]> git.proxmox.com Git - rustc.git/blame - src/librustc_mir/monomorphize/collector.rs
New upstream version 1.32.0+dfsg1
[rustc.git] / src / librustc_mir / monomorphize / collector.rs
CommitLineData
7453a54e
SL
1// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
ff7c6d11 11//! Mono Item Collection
7453a54e
SL
12//! ===========================
13//!
14//! This module is responsible for discovering all items that will contribute to
15//! to code generation of the crate. The important part here is that it not only
16//! needs to find syntax-level items (functions, structs, etc) but also all
17//! their monomorphized instantiations. Every non-generic, non-const function
18//! maps to one LLVM artifact. Every generic function can produce
19//! from zero to N artifacts, depending on the sets of type arguments it
20//! is instantiated with.
21//! This also applies to generic items from other crates: A generic definition
22//! in crate X might produce monomorphizations that are compiled into crate Y.
23//! We also have to collect these here.
24//!
ff7c6d11 25//! The following kinds of "mono items" are handled here:
7453a54e
SL
26//!
27//! - Functions
28//! - Methods
29//! - Closures
30//! - Statics
31//! - Drop glue
32//!
33//! The following things also result in LLVM artifacts, but are not collected
34//! here, since we instantiate them locally on demand when needed in a given
35//! codegen unit:
36//!
37//! - Constants
38//! - Vtables
39//! - Object Shims
40//!
41//!
42//! General Algorithm
43//! -----------------
44//! Let's define some terms first:
45//!
ff7c6d11
XL
46//! - A "mono item" is something that results in a function or global in
47//! the LLVM IR of a codegen unit. Mono items do not stand on their
48//! own, they can reference other mono items. For example, if function
49//! `foo()` calls function `bar()` then the mono item for `foo()`
50//! references the mono item for function `bar()`. In general, the
51//! definition for mono item A referencing a mono item B is that
7453a54e
SL
52//! the LLVM artifact produced for A references the LLVM artifact produced
53//! for B.
54//!
ff7c6d11
XL
55//! - Mono items and the references between them form a directed graph,
56//! where the mono items are the nodes and references form the edges.
57//! Let's call this graph the "mono item graph".
7453a54e 58//!
ff7c6d11 59//! - The mono item graph for a program contains all mono items
7453a54e
SL
60//! that are needed in order to produce the complete LLVM IR of the program.
61//!
62//! The purpose of the algorithm implemented in this module is to build the
ff7c6d11 63//! mono item graph for the current crate. It runs in two phases:
7453a54e
SL
64//!
65//! 1. Discover the roots of the graph by traversing the HIR of the crate.
66//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
67//! representation of the item corresponding to a given node, until no more
68//! new nodes are found.
69//!
70//! ### Discovering roots
71//!
ff7c6d11 72//! The roots of the mono item graph correspond to the non-generic
7453a54e
SL
73//! syntactic items in the source code. We find them by walking the HIR of the
74//! crate, and whenever we hit upon a function, method, or static item, we
ff7c6d11 75//! create a mono item consisting of the items DefId and, since we only
7453a54e
SL
76//! consider non-generic items, an empty type-substitution set.
77//!
78//! ### Finding neighbor nodes
ff7c6d11 79//! Given a mono item node, we can discover neighbors by inspecting its
7453a54e 80//! MIR. We walk the MIR and any time we hit upon something that signifies a
ff7c6d11
XL
81//! reference to another mono item, we have found a neighbor. Since the
82//! mono item we are currently at is always monomorphic, we also know the
7453a54e
SL
83//! concrete type arguments of its neighbors, and so all neighbors again will be
84//! monomorphic. The specific forms a reference to a neighboring node can take
85//! in MIR are quite diverse. Here is an overview:
86//!
87//! #### Calling Functions/Methods
ff7c6d11 88//! The most obvious form of one mono item referencing another is a
7453a54e
SL
89//! function or method call (represented by a CALL terminator in MIR). But
90//! calls are not the only thing that might introduce a reference between two
ff7c6d11 91//! function mono items, and as we will see below, they are just a
7453a54e
SL
92//! specialized of the form described next, and consequently will don't get any
93//! special treatment in the algorithm.
94//!
95//! #### Taking a reference to a function or method
96//! A function does not need to actually be called in order to be a neighbor of
97//! another function. It suffices to just take a reference in order to introduce
98//! an edge. Consider the following example:
99//!
100//! ```rust
101//! fn print_val<T: Display>(x: T) {
102//! println!("{}", x);
103//! }
104//!
105//! fn call_fn(f: &Fn(i32), x: i32) {
106//! f(x);
107//! }
108//!
109//! fn main() {
110//! let print_i32 = print_val::<i32>;
111//! call_fn(&print_i32, 0);
112//! }
113//! ```
114//! The MIR of none of these functions will contain an explicit call to
ff7c6d11 115//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
7453a54e
SL
116//! an instance of this function. Thus, whenever we encounter a function or
117//! method in operand position, we treat it as a neighbor of the current
ff7c6d11 118//! mono item. Calls are just a special case of that.
7453a54e
SL
119//!
120//! #### Closures
121//! In a way, closures are a simple case. Since every closure object needs to be
122//! constructed somewhere, we can reliably discover them by observing
123//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
124//! true for closures inlined from other crates.
125//!
126//! #### Drop glue
ff7c6d11
XL
127//! Drop glue mono items are introduced by MIR drop-statements. The
128//! generated mono item will again have drop-glue item neighbors if the
7453a54e
SL
129//! type to be dropped contains nested values that also need to be dropped. It
130//! might also have a function item neighbor for the explicit `Drop::drop`
131//! implementation of its type.
132//!
133//! #### Unsizing Casts
134//! A subtle way of introducing neighbor edges is by casting to a trait object.
135//! Since the resulting fat-pointer contains a reference to a vtable, we need to
136//! instantiate all object-save methods of the trait, as we need to store
137//! pointers to these functions even if they never get called anywhere. This can
138//! be seen as a special case of taking a function reference.
139//!
140//! #### Boxes
141//! Since `Box` expression have special compiler support, no explicit calls to
142//! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
143//! compiler will generate them. We have to observe `Rvalue::Box` expressions
144//! and Box-typed drop-statements for that purpose.
145//!
146//!
147//! Interaction with Cross-Crate Inlining
148//! -------------------------------------
149//! The binary of a crate will not only contain machine code for the items
150//! defined in the source code of that crate. It will also contain monomorphic
151//! instantiations of any extern generic functions and of functions marked with
ff7c6d11
XL
152//! `#[inline]`.
153//! The collection algorithm handles this more or less mono. If it is
154//! about to create a mono item for something with an external `DefId`,
7453a54e 155//! it will take a look if the MIR for that item is available, and if so just
9e0c209e 156//! proceed normally. If the MIR is not available, it assumes that the item is
7453a54e
SL
157//! just linked to and no node is created; which is exactly what we want, since
158//! no machine code should be generated in the current crate for such an item.
159//!
160//! Eager and Lazy Collection Mode
161//! ------------------------------
ff7c6d11 162//! Mono item collection can be performed in one of two modes:
7453a54e
SL
163//!
164//! - Lazy mode means that items will only be instantiated when actually
165//! referenced. The goal is to produce the least amount of machine code
166//! possible.
167//!
168//! - Eager mode is meant to be used in conjunction with incremental compilation
ff7c6d11 169//! where a stable set of mono items is more important than a minimal
7453a54e
SL
170//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
171//! in the crate, even of no drop call for that type exists (yet). It will
172//! also instantiate default implementations of trait methods, something that
173//! otherwise is only done on demand.
174//!
175//!
176//! Open Issues
177//! -----------
178//! Some things are not yet fully implemented in the current version of this
179//! module.
180//!
7453a54e 181//! ### Const Fns
ff7c6d11 182//! Ideally, no mono item should be generated for const fns unless there
7453a54e 183//! is a call to them that cannot be evaluated at compile time. At the moment
ff7c6d11 184//! this is not implemented however: a mono item will be produced
7453a54e
SL
185//! regardless of whether it is actually needed or not.
186
94b46f34 187use rustc::hir::{self, CodegenFnAttrFlags};
476ff2be 188use rustc::hir::itemlikevisit::ItemLikeVisitor;
7453a54e 189
54a0048b 190use rustc::hir::def_id::DefId;
0bf4aa26 191use rustc::mir::interpret::{AllocId, ConstValue};
ff7c6d11 192use rustc::middle::lang_items::{ExchangeMallocFnLangItem, StartFnLangItem};
94b46f34
XL
193use rustc::ty::subst::Substs;
194use rustc::ty::{self, TypeFoldable, Ty, TyCtxt, GenericParamDefKind};
54a0048b 195use rustc::ty::adjustment::CustomCoerceUnsized;
ff7c6d11 196use rustc::session::config;
0531ce1d 197use rustc::mir::{self, Location, Promoted};
7453a54e 198use rustc::mir::visit::Visitor as MirVisitor;
ff7c6d11 199use rustc::mir::mono::MonoItem;
a1dfa0c6 200use rustc::mir::interpret::{Scalar, GlobalId, AllocType, ErrorHandled};
7453a54e 201
54a0048b 202use monomorphize::{self, Instance};
7cac9316 203use rustc::util::nodemap::{FxHashSet, FxHashMap, DefIdMap};
94b46f34 204use rustc::util::common::time;
7453a54e 205
ff7c6d11 206use monomorphize::item::{MonoItemExt, DefPathBasedNames, InstantiationMode};
32a655c1 207
0bf4aa26 208use rustc_data_structures::bit_set::GrowableBitSet;
94b46f34 209use rustc_data_structures::sync::{MTRef, MTLock, ParallelIterator, par_iter};
3b2f2976 210
7453a54e 211#[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
ff7c6d11 212pub enum MonoItemCollectionMode {
7453a54e
SL
213 Eager,
214 Lazy
215}
216
ff7c6d11 217/// Maps every mono item to all mono items it references in its
a7813a04
XL
218/// body.
219pub struct InliningMap<'tcx> {
ff7c6d11 220 // Maps a source mono item to the range of mono items
3b2f2976 221 // accessed by it.
a7813a04
XL
222 // The two numbers in the tuple are the start (inclusive) and
223 // end index (exclusive) within the `targets` vecs.
ff7c6d11
XL
224 index: FxHashMap<MonoItem<'tcx>, (usize, usize)>,
225 targets: Vec<MonoItem<'tcx>>,
3b2f2976 226
ff7c6d11
XL
227 // Contains one bit per mono item in the `targets` field. That bit
228 // is true if that mono item needs to be inlined into every CGU.
0bf4aa26 229 inlines: GrowableBitSet<usize>,
7453a54e
SL
230}
231
a7813a04
XL
232impl<'tcx> InliningMap<'tcx> {
233
234 fn new() -> InliningMap<'tcx> {
235 InliningMap {
0bf4aa26 236 index: FxHashMap::default(),
a7813a04 237 targets: Vec::new(),
0bf4aa26 238 inlines: GrowableBitSet::with_capacity(1024),
a7813a04
XL
239 }
240 }
241
3b2f2976 242 fn record_accesses<I>(&mut self,
ff7c6d11 243 source: MonoItem<'tcx>,
3b2f2976 244 new_targets: I)
ff7c6d11 245 where I: Iterator<Item=(MonoItem<'tcx>, bool)> + ExactSizeIterator
a7813a04
XL
246 {
247 assert!(!self.index.contains_key(&source));
248
249 let start_index = self.targets.len();
3b2f2976
XL
250 let new_items_count = new_targets.len();
251 let new_items_count_total = new_items_count + self.targets.len();
252
253 self.targets.reserve(new_items_count);
0bf4aa26 254 self.inlines.ensure(new_items_count_total);
3b2f2976
XL
255
256 for (i, (target, inline)) in new_targets.enumerate() {
257 self.targets.push(target);
258 if inline {
259 self.inlines.insert(i + start_index);
260 }
261 }
262
a7813a04
XL
263 let end_index = self.targets.len();
264 self.index.insert(source, (start_index, end_index));
265 }
266
267 // Internally iterate over all items referenced by `source` which will be
268 // made available for inlining.
ff7c6d11
XL
269 pub fn with_inlining_candidates<F>(&self, source: MonoItem<'tcx>, mut f: F)
270 where F: FnMut(MonoItem<'tcx>)
3b2f2976
XL
271 {
272 if let Some(&(start_index, end_index)) = self.index.get(&source) {
273 for (i, candidate) in self.targets[start_index .. end_index]
274 .iter()
275 .enumerate() {
276 if self.inlines.contains(start_index + i) {
277 f(*candidate);
278 }
7453a54e 279 }
a7813a04 280 }
7453a54e 281 }
3b2f2976
XL
282
283 // Internally iterate over all items and the things each accesses.
284 pub fn iter_accesses<F>(&self, mut f: F)
ff7c6d11 285 where F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>])
3b2f2976
XL
286 {
287 for (&accessor, &(start_index, end_index)) in &self.index {
288 f(accessor, &self.targets[start_index .. end_index])
289 }
290 }
7453a54e
SL
291}
292
ff7c6d11
XL
293pub fn collect_crate_mono_items<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
294 mode: MonoItemCollectionMode)
295 -> (FxHashSet<MonoItem<'tcx>>,
a7813a04 296 InliningMap<'tcx>) {
94b46f34
XL
297 let roots = time(tcx.sess, "collecting roots", || {
298 collect_roots(tcx, mode)
299 });
ea8adc8c 300
ff7c6d11 301 debug!("Building mono item graph, beginning at roots");
94b46f34 302
0bf4aa26 303 let mut visited = MTLock::new(FxHashSet::default());
94b46f34
XL
304 let mut inlining_map = MTLock::new(InliningMap::new());
305
306 {
307 let visited: MTRef<'_, _> = &mut visited;
308 let inlining_map: MTRef<'_, _> = &mut inlining_map;
309
310 time(tcx.sess, "collecting mono items", || {
311 par_iter(roots).for_each(|root| {
a1dfa0c6 312 let mut recursion_depths = DefIdMap::default();
94b46f34
XL
313 collect_items_rec(tcx,
314 root,
315 visited,
316 &mut recursion_depths,
317 inlining_map);
318 });
319 });
ea8adc8c 320 }
7453a54e 321
94b46f34 322 (visited.into_inner(), inlining_map.into_inner())
7453a54e
SL
323}
324
325// Find all non-generic items by walking the HIR. These items serve as roots to
326// start monomorphizing from.
ea8adc8c 327fn collect_roots<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ff7c6d11
XL
328 mode: MonoItemCollectionMode)
329 -> Vec<MonoItem<'tcx>> {
7453a54e
SL
330 debug!("Collecting roots");
331 let mut roots = Vec::new();
332
333 {
83c7162d 334 let entry_fn = tcx.sess.entry_fn.borrow().map(|(node_id, _, _)| {
abe05a73
XL
335 tcx.hir.local_def_id(node_id)
336 });
337
ff7c6d11
XL
338 debug!("collect_roots: entry_fn = {:?}", entry_fn);
339
7453a54e 340 let mut visitor = RootCollector {
ea8adc8c 341 tcx,
3b2f2976 342 mode,
abe05a73 343 entry_fn,
7453a54e 344 output: &mut roots,
7453a54e
SL
345 };
346
ea8adc8c 347 tcx.hir.krate().visit_all_item_likes(&mut visitor);
0531ce1d
XL
348
349 visitor.push_extra_entry_roots();
7453a54e
SL
350 }
351
94b46f34 352 // We can only codegen items that are instantiable - items all of
041b39d2 353 // whose predicates hold. Luckily, items that aren't instantiable
94b46f34 354 // can't actually be used, so we can just skip codegenning them.
ea8adc8c 355 roots.retain(|root| root.is_instantiable(tcx));
041b39d2 356
7453a54e
SL
357 roots
358}
359
ff7c6d11 360// Collect all monomorphized items reachable from `starting_point`
ea8adc8c 361fn collect_items_rec<'a, 'tcx: 'a>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ff7c6d11 362 starting_point: MonoItem<'tcx>,
94b46f34 363 visited: MTRef<'_, MTLock<FxHashSet<MonoItem<'tcx>>>>,
a7813a04 364 recursion_depths: &mut DefIdMap<usize>,
94b46f34
XL
365 inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>) {
366 if !visited.lock_mut().insert(starting_point.clone()) {
7453a54e
SL
367 // We've been here already, no need to search again.
368 return;
369 }
ea8adc8c 370 debug!("BEGIN collect_items_rec({})", starting_point.to_string(tcx));
7453a54e
SL
371
372 let mut neighbors = Vec::new();
373 let recursion_depth_reset;
374
375 match starting_point {
0531ce1d 376 MonoItem::Static(def_id) => {
ea8adc8c 377 let instance = Instance::mono(tcx, def_id);
32a655c1
SL
378
379 // Sanity check whether this ended up being collected accidentally
ff7c6d11 380 debug_assert!(should_monomorphize_locally(tcx, &instance));
32a655c1 381
ff7c6d11 382 let ty = instance.ty(tcx);
ea8adc8c 383 visit_drop_use(tcx, ty, true, &mut neighbors);
a7813a04 384
7453a54e 385 recursion_depth_reset = None;
a7813a04 386
0531ce1d
XL
387 let cid = GlobalId {
388 instance,
389 promoted: None,
390 };
391 let param_env = ty::ParamEnv::reveal_all();
392
8faf50e0
XL
393 if let Ok(val) = tcx.const_eval(param_env.and(cid)) {
394 collect_const(tcx, val, instance.substs, &mut neighbors);
0531ce1d 395 }
7453a54e 396 }
ff7c6d11 397 MonoItem::Fn(instance) => {
32a655c1 398 // Sanity check whether this ended up being collected accidentally
ff7c6d11 399 debug_assert!(should_monomorphize_locally(tcx, &instance));
32a655c1 400
7453a54e 401 // Keep track of the monomorphization recursion depth
ea8adc8c 402 recursion_depth_reset = Some(check_recursion_limit(tcx,
54a0048b 403 instance,
7453a54e 404 recursion_depths));
ea8adc8c 405 check_type_length_limit(tcx, instance);
7453a54e 406
0531ce1d 407 collect_neighbours(tcx, instance, &mut neighbors);
7453a54e 408 }
ff7c6d11 409 MonoItem::GlobalAsm(..) => {
cc61c64b
XL
410 recursion_depth_reset = None;
411 }
7453a54e
SL
412 }
413
ea8adc8c 414 record_accesses(tcx, starting_point, &neighbors[..], inlining_map);
a7813a04 415
7453a54e 416 for neighbour in neighbors {
ea8adc8c 417 collect_items_rec(tcx, neighbour, visited, recursion_depths, inlining_map);
7453a54e
SL
418 }
419
420 if let Some((def_id, depth)) = recursion_depth_reset {
421 recursion_depths.insert(def_id, depth);
422 }
423
ea8adc8c 424 debug!("END collect_items_rec({})", starting_point.to_string(tcx));
7453a54e
SL
425}
426
3b2f2976 427fn record_accesses<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ff7c6d11
XL
428 caller: MonoItem<'tcx>,
429 callees: &[MonoItem<'tcx>],
94b46f34 430 inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>) {
ff7c6d11
XL
431 let is_inlining_candidate = |mono_item: &MonoItem<'tcx>| {
432 mono_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
a7813a04
XL
433 };
434
3b2f2976 435 let accesses = callees.into_iter()
ff7c6d11
XL
436 .map(|mono_item| {
437 (*mono_item, is_inlining_candidate(mono_item))
3b2f2976 438 });
a7813a04 439
94b46f34 440 inlining_map.lock_mut().record_accesses(caller, accesses);
a7813a04
XL
441}
442
443fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
444 instance: Instance<'tcx>,
445 recursion_depths: &mut DefIdMap<usize>)
446 -> (DefId, usize) {
cc61c64b
XL
447 let def_id = instance.def_id();
448 let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
7453a54e
SL
449 debug!(" => recursion depth={}", recursion_depth);
450
ea8adc8c 451 let recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
cc61c64b
XL
452 // HACK: drop_in_place creates tight monomorphization loops. Give
453 // it more margin.
454 recursion_depth / 4
455 } else {
456 recursion_depth
457 };
458
7453a54e
SL
459 // Code that needs to instantiate the same function recursively
460 // more than the recursion limit is assumed to be causing an
461 // infinite expansion.
83c7162d 462 if recursion_depth > *tcx.sess.recursion_limit.get() {
54a0048b
SL
463 let error = format!("reached the recursion limit while instantiating `{}`",
464 instance);
cc61c64b 465 if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
32a655c1 466 tcx.sess.span_fatal(tcx.hir.span(node_id), &error);
7453a54e 467 } else {
a7813a04 468 tcx.sess.fatal(&error);
7453a54e
SL
469 }
470 }
471
cc61c64b 472 recursion_depths.insert(def_id, recursion_depth + 1);
7453a54e 473
cc61c64b 474 (def_id, recursion_depth)
7453a54e
SL
475}
476
476ff2be
SL
477fn check_type_length_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
478 instance: Instance<'tcx>)
479{
480 let type_length = instance.substs.types().flat_map(|ty| ty.walk()).count();
481 debug!(" => type length={}", type_length);
482
483 // Rust code can easily create exponentially-long types using only a
484 // polynomial recursion depth. Even with the default recursion
485 // depth, you can easily get cases that take >2^60 steps to run,
486 // which means that rustc basically hangs.
487 //
488 // Bail out in these cases to avoid that bad user experience.
83c7162d 489 let type_length_limit = *tcx.sess.type_length_limit.get();
476ff2be
SL
490 if type_length > type_length_limit {
491 // The instance name is already known to be too long for rustc. Use
492 // `{:.64}` to avoid blasting the user's terminal with thousands of
493 // lines of type-name.
494 let instance_name = instance.to_string();
495 let msg = format!("reached the type-length limit while instantiating `{:.64}...`",
496 instance_name);
cc61c64b 497 let mut diag = if let Some(node_id) = tcx.hir.as_local_node_id(instance.def_id()) {
32a655c1 498 tcx.sess.struct_span_fatal(tcx.hir.span(node_id), &msg)
476ff2be
SL
499 } else {
500 tcx.sess.struct_fatal(&msg)
501 };
502
503 diag.note(&format!(
504 "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
505 type_length_limit*2));
506 diag.emit();
507 tcx.sess.abort_if_errors();
508 }
509}
510
7453a54e 511struct MirNeighborCollector<'a, 'tcx: 'a> {
ea8adc8c 512 tcx: TyCtxt<'a, 'tcx, 'tcx>,
7453a54e 513 mir: &'a mir::Mir<'tcx>,
ff7c6d11 514 output: &'a mut Vec<MonoItem<'tcx>>,
3b2f2976 515 param_substs: &'tcx Substs<'tcx>,
7453a54e
SL
516}
517
518impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
519
9e0c209e 520 fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
7453a54e
SL
521 debug!("visiting rvalue {:?}", *rvalue);
522
523 match *rvalue {
7453a54e
SL
524 // When doing an cast from a regular pointer to a fat pointer, we
525 // have to instantiate all methods of the trait being cast to, so we
526 // can build the appropriate vtable.
527 mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
0531ce1d
XL
528 let target_ty = self.tcx.subst_and_normalize_erasing_regions(
529 self.param_substs,
530 ty::ParamEnv::reveal_all(),
531 &target_ty,
532 );
ea8adc8c 533 let source_ty = operand.ty(self.mir, self.tcx);
0531ce1d
XL
534 let source_ty = self.tcx.subst_and_normalize_erasing_regions(
535 self.param_substs,
536 ty::ParamEnv::reveal_all(),
537 &source_ty,
538 );
ea8adc8c 539 let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.tcx,
7453a54e
SL
540 source_ty,
541 target_ty);
542 // This could also be a different Unsize instruction, like
543 // from a fixed sized array to a slice. But we are only
544 // interested in things that produce a vtable.
545 if target_ty.is_trait() && !source_ty.is_trait() {
ff7c6d11
XL
546 create_mono_items_for_vtable_methods(self.tcx,
547 target_ty,
548 source_ty,
549 self.output);
7453a54e
SL
550 }
551 }
cc61c64b 552 mir::Rvalue::Cast(mir::CastKind::ReifyFnPointer, ref operand, _) => {
ea8adc8c 553 let fn_ty = operand.ty(self.mir, self.tcx);
0531ce1d
XL
554 let fn_ty = self.tcx.subst_and_normalize_erasing_regions(
555 self.param_substs,
556 ty::ParamEnv::reveal_all(),
557 &fn_ty,
558 );
ea8adc8c 559 visit_fn_use(self.tcx, fn_ty, false, &mut self.output);
cc61c64b 560 }
8bb4bdeb 561 mir::Rvalue::Cast(mir::CastKind::ClosureFnPointer, ref operand, _) => {
ea8adc8c 562 let source_ty = operand.ty(self.mir, self.tcx);
0531ce1d
XL
563 let source_ty = self.tcx.subst_and_normalize_erasing_regions(
564 self.param_substs,
565 ty::ParamEnv::reveal_all(),
566 &source_ty,
567 );
8bb4bdeb 568 match source_ty.sty {
b7449926 569 ty::Closure(def_id, substs) => {
cc61c64b 570 let instance = monomorphize::resolve_closure(
ea8adc8c 571 self.tcx, def_id, substs, ty::ClosureKind::FnOnce);
83c7162d
XL
572 if should_monomorphize_locally(self.tcx, &instance) {
573 self.output.push(create_fn_mono_item(instance));
574 }
8bb4bdeb
XL
575 }
576 _ => bug!(),
577 }
578 }
7cac9316 579 mir::Rvalue::NullaryOp(mir::NullOp::Box, _) => {
ea8adc8c 580 let tcx = self.tcx;
cc61c64b 581 let exchange_malloc_fn_def_id = tcx
ea8adc8c 582 .lang_items()
cc61c64b 583 .require(ExchangeMallocFnLangItem)
ea8adc8c 584 .unwrap_or_else(|e| tcx.sess.fatal(&e));
cc61c64b 585 let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
ff7c6d11
XL
586 if should_monomorphize_locally(tcx, &instance) {
587 self.output.push(create_fn_mono_item(instance));
32a655c1 588 }
7453a54e
SL
589 }
590 _ => { /* not interesting */ }
591 }
592
9e0c209e 593 self.super_rvalue(rvalue, location);
7453a54e
SL
594 }
595
ea8adc8c
XL
596 fn visit_const(&mut self, constant: &&'tcx ty::Const<'tcx>, location: Location) {
597 debug!("visiting const {:?} @ {:?}", *constant, location);
598
0531ce1d 599 collect_const(self.tcx, constant, self.param_substs, self.output);
7453a54e 600
ea8adc8c 601 self.super_const(constant);
a7813a04
XL
602 }
603
a7813a04
XL
604 fn visit_terminator_kind(&mut self,
605 block: mir::BasicBlock,
9e0c209e
SL
606 kind: &mir::TerminatorKind<'tcx>,
607 location: Location) {
7cac9316
XL
608 debug!("visiting terminator {:?} @ {:?}", kind, location);
609
ea8adc8c 610 let tcx = self.tcx;
a7813a04 611 match *kind {
cc61c64b
XL
612 mir::TerminatorKind::Call { ref func, .. } => {
613 let callee_ty = func.ty(self.mir, tcx);
0531ce1d
XL
614 let callee_ty = tcx.subst_and_normalize_erasing_regions(
615 self.param_substs,
616 ty::ParamEnv::reveal_all(),
617 &callee_ty,
618 );
619 visit_fn_use(self.tcx, callee_ty, true, &mut self.output);
a7813a04 620 }
cc61c64b
XL
621 mir::TerminatorKind::Drop { ref location, .. } |
622 mir::TerminatorKind::DropAndReplace { ref location, .. } => {
ea8adc8c
XL
623 let ty = location.ty(self.mir, self.tcx)
624 .to_ty(self.tcx);
0531ce1d
XL
625 let ty = tcx.subst_and_normalize_erasing_regions(
626 self.param_substs,
627 ty::ParamEnv::reveal_all(),
628 &ty,
629 );
ea8adc8c 630 visit_drop_use(self.tcx, ty, true, self.output);
cc61c64b
XL
631 }
632 mir::TerminatorKind::Goto { .. } |
633 mir::TerminatorKind::SwitchInt { .. } |
634 mir::TerminatorKind::Resume |
ff7c6d11 635 mir::TerminatorKind::Abort |
cc61c64b
XL
636 mir::TerminatorKind::Return |
637 mir::TerminatorKind::Unreachable |
638 mir::TerminatorKind::Assert { .. } => {}
ea8adc8c 639 mir::TerminatorKind::GeneratorDrop |
abe05a73 640 mir::TerminatorKind::Yield { .. } |
2c00a5a8
XL
641 mir::TerminatorKind::FalseEdges { .. } |
642 mir::TerminatorKind::FalseUnwind { .. } => bug!(),
a7813a04
XL
643 }
644
9e0c209e 645 self.super_terminator_kind(block, kind, location);
7453a54e 646 }
3b2f2976
XL
647
648 fn visit_static(&mut self,
649 static_: &mir::Static<'tcx>,
ff7c6d11 650 context: mir::visit::PlaceContext<'tcx>,
3b2f2976
XL
651 location: Location) {
652 debug!("visiting static {:?} @ {:?}", static_.def_id, location);
653
ea8adc8c 654 let tcx = self.tcx;
3b2f2976 655 let instance = Instance::mono(tcx, static_.def_id);
ff7c6d11 656 if should_monomorphize_locally(tcx, &instance) {
0531ce1d 657 self.output.push(MonoItem::Static(static_.def_id));
3b2f2976
XL
658 }
659
660 self.super_static(static_, context, location);
661 }
7453a54e
SL
662}
663
ea8adc8c
XL
664fn visit_drop_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
665 ty: Ty<'tcx>,
cc61c64b 666 is_direct_call: bool,
ff7c6d11 667 output: &mut Vec<MonoItem<'tcx>>)
cc61c64b 668{
ea8adc8c
XL
669 let instance = monomorphize::resolve_drop_in_place(tcx, ty);
670 visit_instance_use(tcx, instance, is_direct_call, output);
7453a54e
SL
671}
672
ea8adc8c
XL
673fn visit_fn_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
674 ty: Ty<'tcx>,
cc61c64b 675 is_direct_call: bool,
ff7c6d11 676 output: &mut Vec<MonoItem<'tcx>>)
cc61c64b 677{
b7449926 678 if let ty::FnDef(def_id, substs) = ty.sty {
ea8adc8c 679 let instance = ty::Instance::resolve(tcx,
0531ce1d 680 ty::ParamEnv::reveal_all(),
ea8adc8c
XL
681 def_id,
682 substs).unwrap();
683 visit_instance_use(tcx, instance, is_direct_call, output);
7453a54e 684 }
cc61c64b 685}
7453a54e 686
ea8adc8c 687fn visit_instance_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
cc61c64b
XL
688 instance: ty::Instance<'tcx>,
689 is_direct_call: bool,
ff7c6d11 690 output: &mut Vec<MonoItem<'tcx>>)
cc61c64b
XL
691{
692 debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
ff7c6d11 693 if !should_monomorphize_locally(tcx, &instance) {
cc61c64b 694 return
7453a54e
SL
695 }
696
cc61c64b
XL
697 match instance.def {
698 ty::InstanceDef::Intrinsic(def_id) => {
699 if !is_direct_call {
700 bug!("intrinsic {:?} being reified", def_id);
32a655c1
SL
701 }
702 }
a1dfa0c6 703 ty::InstanceDef::VtableShim(..) |
cc61c64b
XL
704 ty::InstanceDef::Virtual(..) |
705 ty::InstanceDef::DropGlue(_, None) => {
706 // don't need to emit shim if we are calling directly.
707 if !is_direct_call {
ff7c6d11 708 output.push(create_fn_mono_item(instance));
7453a54e
SL
709 }
710 }
7cac9316 711 ty::InstanceDef::DropGlue(_, Some(_)) => {
ff7c6d11 712 output.push(create_fn_mono_item(instance));
7453a54e 713 }
cc61c64b
XL
714 ty::InstanceDef::ClosureOnceShim { .. } |
715 ty::InstanceDef::Item(..) |
3b2f2976
XL
716 ty::InstanceDef::FnPtrShim(..) |
717 ty::InstanceDef::CloneShim(..) => {
ff7c6d11 718 output.push(create_fn_mono_item(instance));
32a655c1 719 }
7453a54e
SL
720 }
721}
722
94b46f34 723// Returns true if we should codegen an instance in the local crate.
cc61c64b 724// Returns false if we can just link to the upstream crate and therefore don't
ff7c6d11
XL
725// need a mono item.
726fn should_monomorphize_locally<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &Instance<'tcx>)
727 -> bool {
cc61c64b
XL
728 let def_id = match instance.def {
729 ty::InstanceDef::Item(def_id) => def_id,
a1dfa0c6 730 ty::InstanceDef::VtableShim(..) |
cc61c64b
XL
731 ty::InstanceDef::ClosureOnceShim { .. } |
732 ty::InstanceDef::Virtual(..) |
733 ty::InstanceDef::FnPtrShim(..) |
734 ty::InstanceDef::DropGlue(..) |
3b2f2976
XL
735 ty::InstanceDef::Intrinsic(_) |
736 ty::InstanceDef::CloneShim(..) => return true
cc61c64b 737 };
83c7162d 738
a1dfa0c6
XL
739 if tcx.is_foreign_item(def_id) {
740 // We can always link to foreign items
741 return false;
742 }
743
744 if def_id.is_local() {
745 // local items cannot be referred to locally without monomorphizing them locally
746 return true;
747 }
748
749 if tcx.is_reachable_non_generic(def_id) ||
750 is_available_upstream_generic(tcx, def_id, instance.substs) {
751 // We can link to the item in question, no instance needed
752 // in this crate
753 return false;
754 }
755
756 if !tcx.is_mir_available(def_id) {
757 bug!("Cannot create local mono-item for {:?}", def_id)
758 }
759 return true;
83c7162d
XL
760
761 fn is_available_upstream_generic<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
762 def_id: DefId,
763 substs: &'tcx Substs<'tcx>)
764 -> bool {
765 debug_assert!(!def_id.is_local());
766
767 // If we are not in share generics mode, we don't link to upstream
768 // monomorphizations but always instantiate our own internal versions
769 // instead.
b7449926 770 if !tcx.sess.opts.share_generics() {
83c7162d
XL
771 return false
772 }
773
774 // If this instance has no type parameters, it cannot be a shared
775 // monomorphization. Non-generic instances are already handled above
776 // by `is_reachable_non_generic()`
777 if substs.types().next().is_none() {
778 return false
779 }
780
781 // Take a look at the available monomorphizations listed in the metadata
782 // of upstream crates.
783 tcx.upstream_monomorphizations_for(def_id)
784 .map(|set| set.contains_key(substs))
785 .unwrap_or(false)
7453a54e
SL
786 }
787}
788
789/// For given pair of source and target type that occur in an unsizing coercion,
790/// this function finds the pair of types that determines the vtable linking
791/// them.
792///
793/// For example, the source type might be `&SomeStruct` and the target type\
794/// might be `&SomeTrait` in a cast like:
795///
796/// let src: &SomeStruct = ...;
797/// let target = src as &SomeTrait;
798///
799/// Then the output of this function would be (SomeStruct, SomeTrait) since for
800/// constructing the `target` fat-pointer we need the vtable for that pair.
801///
802/// Things can get more complicated though because there's also the case where
803/// the unsized type occurs as a field:
804///
805/// ```rust
806/// struct ComplexStruct<T: ?Sized> {
807/// a: u32,
808/// b: f64,
809/// c: T
810/// }
811/// ```
812///
813/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
814/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
815/// for the pair of `T` (which is a trait) and the concrete type that `T` was
816/// originally coerced from:
817///
818/// let src: &ComplexStruct<SomeStruct> = ...;
819/// let target = src as &ComplexStruct<SomeTrait>;
820///
821/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
822/// `(SomeStruct, SomeTrait)`.
823///
824/// Finally, there is also the case of custom unsizing coercions, e.g. for
825/// smart pointers such as `Rc` and `Arc`.
ea8adc8c
XL
826fn find_vtable_types_for_unsizing<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
827 source_ty: Ty<'tcx>,
828 target_ty: Ty<'tcx>)
829 -> (Ty<'tcx>, Ty<'tcx>) {
830 let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
ff7c6d11
XL
831 let type_has_metadata = |ty: Ty<'tcx>| -> bool {
832 use syntax_pos::DUMMY_SP;
0531ce1d 833 if ty.is_sized(tcx.at(DUMMY_SP), ty::ParamEnv::reveal_all()) {
ff7c6d11
XL
834 return false;
835 }
836 let tail = tcx.struct_tail(ty);
837 match tail.sty {
b7449926
XL
838 ty::Foreign(..) => false,
839 ty::Str | ty::Slice(..) | ty::Dynamic(..) => true,
ff7c6d11
XL
840 _ => bug!("unexpected unsized tail: {:?}", tail.sty),
841 }
842 };
843 if type_has_metadata(inner_source) {
32a655c1
SL
844 (inner_source, inner_target)
845 } else {
ea8adc8c 846 tcx.struct_lockstep_tails(inner_source, inner_target)
32a655c1
SL
847 }
848 };
ff7c6d11 849
7453a54e 850 match (&source_ty.sty, &target_ty.sty) {
b7449926
XL
851 (&ty::Ref(_, a, _),
852 &ty::Ref(_, b, _)) |
853 (&ty::Ref(_, a, _),
854 &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) |
855 (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }),
856 &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
32a655c1
SL
857 ptr_vtable(a, b)
858 }
b7449926 859 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
32a655c1 860 ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
7453a54e
SL
861 }
862
b7449926
XL
863 (&ty::Adt(source_adt_def, source_substs),
864 &ty::Adt(target_adt_def, target_substs)) => {
7453a54e
SL
865 assert_eq!(source_adt_def, target_adt_def);
866
cc61c64b 867 let kind =
ea8adc8c 868 monomorphize::custom_coerce_unsize_info(tcx, source_ty, target_ty);
7453a54e
SL
869
870 let coerce_index = match kind {
871 CustomCoerceUnsized::Struct(i) => i
872 };
873
2c00a5a8
XL
874 let source_fields = &source_adt_def.non_enum_variant().fields;
875 let target_fields = &target_adt_def.non_enum_variant().fields;
7453a54e
SL
876
877 assert!(coerce_index < source_fields.len() &&
878 source_fields.len() == target_fields.len());
879
ea8adc8c
XL
880 find_vtable_types_for_unsizing(tcx,
881 source_fields[coerce_index].ty(tcx,
7453a54e 882 source_substs),
ea8adc8c 883 target_fields[coerce_index].ty(tcx,
7453a54e
SL
884 target_substs))
885 }
54a0048b
SL
886 _ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
887 source_ty,
888 target_ty)
7453a54e
SL
889 }
890}
891
ff7c6d11
XL
892fn create_fn_mono_item<'a, 'tcx>(instance: Instance<'tcx>) -> MonoItem<'tcx> {
893 debug!("create_fn_mono_item(instance={})", instance);
894 MonoItem::Fn(instance)
7453a54e
SL
895}
896
ff7c6d11 897/// Creates a `MonoItem` for each method that is referenced by the vtable for
7453a54e 898/// the given trait/impl pair.
ff7c6d11
XL
899fn create_mono_items_for_vtable_methods<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
900 trait_ty: Ty<'tcx>,
901 impl_ty: Ty<'tcx>,
902 output: &mut Vec<MonoItem<'tcx>>) {
a1dfa0c6
XL
903 assert!(!trait_ty.needs_subst() && !trait_ty.has_escaping_bound_vars() &&
904 !impl_ty.needs_subst() && !impl_ty.has_escaping_bound_vars());
7453a54e 905
b7449926 906 if let ty::Dynamic(ref trait_ty, ..) = trait_ty.sty {
0bf4aa26 907 let poly_trait_ref = trait_ty.principal().with_self_ty(tcx, impl_ty);
a1dfa0c6 908 assert!(!poly_trait_ref.has_escaping_bound_vars());
0bf4aa26
XL
909
910 // Walk all methods of the trait, including those of its supertraits
911 let methods = tcx.vtable_methods(poly_trait_ref);
912 let methods = methods.iter().cloned().filter_map(|method| method)
a1dfa0c6 913 .map(|(def_id, substs)| ty::Instance::resolve_for_vtable(
0bf4aa26
XL
914 tcx,
915 ty::ParamEnv::reveal_all(),
916 def_id,
917 substs).unwrap())
918 .filter(|&instance| should_monomorphize_locally(tcx, &instance))
919 .map(|instance| create_fn_mono_item(instance));
920 output.extend(methods);
9e0c209e 921 // Also add the destructor
ea8adc8c 922 visit_drop_use(tcx, impl_ty, false, output);
7453a54e
SL
923 }
924}
925
926//=-----------------------------------------------------------------------------
927// Root Collection
928//=-----------------------------------------------------------------------------
929
930struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
ea8adc8c 931 tcx: TyCtxt<'a, 'tcx, 'tcx>,
ff7c6d11
XL
932 mode: MonoItemCollectionMode,
933 output: &'b mut Vec<MonoItem<'tcx>>,
abe05a73 934 entry_fn: Option<DefId>,
7453a54e
SL
935}
936
476ff2be 937impl<'b, 'a, 'v> ItemLikeVisitor<'v> for RootCollector<'b, 'a, 'v> {
7453a54e 938 fn visit_item(&mut self, item: &'v hir::Item) {
7453a54e 939 match item.node {
8faf50e0
XL
940 hir::ItemKind::ExternCrate(..) |
941 hir::ItemKind::Use(..) |
942 hir::ItemKind::ForeignMod(..) |
943 hir::ItemKind::Ty(..) |
944 hir::ItemKind::Trait(..) |
945 hir::ItemKind::TraitAlias(..) |
946 hir::ItemKind::Existential(..) |
947 hir::ItemKind::Mod(..) => {
7453a54e
SL
948 // Nothing to do, just keep recursing...
949 }
950
8faf50e0 951 hir::ItemKind::Impl(..) => {
ff7c6d11
XL
952 if self.mode == MonoItemCollectionMode::Eager {
953 create_mono_items_for_default_impls(self.tcx,
954 item,
955 self.output);
7453a54e
SL
956 }
957 }
958
8faf50e0
XL
959 hir::ItemKind::Enum(_, ref generics) |
960 hir::ItemKind::Struct(_, ref generics) |
961 hir::ItemKind::Union(_, ref generics) => {
ff7c6d11
XL
962 if generics.params.is_empty() {
963 if self.mode == MonoItemCollectionMode::Eager {
ea8adc8c 964 let def_id = self.tcx.hir.local_def_id(item.id);
7453a54e 965 debug!("RootCollector: ADT drop-glue for {}",
ea8adc8c 966 def_id_to_string(self.tcx, def_id));
7453a54e 967
ff7c6d11 968 let ty = Instance::new(def_id, Substs::empty()).ty(self.tcx);
ea8adc8c 969 visit_drop_use(self.tcx, ty, true, self.output);
7453a54e
SL
970 }
971 }
972 }
8faf50e0
XL
973 hir::ItemKind::GlobalAsm(..) => {
974 debug!("RootCollector: ItemKind::GlobalAsm({})",
ea8adc8c
XL
975 def_id_to_string(self.tcx,
976 self.tcx.hir.local_def_id(item.id)));
ff7c6d11 977 self.output.push(MonoItem::GlobalAsm(item.id));
cc61c64b 978 }
8faf50e0 979 hir::ItemKind::Static(..) => {
0531ce1d 980 let def_id = self.tcx.hir.local_def_id(item.id);
8faf50e0 981 debug!("RootCollector: ItemKind::Static({})",
0531ce1d
XL
982 def_id_to_string(self.tcx, def_id));
983 self.output.push(MonoItem::Static(def_id));
7453a54e 984 }
8faf50e0 985 hir::ItemKind::Const(..) => {
ff7c6d11 986 // const items only generate mono items if they are
5bcae85e 987 // actually used somewhere. Just declaring them is insufficient.
a1dfa0c6
XL
988
989 // but even just declaring them must collect the items they refer to
990 let def_id = self.tcx.hir.local_def_id(item.id);
991
992 let instance = Instance::mono(self.tcx, def_id);
993 let cid = GlobalId {
994 instance,
995 promoted: None,
996 };
997 let param_env = ty::ParamEnv::reveal_all();
998
999 if let Ok(val) = self.tcx.const_eval(param_env.and(cid)) {
1000 collect_const(self.tcx, val, instance.substs, &mut self.output);
1001 }
5bcae85e 1002 }
8faf50e0 1003 hir::ItemKind::Fn(..) => {
ff7c6d11
XL
1004 let def_id = self.tcx.hir.local_def_id(item.id);
1005 self.push_if_root(def_id);
7453a54e
SL
1006 }
1007 }
7453a54e
SL
1008 }
1009
32a655c1
SL
1010 fn visit_trait_item(&mut self, _: &'v hir::TraitItem) {
1011 // Even if there's a default body with no explicit generics,
1012 // it's still generic over some `Self: Trait`, so not a root.
1013 }
1014
7453a54e
SL
1015 fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
1016 match ii.node {
3b2f2976 1017 hir::ImplItemKind::Method(hir::MethodSig { .. }, _) => {
ff7c6d11
XL
1018 let def_id = self.tcx.hir.local_def_id(ii.id);
1019 self.push_if_root(def_id);
7453a54e
SL
1020 }
1021 _ => { /* Nothing to do here */ }
1022 }
7453a54e
SL
1023 }
1024}
1025
abe05a73
XL
1026impl<'b, 'a, 'v> RootCollector<'b, 'a, 'v> {
1027 fn is_root(&self, def_id: DefId) -> bool {
1028 !item_has_type_parameters(self.tcx, def_id) && match self.mode {
ff7c6d11 1029 MonoItemCollectionMode::Eager => {
abe05a73
XL
1030 true
1031 }
ff7c6d11 1032 MonoItemCollectionMode::Lazy => {
abe05a73 1033 self.entry_fn == Some(def_id) ||
0531ce1d 1034 self.tcx.is_reachable_non_generic(def_id) ||
94b46f34
XL
1035 self.tcx.codegen_fn_attrs(def_id).flags.contains(
1036 CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
abe05a73
XL
1037 }
1038 }
1039 }
ff7c6d11
XL
1040
1041 /// If `def_id` represents a root, then push it onto the list of
1042 /// outputs. (Note that all roots must be monomorphic.)
1043 fn push_if_root(&mut self, def_id: DefId) {
1044 if self.is_root(def_id) {
1045 debug!("RootCollector::push_if_root: found root def_id={:?}", def_id);
1046
1047 let instance = Instance::mono(self.tcx, def_id);
1048 self.output.push(create_fn_mono_item(instance));
ff7c6d11
XL
1049 }
1050 }
1051
1052 /// As a special case, when/if we encounter the
1053 /// `main()` function, we also have to generate a
1054 /// monomorphized copy of the start lang item based on
1055 /// the return type of `main`. This is not needed when
1056 /// the user writes their own `start` manually.
0531ce1d 1057 fn push_extra_entry_roots(&mut self) {
b7449926 1058 if self.tcx.sess.entry_fn.get().map(|e| e.2) != Some(config::EntryFnType::Main) {
0531ce1d 1059 return
ff7c6d11
XL
1060 }
1061
0531ce1d
XL
1062 let main_def_id = if let Some(def_id) = self.entry_fn {
1063 def_id
1064 } else {
1065 return
1066 };
1067
ff7c6d11
XL
1068 let start_def_id = match self.tcx.lang_items().require(StartFnLangItem) {
1069 Ok(s) => s,
1070 Err(err) => self.tcx.sess.fatal(&err),
1071 };
0531ce1d 1072 let main_ret_ty = self.tcx.fn_sig(main_def_id).output();
ff7c6d11
XL
1073
1074 // Given that `main()` has no arguments,
1075 // then its return type cannot have
1076 // late-bound regions, since late-bound
1077 // regions must appear in the argument
1078 // listing.
0531ce1d 1079 let main_ret_ty = self.tcx.erase_regions(
a1dfa0c6 1080 &main_ret_ty.no_bound_vars().unwrap(),
0531ce1d 1081 );
ff7c6d11
XL
1082
1083 let start_instance = Instance::resolve(
1084 self.tcx,
0531ce1d 1085 ty::ParamEnv::reveal_all(),
ff7c6d11 1086 start_def_id,
94b46f34 1087 self.tcx.intern_substs(&[main_ret_ty.into()])
ff7c6d11
XL
1088 ).unwrap();
1089
1090 self.output.push(create_fn_mono_item(start_instance));
1091 }
abe05a73
XL
1092}
1093
3b2f2976
XL
1094fn item_has_type_parameters<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool {
1095 let generics = tcx.generics_of(def_id);
94b46f34 1096 generics.requires_monomorphization(tcx)
3b2f2976
XL
1097}
1098
ff7c6d11
XL
1099fn create_mono_items_for_default_impls<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1100 item: &'tcx hir::Item,
1101 output: &mut Vec<MonoItem<'tcx>>) {
7453a54e 1102 match item.node {
8faf50e0
XL
1103 hir::ItemKind::Impl(_, _, _, ref generics, .., ref impl_item_refs) => {
1104 for param in &generics.params {
1105 match param.kind {
1106 hir::GenericParamKind::Lifetime { .. } => {}
1107 hir::GenericParamKind::Type { .. } => return,
1108 }
7453a54e
SL
1109 }
1110
32a655c1 1111 let impl_def_id = tcx.hir.local_def_id(item.id);
7453a54e 1112
ff7c6d11 1113 debug!("create_mono_items_for_default_impls(item={})",
a7813a04 1114 def_id_to_string(tcx, impl_def_id));
7453a54e
SL
1115
1116 if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
476ff2be
SL
1117 let overridden_methods: FxHashSet<_> =
1118 impl_item_refs.iter()
8faf50e0 1119 .map(|iiref| iiref.ident.modern())
476ff2be 1120 .collect();
9e0c209e 1121 for method in tcx.provided_trait_methods(trait_ref.def_id) {
8faf50e0 1122 if overridden_methods.contains(&method.ident.modern()) {
7453a54e
SL
1123 continue;
1124 }
1125
94b46f34 1126 if tcx.generics_of(method.def_id).own_counts().types != 0 {
7453a54e
SL
1127 continue;
1128 }
1129
94b46f34
XL
1130 let substs = Substs::for_item(tcx, method.def_id, |param, _| {
1131 match param.kind {
1132 GenericParamDefKind::Lifetime => tcx.types.re_erased.into(),
1133 GenericParamDefKind::Type {..} => {
1134 trait_ref.substs[param.index as usize]
1135 }
1136 }
1137 });
0531ce1d 1138
ea8adc8c 1139 let instance = ty::Instance::resolve(tcx,
0531ce1d 1140 ty::ParamEnv::reveal_all(),
ea8adc8c 1141 method.def_id,
0531ce1d 1142 substs).unwrap();
cc61c64b 1143
ff7c6d11
XL
1144 let mono_item = create_fn_mono_item(instance);
1145 if mono_item.is_instantiable(tcx)
1146 && should_monomorphize_locally(tcx, &instance) {
1147 output.push(mono_item);
7453a54e
SL
1148 }
1149 }
1150 }
1151 }
1152 _ => {
54a0048b 1153 bug!()
7453a54e
SL
1154 }
1155 }
1156}
1157
0531ce1d
XL
1158/// Scan the miri alloc in order to find function calls, closures, and drop-glue
1159fn collect_miri<'a, 'tcx>(
1160 tcx: TyCtxt<'a, 'tcx, 'tcx>,
1161 alloc_id: AllocId,
1162 output: &mut Vec<MonoItem<'tcx>>,
1163) {
94b46f34
XL
1164 let alloc_type = tcx.alloc_map.lock().get(alloc_id);
1165 match alloc_type {
1166 Some(AllocType::Static(did)) => {
1167 let instance = Instance::mono(tcx, did);
1168 if should_monomorphize_locally(tcx, &instance) {
1169 trace!("collecting static {:?}", did);
1170 output.push(MonoItem::Static(did));
1171 }
0531ce1d 1172 }
94b46f34
XL
1173 Some(AllocType::Memory(alloc)) => {
1174 trace!("collecting {:?} with {:#?}", alloc_id, alloc);
0bf4aa26 1175 for &((), inner) in alloc.relocations.values() {
94b46f34
XL
1176 collect_miri(tcx, inner, output);
1177 }
1178 },
1179 Some(AllocType::Function(fn_instance)) => {
1180 if should_monomorphize_locally(tcx, &fn_instance) {
1181 trace!("collecting {:?} with {:#?}", alloc_id, fn_instance);
1182 output.push(create_fn_mono_item(fn_instance));
1183 }
0531ce1d 1184 }
94b46f34 1185 None => bug!("alloc id without corresponding allocation: {}", alloc_id),
0531ce1d
XL
1186 }
1187}
1188
32a655c1 1189/// Scan the MIR in order to find function calls, closures, and drop-glue
ea8adc8c 1190fn collect_neighbours<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
32a655c1 1191 instance: Instance<'tcx>,
ff7c6d11 1192 output: &mut Vec<MonoItem<'tcx>>)
5bcae85e 1193{
ea8adc8c 1194 let mir = tcx.instance_mir(instance.def);
5bcae85e 1195
0531ce1d 1196 MirNeighborCollector {
ea8adc8c 1197 tcx,
5bcae85e 1198 mir: &mir,
3b2f2976
XL
1199 output,
1200 param_substs: instance.substs,
0531ce1d
XL
1201 }.visit_mir(&mir);
1202 let param_env = ty::ParamEnv::reveal_all();
1203 for i in 0..mir.promoted.len() {
1204 use rustc_data_structures::indexed_vec::Idx;
94b46f34 1205 let i = Promoted::new(i);
0531ce1d
XL
1206 let cid = GlobalId {
1207 instance,
94b46f34 1208 promoted: Some(i),
0531ce1d
XL
1209 };
1210 match tcx.const_eval(param_env.and(cid)) {
1211 Ok(val) => collect_const(tcx, val, instance.substs, output),
a1dfa0c6
XL
1212 Err(ErrorHandled::Reported) => {},
1213 Err(ErrorHandled::TooGeneric) => span_bug!(
1214 mir.promoted[i].span, "collection encountered polymorphic constant",
1215 ),
0531ce1d 1216 }
7453a54e
SL
1217 }
1218}
476ff2be
SL
1219
1220fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1221 def_id: DefId)
1222 -> String {
1223 let mut output = String::new();
1224 let printer = DefPathBasedNames::new(tcx, false, false);
1225 printer.push_def_path(def_id, &mut output);
1226 output
1227}
0531ce1d
XL
1228
1229fn collect_const<'a, 'tcx>(
1230 tcx: TyCtxt<'a, 'tcx, 'tcx>,
1231 constant: &ty::Const<'tcx>,
1232 param_substs: &'tcx Substs<'tcx>,
1233 output: &mut Vec<MonoItem<'tcx>>,
1234) {
1235 debug!("visiting const {:?}", *constant);
1236
1237 let val = match constant.val {
8faf50e0 1238 ConstValue::Unevaluated(def_id, substs) => {
0531ce1d
XL
1239 let param_env = ty::ParamEnv::reveal_all();
1240 let substs = tcx.subst_and_normalize_erasing_regions(
1241 param_substs,
1242 param_env,
1243 &substs,
1244 );
1245 let instance = ty::Instance::resolve(tcx,
1246 param_env,
1247 def_id,
1248 substs).unwrap();
1249
1250 let cid = GlobalId {
1251 instance,
1252 promoted: None,
1253 };
1254 match tcx.const_eval(param_env.and(cid)) {
1255 Ok(val) => val.val,
a1dfa0c6
XL
1256 Err(ErrorHandled::Reported) => return,
1257 Err(ErrorHandled::TooGeneric) => span_bug!(
1258 tcx.def_span(def_id), "collection encountered polymorphic constant",
1259 ),
0531ce1d
XL
1260 }
1261 },
1262 _ => constant.val,
1263 };
1264 match val {
8faf50e0 1265 ConstValue::Unevaluated(..) => bug!("const eval yielded unevaluated const"),
0bf4aa26 1266 ConstValue::ScalarPair(Scalar::Ptr(a), Scalar::Ptr(b)) => {
0531ce1d
XL
1267 collect_miri(tcx, a.alloc_id, output);
1268 collect_miri(tcx, b.alloc_id, output);
1269 }
0bf4aa26 1270 ConstValue::ScalarPair(_, Scalar::Ptr(ptr)) |
8faf50e0
XL
1271 ConstValue::ScalarPair(Scalar::Ptr(ptr), _) |
1272 ConstValue::Scalar(Scalar::Ptr(ptr)) =>
0531ce1d 1273 collect_miri(tcx, ptr.alloc_id, output),
b7449926 1274 ConstValue::ByRef(_id, alloc, _offset) => {
0bf4aa26 1275 for &((), id) in alloc.relocations.values() {
94b46f34 1276 collect_miri(tcx, id, output);
0531ce1d
XL
1277 }
1278 }
1279 _ => {},
1280 }
1281}