember for when we process the query
63/// result.
e74abb32 64#[derive(Clone, Debug)]
0bf4aa26 65pub struct OriginalQueryValues<'tcx> {
a1dfa0c6
XL
66 /// Map from the universes that appear in the query to the
67 /// universes in the caller context. For the time being, we only
68 /// ever put ROOT values into the query, so this map is very
69 /// simple.
70 pub universe_map: SmallVec<[ty::UniverseIndex; 4]>,
71
0bf4aa26
XL
72 /// This is equivalent to `CanonicalVarValues`, but using a
73 /// `SmallVec` yields a significant performance win.
e74abb32 74 pub var_values: SmallVec<[GenericArg<'tcx>; 8]>,
0bf4aa26 75}
8faf50e0 76
a1dfa0c6
XL
77impl Default for OriginalQueryValues<'tcx> {
78 fn default() -> Self {
79 let mut universe_map = SmallVec::default();
80 universe_map.push(ty::UniverseIndex::ROOT);
81
dfeec247 82 Self { universe_map, var_values: SmallVec::default() }
a1dfa0c6
XL
83 }
84}
85
8faf50e0
XL
86/// Information about a canonical variable that is included with the
87/// canonical value. This is sufficient information for code to create
88/// a copy of the canonical value in some other inference context,
89/// with fresh inference variables replacing the canonical values.
3dfed10e 90#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyDecodable, TyEncodable, HashStable)]
8faf50e0
XL
91pub struct CanonicalVarInfo {
92 pub kind: CanonicalVarKind,
93}
94
a1dfa0c6
XL
95impl CanonicalVarInfo {
96 pub fn universe(&self) -> ty::UniverseIndex {
97 self.kind.universe()
98 }
99
100 pub fn is_existential(&self) -> bool {
101 match self.kind {
102 CanonicalVarKind::Ty(_) => true,
103 CanonicalVarKind::PlaceholderTy(_) => false,
104 CanonicalVarKind::Region(_) => true,
105 CanonicalVarKind::PlaceholderRegion(..) => false,
48663c56
XL
106 CanonicalVarKind::Const(_) => true,
107 CanonicalVarKind::PlaceholderConst(_) => false,
a1dfa0c6
XL
108 }
109 }
110}
111
8faf50e0
XL
112/// Describes the "kind" of the canonical variable. This is a "kind"
113/// in the type-theory sense of the term -- i.e., a "meta" type system
114/// that analyzes type-like values.
3dfed10e 115#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyDecodable, TyEncodable, HashStable)]
8faf50e0
XL
116pub enum CanonicalVarKind {
117 /// Some kind of type inference variable.
118 Ty(CanonicalTyVarKind),
119
a1dfa0c6
XL
120 /// A "placeholder" that represents "any type".
121 PlaceholderTy(ty::PlaceholderType),
122
8faf50e0 123 /// Region variable `'?R`.
a1dfa0c6
XL
124 Region(ty::UniverseIndex),
125
126 /// A "placeholder" that represents "any region". Created when you
127 /// are solving a goal like `for<'a> T: Foo<'a>` to represent the
128 /// bound region `'a`.
129 PlaceholderRegion(ty::PlaceholderRegion),
48663c56
XL
130
131 /// Some kind of const inference variable.
132 Const(ty::UniverseIndex),
133
134 /// A "placeholder" that represents "any const".
135 PlaceholderConst(ty::PlaceholderConst),
a1dfa0c6
XL
136}
137
138impl CanonicalVarKind {
139 pub fn universe(self) -> ty::UniverseIndex {
140 match self {
141 CanonicalVarKind::Ty(kind) => match kind {
142 CanonicalTyVarKind::General(ui) => ui,
143 CanonicalTyVarKind::Float | CanonicalTyVarKind::Int => ty::UniverseIndex::ROOT,
dfeec247 144 },
a1dfa0c6
XL
145
146 CanonicalVarKind::PlaceholderTy(placeholder) => placeholder.universe,
147 CanonicalVarKind::Region(ui) => ui,
148 CanonicalVarKind::PlaceholderRegion(placeholder) => placeholder.universe,
48663c56
XL
149 CanonicalVarKind::Const(ui) => ui,
150 CanonicalVarKind::PlaceholderConst(placeholder) => placeholder.universe,
a1dfa0c6
XL
151 }
152 }
8faf50e0
XL
153}
154
155/// Rust actually has more than one category of type variables;
156/// notably, the type variables we create for literals (e.g., 22 or
157/// 22.) can only be instantiated with integral/float types (e.g.,
158/// usize or f32). In order to faithfully reproduce a type, we need to
159/// know what set of types a given type variable can be unified with.
3dfed10e 160#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyDecodable, TyEncodable, HashStable)]
8faf50e0
XL
161pub enum CanonicalTyVarKind {
162 /// General type variable `?T` that can be unified with arbitrary types.
a1dfa0c6 163 General(ty::UniverseIndex),
8faf50e0
XL
164
165 /// Integral type variable `?I` (that can only be unified with integral types).
166 Int,
167
168 /// Floating-point type variable `?F` (that can only be unified with float types).
169 Float,
170}
171
172/// After we execute a query with a canonicalized key, we get back a
0bf4aa26 173/// `Canonical<QueryResponse<..>>`. You can use
8faf50e0 174/// `instantiate_query_result` to access the data in this result.
60c5eb7d 175#[derive(Clone, Debug, HashStable, TypeFoldable, Lift)]
0bf4aa26 176pub struct QueryResponse<'tcx, R> {
8faf50e0 177 pub var_values: CanonicalVarValues<'tcx>,
dc9dc135 178 pub region_constraints: QueryRegionConstraints<'tcx>,
8faf50e0
XL
179 pub certainty: Certainty,
180 pub value: R,
181}
182
60c5eb7d 183#[derive(Clone, Debug, Default, HashStable, TypeFoldable, Lift)]
dc9dc135
XL
184pub struct QueryRegionConstraints<'tcx> {
185 pub outlives: Vec<QueryOutlivesConstraint<'tcx>>,
186 pub member_constraints: Vec<MemberConstraint<'tcx>>,
187}
188
189impl QueryRegionConstraints<'_> {
190 /// Represents an empty (trivially true) set of region
191 /// constraints.
192 pub fn is_empty(&self) -> bool {
193 self.outlives.is_empty() && self.member_constraints.is_empty()
194 }
195}
8faf50e0 196
dc9dc135
XL
197pub type Canonicalized<'tcx, V> = Canonical<'tcx, V>;
198
dfeec247 199pub type CanonicalizedQueryResponse<'tcx, T> = &'tcx Canonical<'tcx, QueryResponse<'tcx, T>>;
8faf50e0
XL
200
201/// Indicates whether or not we were able to prove the query to be
202/// true.
532ac7d7 203#[derive(Copy, Clone, Debug, HashStable)]
8faf50e0
XL
204pub enum Certainty {
205 /// The query is known to be true, presuming that you apply the
206 /// given `var_values` and the region-constraints are satisfied.
207 Proven,
208
209 /// The query is not known to be true, but also not known to be
210 /// false. The `var_values` represent *either* values that must
211 /// hold in order for the query to be true, or helpful tips that
212 /// *might* make it true. Currently rustc's trait solver cannot
213 /// distinguish the two (e.g., due to our preference for where
214 /// clauses over impls).
215 ///
216 /// After some unifiations and things have been done, it makes
217 /// sense to try and prove again -- of course, at that point, the
218 /// canonical form will be different, making this a distinct
219 /// query.
220 Ambiguous,
221}
222
223impl Certainty {
224 pub fn is_proven(&self) -> bool {
225 match self {
226 Certainty::Proven => true,
227 Certainty::Ambiguous => false,
228 }
229 }
230
231 pub fn is_ambiguous(&self) -> bool {
232 !self.is_proven()
233 }
234}
235
0bf4aa26 236impl<'tcx, R> QueryResponse<'tcx, R> {
8faf50e0
XL
237 pub fn is_proven(&self) -> bool {
238 self.certainty.is_proven()
239 }
240
241 pub fn is_ambiguous(&self) -> bool {
242 !self.is_proven()
243 }
244}
245
0bf4aa26 246impl<'tcx, R> Canonical<'tcx, QueryResponse<'tcx, R>> {
8faf50e0
XL
247 pub fn is_proven(&self) -> bool {
248 self.value.is_proven()
249 }
250
251 pub fn is_ambiguous(&self) -> bool {
252 !self.is_proven()
253 }
254}
255
dc9dc135 256impl<'tcx, V> Canonical<'tcx, V> {
b7449926
XL
257 /// Allows you to map the `value` of a canonical while keeping the
258 /// same set of bound variables.
259 ///
260 /// **WARNING:** This function is very easy to mis-use, hence the
261 /// name! In particular, the new value `W` must use all **the
262 /// same type/region variables** in **precisely the same order**
263 /// as the original! (The ordering is defined by the
264 /// `TypeFoldable` implementation of the type in question.)
265 ///
266 /// An example of a **correct** use of this:
267 ///
268 /// ```rust,ignore (not real code)
269 /// let a: Canonical<'_, T> = ...;
270 /// let b: Canonical<'_, (T,)> = a.unchecked_map(|v| (v, ));
271 /// ```
272 ///
273 /// An example of an **incorrect** use of this:
274 ///
275 /// ```rust,ignore (not real code)
276 /// let a: Canonical<'tcx, T> = ...;
277 /// let ty: Ty<'tcx> = ...;
278 /// let b: Canonical<'tcx, (T, Ty<'tcx>)> = a.unchecked_map(|v| (v, ty));
279 /// ```
dc9dc135 280 pub fn unchecked_map<W>(self, map_op: impl FnOnce(V) -> W) -> Canonical<'tcx, W> {
dfeec247
XL
281 let Canonical { max_universe, variables, value } = self;
282 Canonical { max_universe, variables, value: map_op(value) }
b7449926
XL
283 }
284}
285
dc9dc135 286pub type QueryOutlivesConstraint<'tcx> =
e74abb32 287 ty::Binder<ty::OutlivesPredicate<GenericArg<'tcx>, Region<'tcx>>>;
8faf50e0 288
8faf50e0 289CloneTypeFoldableAndLiftImpls! {
9fa01778
XL
290 crate::infer::canonical::Certainty,
291 crate::infer::canonical::CanonicalVarInfo,
292 crate::infer::canonical::CanonicalVarKind,
8faf50e0
XL
293}
294
295CloneTypeFoldableImpls! {
296 for <'tcx> {
9fa01778 297 crate::infer::canonical::CanonicalVarInfos<'tcx>,
8faf50e0
XL
298 }
299}
300
8faf50e0 301impl<'tcx> CanonicalVarValues<'tcx> {
0731742a 302 pub fn len(&self) -> usize {
8faf50e0
XL
303 self.var_values.len()
304 }
0731742a 305
9fa01778 306 /// Makes an identity substitution from this one: each bound var
0731742a
XL
307 /// is matched to the same bound var, preserving the original kinds.
308 /// For example, if we have:
309 /// `self.var_values == [Type(u32), Lifetime('a), Type(u64)]`
310 /// we'll return a substitution `subst` with:
311 /// `subst.var_values == [Type(^0), Lifetime(^1), Type(^2)]`.
dc9dc135 312 pub fn make_identity(&self, tcx: TyCtxt<'tcx>) -> Self {
e74abb32 313 use crate::ty::subst::GenericArgKind;
0731742a
XL
314
315 CanonicalVarValues {
dfeec247
XL
316 var_values: self
317 .var_values
318 .iter()
0731742a
XL
319 .zip(0..)
320 .map(|(kind, i)| match kind.unpack() {
dfeec247
XL
321 GenericArgKind::Type(..) => {
322 tcx.mk_ty(ty::Bound(ty::INNERMOST, ty::BoundVar::from_u32(i).into())).into()
323 }
324 GenericArgKind::Lifetime(..) => tcx
325 .mk_region(ty::ReLateBound(ty::INNERMOST, ty::BoundRegion::BrAnon(i)))
326 .into(),
327 GenericArgKind::Const(ct) => tcx
328 .mk_const(ty::Const {
48663c56 329 ty: ct.ty,
60c5eb7d 330 val: ty::ConstKind::Bound(ty::INNERMOST, ty::BoundVar::from_u32(i)),
dfeec247
XL
331 })
332 .into(),
0731742a 333 })
dfeec247 334 .collect(),
0731742a
XL
335 }
336 }
8faf50e0
XL
337}
338
339impl<'a, 'tcx> IntoIterator for &'a CanonicalVarValues<'tcx> {
e74abb32
XL
340 type Item = GenericArg<'tcx>;
341 type IntoIter = ::std::iter::Cloned<::std::slice::Iter<'a, GenericArg<'tcx>>>;
8faf50e0
XL
342
343 fn into_iter(self) -> Self::IntoIter {
344 self.var_values.iter().cloned()
345 }
346}
347
a1dfa0c6 348impl<'tcx> Index<BoundVar> for CanonicalVarValues<'tcx> {
e74abb32 349 type Output = GenericArg<'tcx>;
8faf50e0 350
e74abb32 351 fn index(&self, value: BoundVar) -> &GenericArg<'tcx> {
8faf50e0
XL
352 &self.var_values[value]
353 }
354}