]> git.proxmox.com Git - rustc.git/blame - src/librustc_mir/monomorphize/collector.rs
New upstream version 1.27.1+dfsg1
[rustc.git] / src / librustc_mir / monomorphize / collector.rs
CommitLineData
7453a54e
SL
1// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
ff7c6d11 11//! Mono Item Collection
7453a54e
SL
12//! ===========================
13//!
14//! This module is responsible for discovering all items that will contribute to
15//! to code generation of the crate. The important part here is that it not only
16//! needs to find syntax-level items (functions, structs, etc) but also all
17//! their monomorphized instantiations. Every non-generic, non-const function
18//! maps to one LLVM artifact. Every generic function can produce
19//! from zero to N artifacts, depending on the sets of type arguments it
20//! is instantiated with.
21//! This also applies to generic items from other crates: A generic definition
22//! in crate X might produce monomorphizations that are compiled into crate Y.
23//! We also have to collect these here.
24//!
ff7c6d11 25//! The following kinds of "mono items" are handled here:
7453a54e
SL
26//!
27//! - Functions
28//! - Methods
29//! - Closures
30//! - Statics
31//! - Drop glue
32//!
33//! The following things also result in LLVM artifacts, but are not collected
34//! here, since we instantiate them locally on demand when needed in a given
35//! codegen unit:
36//!
37//! - Constants
38//! - Vtables
39//! - Object Shims
40//!
41//!
42//! General Algorithm
43//! -----------------
44//! Let's define some terms first:
45//!
ff7c6d11
XL
46//! - A "mono item" is something that results in a function or global in
47//! the LLVM IR of a codegen unit. Mono items do not stand on their
48//! own, they can reference other mono items. For example, if function
49//! `foo()` calls function `bar()` then the mono item for `foo()`
50//! references the mono item for function `bar()`. In general, the
51//! definition for mono item A referencing a mono item B is that
7453a54e
SL
52//! the LLVM artifact produced for A references the LLVM artifact produced
53//! for B.
54//!
ff7c6d11
XL
55//! - Mono items and the references between them form a directed graph,
56//! where the mono items are the nodes and references form the edges.
57//! Let's call this graph the "mono item graph".
7453a54e 58//!
ff7c6d11 59//! - The mono item graph for a program contains all mono items
7453a54e
SL
60//! that are needed in order to produce the complete LLVM IR of the program.
61//!
62//! The purpose of the algorithm implemented in this module is to build the
ff7c6d11 63//! mono item graph for the current crate. It runs in two phases:
7453a54e
SL
64//!
65//! 1. Discover the roots of the graph by traversing the HIR of the crate.
66//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
67//! representation of the item corresponding to a given node, until no more
68//! new nodes are found.
69//!
70//! ### Discovering roots
71//!
ff7c6d11 72//! The roots of the mono item graph correspond to the non-generic
7453a54e
SL
73//! syntactic items in the source code. We find them by walking the HIR of the
74//! crate, and whenever we hit upon a function, method, or static item, we
ff7c6d11 75//! create a mono item consisting of the items DefId and, since we only
7453a54e
SL
76//! consider non-generic items, an empty type-substitution set.
77//!
78//! ### Finding neighbor nodes
ff7c6d11 79//! Given a mono item node, we can discover neighbors by inspecting its
7453a54e 80//! MIR. We walk the MIR and any time we hit upon something that signifies a
ff7c6d11
XL
81//! reference to another mono item, we have found a neighbor. Since the
82//! mono item we are currently at is always monomorphic, we also know the
7453a54e
SL
83//! concrete type arguments of its neighbors, and so all neighbors again will be
84//! monomorphic. The specific forms a reference to a neighboring node can take
85//! in MIR are quite diverse. Here is an overview:
86//!
87//! #### Calling Functions/Methods
ff7c6d11 88//! The most obvious form of one mono item referencing another is a
7453a54e
SL
89//! function or method call (represented by a CALL terminator in MIR). But
90//! calls are not the only thing that might introduce a reference between two
ff7c6d11 91//! function mono items, and as we will see below, they are just a
7453a54e
SL
92//! specialized of the form described next, and consequently will don't get any
93//! special treatment in the algorithm.
94//!
95//! #### Taking a reference to a function or method
96//! A function does not need to actually be called in order to be a neighbor of
97//! another function. It suffices to just take a reference in order to introduce
98//! an edge. Consider the following example:
99//!
100//! ```rust
101//! fn print_val<T: Display>(x: T) {
102//! println!("{}", x);
103//! }
104//!
105//! fn call_fn(f: &Fn(i32), x: i32) {
106//! f(x);
107//! }
108//!
109//! fn main() {
110//! let print_i32 = print_val::<i32>;
111//! call_fn(&print_i32, 0);
112//! }
113//! ```
114//! The MIR of none of these functions will contain an explicit call to
ff7c6d11 115//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
7453a54e
SL
116//! an instance of this function. Thus, whenever we encounter a function or
117//! method in operand position, we treat it as a neighbor of the current
ff7c6d11 118//! mono item. Calls are just a special case of that.
7453a54e
SL
119//!
120//! #### Closures
121//! In a way, closures are a simple case. Since every closure object needs to be
122//! constructed somewhere, we can reliably discover them by observing
123//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
124//! true for closures inlined from other crates.
125//!
126//! #### Drop glue
ff7c6d11
XL
127//! Drop glue mono items are introduced by MIR drop-statements. The
128//! generated mono item will again have drop-glue item neighbors if the
7453a54e
SL
129//! type to be dropped contains nested values that also need to be dropped. It
130//! might also have a function item neighbor for the explicit `Drop::drop`
131//! implementation of its type.
132//!
133//! #### Unsizing Casts
134//! A subtle way of introducing neighbor edges is by casting to a trait object.
135//! Since the resulting fat-pointer contains a reference to a vtable, we need to
136//! instantiate all object-save methods of the trait, as we need to store
137//! pointers to these functions even if they never get called anywhere. This can
138//! be seen as a special case of taking a function reference.
139//!
140//! #### Boxes
141//! Since `Box` expression have special compiler support, no explicit calls to
142//! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
143//! compiler will generate them. We have to observe `Rvalue::Box` expressions
144//! and Box-typed drop-statements for that purpose.
145//!
146//!
147//! Interaction with Cross-Crate Inlining
148//! -------------------------------------
149//! The binary of a crate will not only contain machine code for the items
150//! defined in the source code of that crate. It will also contain monomorphic
151//! instantiations of any extern generic functions and of functions marked with
ff7c6d11
XL
152//! `#[inline]`.
153//! The collection algorithm handles this more or less mono. If it is
154//! about to create a mono item for something with an external `DefId`,
7453a54e 155//! it will take a look if the MIR for that item is available, and if so just
9e0c209e 156//! proceed normally. If the MIR is not available, it assumes that the item is
7453a54e
SL
157//! just linked to and no node is created; which is exactly what we want, since
158//! no machine code should be generated in the current crate for such an item.
159//!
160//! Eager and Lazy Collection Mode
161//! ------------------------------
ff7c6d11 162//! Mono item collection can be performed in one of two modes:
7453a54e
SL
163//!
164//! - Lazy mode means that items will only be instantiated when actually
165//! referenced. The goal is to produce the least amount of machine code
166//! possible.
167//!
168//! - Eager mode is meant to be used in conjunction with incremental compilation
ff7c6d11 169//! where a stable set of mono items is more important than a minimal
7453a54e
SL
170//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
171//! in the crate, even of no drop call for that type exists (yet). It will
172//! also instantiate default implementations of trait methods, something that
173//! otherwise is only done on demand.
174//!
175//!
176//! Open Issues
177//! -----------
178//! Some things are not yet fully implemented in the current version of this
179//! module.
180//!
181//! ### Initializers of Constants and Statics
182//! Since no MIR is constructed yet for initializer expressions of constants and
183//! statics we cannot inspect these properly.
184//!
185//! ### Const Fns
ff7c6d11 186//! Ideally, no mono item should be generated for const fns unless there
7453a54e 187//! is a call to them that cannot be evaluated at compile time. At the moment
ff7c6d11 188//! this is not implemented however: a mono item will be produced
7453a54e
SL
189//! regardless of whether it is actually needed or not.
190
0531ce1d 191use rustc::hir::{self, TransFnAttrFlags};
476ff2be 192use rustc::hir::itemlikevisit::ItemLikeVisitor;
7453a54e 193
54a0048b
SL
194use rustc::hir::map as hir_map;
195use rustc::hir::def_id::DefId;
ea8adc8c 196use rustc::middle::const_val::ConstVal;
0531ce1d 197use rustc::mir::interpret::{Value, PrimVal, AllocId, Pointer};
ff7c6d11 198use rustc::middle::lang_items::{ExchangeMallocFnLangItem, StartFnLangItem};
ff7c6d11 199use rustc::ty::subst::{Substs, Kind};
ea8adc8c 200use rustc::ty::{self, TypeFoldable, Ty, TyCtxt};
54a0048b 201use rustc::ty::adjustment::CustomCoerceUnsized;
ff7c6d11 202use rustc::session::config;
0531ce1d 203use rustc::mir::{self, Location, Promoted};
7453a54e 204use rustc::mir::visit::Visitor as MirVisitor;
ff7c6d11 205use rustc::mir::mono::MonoItem;
0531ce1d 206use rustc::mir::interpret::GlobalId;
7453a54e 207
54a0048b 208use monomorphize::{self, Instance};
7cac9316 209use rustc::util::nodemap::{FxHashSet, FxHashMap, DefIdMap};
7453a54e 210
ff7c6d11 211use monomorphize::item::{MonoItemExt, DefPathBasedNames, InstantiationMode};
32a655c1 212
3b2f2976 213use rustc_data_structures::bitvec::BitVector;
3b2f2976 214
7453a54e 215#[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
ff7c6d11 216pub enum MonoItemCollectionMode {
7453a54e
SL
217 Eager,
218 Lazy
219}
220
ff7c6d11 221/// Maps every mono item to all mono items it references in its
a7813a04
XL
222/// body.
223pub struct InliningMap<'tcx> {
ff7c6d11 224 // Maps a source mono item to the range of mono items
3b2f2976 225 // accessed by it.
a7813a04
XL
226 // The two numbers in the tuple are the start (inclusive) and
227 // end index (exclusive) within the `targets` vecs.
ff7c6d11
XL
228 index: FxHashMap<MonoItem<'tcx>, (usize, usize)>,
229 targets: Vec<MonoItem<'tcx>>,
3b2f2976 230
ff7c6d11
XL
231 // Contains one bit per mono item in the `targets` field. That bit
232 // is true if that mono item needs to be inlined into every CGU.
3b2f2976 233 inlines: BitVector,
7453a54e
SL
234}
235
a7813a04
XL
236impl<'tcx> InliningMap<'tcx> {
237
238 fn new() -> InliningMap<'tcx> {
239 InliningMap {
476ff2be 240 index: FxHashMap(),
a7813a04 241 targets: Vec::new(),
3b2f2976 242 inlines: BitVector::new(1024),
a7813a04
XL
243 }
244 }
245
3b2f2976 246 fn record_accesses<I>(&mut self,
ff7c6d11 247 source: MonoItem<'tcx>,
3b2f2976 248 new_targets: I)
ff7c6d11 249 where I: Iterator<Item=(MonoItem<'tcx>, bool)> + ExactSizeIterator
a7813a04
XL
250 {
251 assert!(!self.index.contains_key(&source));
252
253 let start_index = self.targets.len();
3b2f2976
XL
254 let new_items_count = new_targets.len();
255 let new_items_count_total = new_items_count + self.targets.len();
256
257 self.targets.reserve(new_items_count);
258 self.inlines.grow(new_items_count_total);
259
260 for (i, (target, inline)) in new_targets.enumerate() {
261 self.targets.push(target);
262 if inline {
263 self.inlines.insert(i + start_index);
264 }
265 }
266
a7813a04
XL
267 let end_index = self.targets.len();
268 self.index.insert(source, (start_index, end_index));
269 }
270
271 // Internally iterate over all items referenced by `source` which will be
272 // made available for inlining.
ff7c6d11
XL
273 pub fn with_inlining_candidates<F>(&self, source: MonoItem<'tcx>, mut f: F)
274 where F: FnMut(MonoItem<'tcx>)
3b2f2976
XL
275 {
276 if let Some(&(start_index, end_index)) = self.index.get(&source) {
277 for (i, candidate) in self.targets[start_index .. end_index]
278 .iter()
279 .enumerate() {
280 if self.inlines.contains(start_index + i) {
281 f(*candidate);
282 }
7453a54e 283 }
a7813a04 284 }
7453a54e 285 }
3b2f2976
XL
286
287 // Internally iterate over all items and the things each accesses.
288 pub fn iter_accesses<F>(&self, mut f: F)
ff7c6d11 289 where F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>])
3b2f2976
XL
290 {
291 for (&accessor, &(start_index, end_index)) in &self.index {
292 f(accessor, &self.targets[start_index .. end_index])
293 }
294 }
7453a54e
SL
295}
296
ff7c6d11
XL
297pub fn collect_crate_mono_items<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
298 mode: MonoItemCollectionMode)
299 -> (FxHashSet<MonoItem<'tcx>>,
a7813a04 300 InliningMap<'tcx>) {
ea8adc8c
XL
301 let roots = collect_roots(tcx, mode);
302
ff7c6d11 303 debug!("Building mono item graph, beginning at roots");
ea8adc8c
XL
304 let mut visited = FxHashSet();
305 let mut recursion_depths = DefIdMap();
306 let mut inlining_map = InliningMap::new();
307
308 for root in roots {
309 collect_items_rec(tcx,
310 root,
311 &mut visited,
312 &mut recursion_depths,
313 &mut inlining_map);
314 }
7453a54e 315
ea8adc8c 316 (visited, inlining_map)
7453a54e
SL
317}
318
319// Find all non-generic items by walking the HIR. These items serve as roots to
320// start monomorphizing from.
ea8adc8c 321fn collect_roots<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ff7c6d11
XL
322 mode: MonoItemCollectionMode)
323 -> Vec<MonoItem<'tcx>> {
7453a54e
SL
324 debug!("Collecting roots");
325 let mut roots = Vec::new();
326
327 {
83c7162d 328 let entry_fn = tcx.sess.entry_fn.borrow().map(|(node_id, _, _)| {
abe05a73
XL
329 tcx.hir.local_def_id(node_id)
330 });
331
ff7c6d11
XL
332 debug!("collect_roots: entry_fn = {:?}", entry_fn);
333
7453a54e 334 let mut visitor = RootCollector {
ea8adc8c 335 tcx,
3b2f2976 336 mode,
abe05a73 337 entry_fn,
7453a54e 338 output: &mut roots,
7453a54e
SL
339 };
340
ea8adc8c 341 tcx.hir.krate().visit_all_item_likes(&mut visitor);
0531ce1d
XL
342
343 visitor.push_extra_entry_roots();
7453a54e
SL
344 }
345
041b39d2
XL
346 // We can only translate items that are instantiable - items all of
347 // whose predicates hold. Luckily, items that aren't instantiable
348 // can't actually be used, so we can just skip translating them.
ea8adc8c 349 roots.retain(|root| root.is_instantiable(tcx));
041b39d2 350
7453a54e
SL
351 roots
352}
353
ff7c6d11 354// Collect all monomorphized items reachable from `starting_point`
ea8adc8c 355fn collect_items_rec<'a, 'tcx: 'a>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ff7c6d11
XL
356 starting_point: MonoItem<'tcx>,
357 visited: &mut FxHashSet<MonoItem<'tcx>>,
a7813a04
XL
358 recursion_depths: &mut DefIdMap<usize>,
359 inlining_map: &mut InliningMap<'tcx>) {
7453a54e
SL
360 if !visited.insert(starting_point.clone()) {
361 // We've been here already, no need to search again.
362 return;
363 }
ea8adc8c 364 debug!("BEGIN collect_items_rec({})", starting_point.to_string(tcx));
7453a54e
SL
365
366 let mut neighbors = Vec::new();
367 let recursion_depth_reset;
368
369 match starting_point {
0531ce1d 370 MonoItem::Static(def_id) => {
ea8adc8c 371 let instance = Instance::mono(tcx, def_id);
32a655c1
SL
372
373 // Sanity check whether this ended up being collected accidentally
ff7c6d11 374 debug_assert!(should_monomorphize_locally(tcx, &instance));
32a655c1 375
ff7c6d11 376 let ty = instance.ty(tcx);
ea8adc8c 377 visit_drop_use(tcx, ty, true, &mut neighbors);
a7813a04 378
7453a54e 379 recursion_depth_reset = None;
a7813a04 380
0531ce1d
XL
381 let cid = GlobalId {
382 instance,
383 promoted: None,
384 };
385 let param_env = ty::ParamEnv::reveal_all();
386
387 match tcx.const_eval(param_env.and(cid)) {
388 Ok(val) => collect_const(tcx, val, instance.substs, &mut neighbors),
389 Err(err) => {
390 let span = tcx.def_span(def_id);
391 err.report(tcx, span, "static");
392 }
393 }
7453a54e 394 }
ff7c6d11 395 MonoItem::Fn(instance) => {
32a655c1 396 // Sanity check whether this ended up being collected accidentally
ff7c6d11 397 debug_assert!(should_monomorphize_locally(tcx, &instance));
32a655c1 398
7453a54e 399 // Keep track of the monomorphization recursion depth
ea8adc8c 400 recursion_depth_reset = Some(check_recursion_limit(tcx,
54a0048b 401 instance,
7453a54e 402 recursion_depths));
ea8adc8c 403 check_type_length_limit(tcx, instance);
7453a54e 404
0531ce1d 405 collect_neighbours(tcx, instance, &mut neighbors);
7453a54e 406 }
ff7c6d11 407 MonoItem::GlobalAsm(..) => {
cc61c64b
XL
408 recursion_depth_reset = None;
409 }
7453a54e
SL
410 }
411
ea8adc8c 412 record_accesses(tcx, starting_point, &neighbors[..], inlining_map);
a7813a04 413
7453a54e 414 for neighbour in neighbors {
ea8adc8c 415 collect_items_rec(tcx, neighbour, visited, recursion_depths, inlining_map);
7453a54e
SL
416 }
417
418 if let Some((def_id, depth)) = recursion_depth_reset {
419 recursion_depths.insert(def_id, depth);
420 }
421
ea8adc8c 422 debug!("END collect_items_rec({})", starting_point.to_string(tcx));
7453a54e
SL
423}
424
3b2f2976 425fn record_accesses<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ff7c6d11
XL
426 caller: MonoItem<'tcx>,
427 callees: &[MonoItem<'tcx>],
ea8adc8c 428 inlining_map: &mut InliningMap<'tcx>) {
ff7c6d11
XL
429 let is_inlining_candidate = |mono_item: &MonoItem<'tcx>| {
430 mono_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
a7813a04
XL
431 };
432
3b2f2976 433 let accesses = callees.into_iter()
ff7c6d11
XL
434 .map(|mono_item| {
435 (*mono_item, is_inlining_candidate(mono_item))
3b2f2976 436 });
a7813a04 437
3b2f2976 438 inlining_map.record_accesses(caller, accesses);
a7813a04
XL
439}
440
441fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
442 instance: Instance<'tcx>,
443 recursion_depths: &mut DefIdMap<usize>)
444 -> (DefId, usize) {
cc61c64b
XL
445 let def_id = instance.def_id();
446 let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
7453a54e
SL
447 debug!(" => recursion depth={}", recursion_depth);
448
ea8adc8c 449 let recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
cc61c64b
XL
450 // HACK: drop_in_place creates tight monomorphization loops. Give
451 // it more margin.
452 recursion_depth / 4
453 } else {
454 recursion_depth
455 };
456
7453a54e
SL
457 // Code that needs to instantiate the same function recursively
458 // more than the recursion limit is assumed to be causing an
459 // infinite expansion.
83c7162d 460 if recursion_depth > *tcx.sess.recursion_limit.get() {
54a0048b
SL
461 let error = format!("reached the recursion limit while instantiating `{}`",
462 instance);
cc61c64b 463 if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
32a655c1 464 tcx.sess.span_fatal(tcx.hir.span(node_id), &error);
7453a54e 465 } else {
a7813a04 466 tcx.sess.fatal(&error);
7453a54e
SL
467 }
468 }
469
cc61c64b 470 recursion_depths.insert(def_id, recursion_depth + 1);
7453a54e 471
cc61c64b 472 (def_id, recursion_depth)
7453a54e
SL
473}
474
476ff2be
SL
475fn check_type_length_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
476 instance: Instance<'tcx>)
477{
478 let type_length = instance.substs.types().flat_map(|ty| ty.walk()).count();
479 debug!(" => type length={}", type_length);
480
481 // Rust code can easily create exponentially-long types using only a
482 // polynomial recursion depth. Even with the default recursion
483 // depth, you can easily get cases that take >2^60 steps to run,
484 // which means that rustc basically hangs.
485 //
486 // Bail out in these cases to avoid that bad user experience.
83c7162d 487 let type_length_limit = *tcx.sess.type_length_limit.get();
476ff2be
SL
488 if type_length > type_length_limit {
489 // The instance name is already known to be too long for rustc. Use
490 // `{:.64}` to avoid blasting the user's terminal with thousands of
491 // lines of type-name.
492 let instance_name = instance.to_string();
493 let msg = format!("reached the type-length limit while instantiating `{:.64}...`",
494 instance_name);
cc61c64b 495 let mut diag = if let Some(node_id) = tcx.hir.as_local_node_id(instance.def_id()) {
32a655c1 496 tcx.sess.struct_span_fatal(tcx.hir.span(node_id), &msg)
476ff2be
SL
497 } else {
498 tcx.sess.struct_fatal(&msg)
499 };
500
501 diag.note(&format!(
502 "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
503 type_length_limit*2));
504 diag.emit();
505 tcx.sess.abort_if_errors();
506 }
507}
508
7453a54e 509struct MirNeighborCollector<'a, 'tcx: 'a> {
ea8adc8c 510 tcx: TyCtxt<'a, 'tcx, 'tcx>,
7453a54e 511 mir: &'a mir::Mir<'tcx>,
ff7c6d11 512 output: &'a mut Vec<MonoItem<'tcx>>,
3b2f2976 513 param_substs: &'tcx Substs<'tcx>,
7453a54e
SL
514}
515
516impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
517
9e0c209e 518 fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
7453a54e
SL
519 debug!("visiting rvalue {:?}", *rvalue);
520
521 match *rvalue {
7453a54e
SL
522 // When doing an cast from a regular pointer to a fat pointer, we
523 // have to instantiate all methods of the trait being cast to, so we
524 // can build the appropriate vtable.
525 mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
0531ce1d
XL
526 let target_ty = self.tcx.subst_and_normalize_erasing_regions(
527 self.param_substs,
528 ty::ParamEnv::reveal_all(),
529 &target_ty,
530 );
ea8adc8c 531 let source_ty = operand.ty(self.mir, self.tcx);
0531ce1d
XL
532 let source_ty = self.tcx.subst_and_normalize_erasing_regions(
533 self.param_substs,
534 ty::ParamEnv::reveal_all(),
535 &source_ty,
536 );
ea8adc8c 537 let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.tcx,
7453a54e
SL
538 source_ty,
539 target_ty);
540 // This could also be a different Unsize instruction, like
541 // from a fixed sized array to a slice. But we are only
542 // interested in things that produce a vtable.
543 if target_ty.is_trait() && !source_ty.is_trait() {
ff7c6d11
XL
544 create_mono_items_for_vtable_methods(self.tcx,
545 target_ty,
546 source_ty,
547 self.output);
7453a54e
SL
548 }
549 }
cc61c64b 550 mir::Rvalue::Cast(mir::CastKind::ReifyFnPointer, ref operand, _) => {
ea8adc8c 551 let fn_ty = operand.ty(self.mir, self.tcx);
0531ce1d
XL
552 let fn_ty = self.tcx.subst_and_normalize_erasing_regions(
553 self.param_substs,
554 ty::ParamEnv::reveal_all(),
555 &fn_ty,
556 );
ea8adc8c 557 visit_fn_use(self.tcx, fn_ty, false, &mut self.output);
cc61c64b 558 }
8bb4bdeb 559 mir::Rvalue::Cast(mir::CastKind::ClosureFnPointer, ref operand, _) => {
ea8adc8c 560 let source_ty = operand.ty(self.mir, self.tcx);
0531ce1d
XL
561 let source_ty = self.tcx.subst_and_normalize_erasing_regions(
562 self.param_substs,
563 ty::ParamEnv::reveal_all(),
564 &source_ty,
565 );
8bb4bdeb
XL
566 match source_ty.sty {
567 ty::TyClosure(def_id, substs) => {
cc61c64b 568 let instance = monomorphize::resolve_closure(
ea8adc8c 569 self.tcx, def_id, substs, ty::ClosureKind::FnOnce);
83c7162d
XL
570 if should_monomorphize_locally(self.tcx, &instance) {
571 self.output.push(create_fn_mono_item(instance));
572 }
8bb4bdeb
XL
573 }
574 _ => bug!(),
575 }
576 }
7cac9316 577 mir::Rvalue::NullaryOp(mir::NullOp::Box, _) => {
ea8adc8c 578 let tcx = self.tcx;
cc61c64b 579 let exchange_malloc_fn_def_id = tcx
ea8adc8c 580 .lang_items()
cc61c64b 581 .require(ExchangeMallocFnLangItem)
ea8adc8c 582 .unwrap_or_else(|e| tcx.sess.fatal(&e));
cc61c64b 583 let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
ff7c6d11
XL
584 if should_monomorphize_locally(tcx, &instance) {
585 self.output.push(create_fn_mono_item(instance));
32a655c1 586 }
7453a54e
SL
587 }
588 _ => { /* not interesting */ }
589 }
590
9e0c209e 591 self.super_rvalue(rvalue, location);
7453a54e
SL
592 }
593
ea8adc8c
XL
594 fn visit_const(&mut self, constant: &&'tcx ty::Const<'tcx>, location: Location) {
595 debug!("visiting const {:?} @ {:?}", *constant, location);
596
0531ce1d 597 collect_const(self.tcx, constant, self.param_substs, self.output);
7453a54e 598
ea8adc8c 599 self.super_const(constant);
a7813a04
XL
600 }
601
a7813a04
XL
602 fn visit_terminator_kind(&mut self,
603 block: mir::BasicBlock,
9e0c209e
SL
604 kind: &mir::TerminatorKind<'tcx>,
605 location: Location) {
7cac9316
XL
606 debug!("visiting terminator {:?} @ {:?}", kind, location);
607
ea8adc8c 608 let tcx = self.tcx;
a7813a04 609 match *kind {
cc61c64b
XL
610 mir::TerminatorKind::Call { ref func, .. } => {
611 let callee_ty = func.ty(self.mir, tcx);
0531ce1d
XL
612 let callee_ty = tcx.subst_and_normalize_erasing_regions(
613 self.param_substs,
614 ty::ParamEnv::reveal_all(),
615 &callee_ty,
616 );
617 visit_fn_use(self.tcx, callee_ty, true, &mut self.output);
a7813a04 618 }
cc61c64b
XL
619 mir::TerminatorKind::Drop { ref location, .. } |
620 mir::TerminatorKind::DropAndReplace { ref location, .. } => {
ea8adc8c
XL
621 let ty = location.ty(self.mir, self.tcx)
622 .to_ty(self.tcx);
0531ce1d
XL
623 let ty = tcx.subst_and_normalize_erasing_regions(
624 self.param_substs,
625 ty::ParamEnv::reveal_all(),
626 &ty,
627 );
ea8adc8c 628 visit_drop_use(self.tcx, ty, true, self.output);
cc61c64b
XL
629 }
630 mir::TerminatorKind::Goto { .. } |
631 mir::TerminatorKind::SwitchInt { .. } |
632 mir::TerminatorKind::Resume |
ff7c6d11 633 mir::TerminatorKind::Abort |
cc61c64b
XL
634 mir::TerminatorKind::Return |
635 mir::TerminatorKind::Unreachable |
636 mir::TerminatorKind::Assert { .. } => {}
ea8adc8c 637 mir::TerminatorKind::GeneratorDrop |
abe05a73 638 mir::TerminatorKind::Yield { .. } |
2c00a5a8
XL
639 mir::TerminatorKind::FalseEdges { .. } |
640 mir::TerminatorKind::FalseUnwind { .. } => bug!(),
a7813a04
XL
641 }
642
9e0c209e 643 self.super_terminator_kind(block, kind, location);
7453a54e 644 }
3b2f2976
XL
645
646 fn visit_static(&mut self,
647 static_: &mir::Static<'tcx>,
ff7c6d11 648 context: mir::visit::PlaceContext<'tcx>,
3b2f2976
XL
649 location: Location) {
650 debug!("visiting static {:?} @ {:?}", static_.def_id, location);
651
ea8adc8c 652 let tcx = self.tcx;
3b2f2976 653 let instance = Instance::mono(tcx, static_.def_id);
ff7c6d11 654 if should_monomorphize_locally(tcx, &instance) {
0531ce1d 655 self.output.push(MonoItem::Static(static_.def_id));
3b2f2976
XL
656 }
657
658 self.super_static(static_, context, location);
659 }
7453a54e
SL
660}
661
ea8adc8c
XL
662fn visit_drop_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
663 ty: Ty<'tcx>,
cc61c64b 664 is_direct_call: bool,
ff7c6d11 665 output: &mut Vec<MonoItem<'tcx>>)
cc61c64b 666{
ea8adc8c
XL
667 let instance = monomorphize::resolve_drop_in_place(tcx, ty);
668 visit_instance_use(tcx, instance, is_direct_call, output);
7453a54e
SL
669}
670
ea8adc8c
XL
671fn visit_fn_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
672 ty: Ty<'tcx>,
cc61c64b 673 is_direct_call: bool,
ff7c6d11 674 output: &mut Vec<MonoItem<'tcx>>)
cc61c64b 675{
041b39d2 676 if let ty::TyFnDef(def_id, substs) = ty.sty {
ea8adc8c 677 let instance = ty::Instance::resolve(tcx,
0531ce1d 678 ty::ParamEnv::reveal_all(),
ea8adc8c
XL
679 def_id,
680 substs).unwrap();
681 visit_instance_use(tcx, instance, is_direct_call, output);
7453a54e 682 }
cc61c64b 683}
7453a54e 684
ea8adc8c 685fn visit_instance_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
cc61c64b
XL
686 instance: ty::Instance<'tcx>,
687 is_direct_call: bool,
ff7c6d11 688 output: &mut Vec<MonoItem<'tcx>>)
cc61c64b
XL
689{
690 debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
ff7c6d11 691 if !should_monomorphize_locally(tcx, &instance) {
cc61c64b 692 return
7453a54e
SL
693 }
694
cc61c64b
XL
695 match instance.def {
696 ty::InstanceDef::Intrinsic(def_id) => {
697 if !is_direct_call {
698 bug!("intrinsic {:?} being reified", def_id);
32a655c1
SL
699 }
700 }
cc61c64b
XL
701 ty::InstanceDef::Virtual(..) |
702 ty::InstanceDef::DropGlue(_, None) => {
703 // don't need to emit shim if we are calling directly.
704 if !is_direct_call {
ff7c6d11 705 output.push(create_fn_mono_item(instance));
7453a54e
SL
706 }
707 }
7cac9316 708 ty::InstanceDef::DropGlue(_, Some(_)) => {
ff7c6d11 709 output.push(create_fn_mono_item(instance));
7453a54e 710 }
cc61c64b
XL
711 ty::InstanceDef::ClosureOnceShim { .. } |
712 ty::InstanceDef::Item(..) |
3b2f2976
XL
713 ty::InstanceDef::FnPtrShim(..) |
714 ty::InstanceDef::CloneShim(..) => {
ff7c6d11 715 output.push(create_fn_mono_item(instance));
32a655c1 716 }
7453a54e
SL
717 }
718}
719
cc61c64b
XL
720// Returns true if we should translate an instance in the local crate.
721// Returns false if we can just link to the upstream crate and therefore don't
ff7c6d11
XL
722// need a mono item.
723fn should_monomorphize_locally<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &Instance<'tcx>)
724 -> bool {
cc61c64b
XL
725 let def_id = match instance.def {
726 ty::InstanceDef::Item(def_id) => def_id,
727 ty::InstanceDef::ClosureOnceShim { .. } |
728 ty::InstanceDef::Virtual(..) |
729 ty::InstanceDef::FnPtrShim(..) |
730 ty::InstanceDef::DropGlue(..) |
3b2f2976
XL
731 ty::InstanceDef::Intrinsic(_) |
732 ty::InstanceDef::CloneShim(..) => return true
cc61c64b 733 };
83c7162d
XL
734
735 return match tcx.hir.get_if_local(def_id) {
cc61c64b
XL
736 Some(hir_map::NodeForeignItem(..)) => {
737 false // foreign items are linked against, not translated.
738 }
739 Some(_) => true,
740 None => {
0531ce1d 741 if tcx.is_reachable_non_generic(def_id) ||
83c7162d
XL
742 tcx.is_foreign_item(def_id) ||
743 is_available_upstream_generic(tcx, def_id, instance.substs)
cc61c64b
XL
744 {
745 // We can link to the item in question, no instance needed
746 // in this crate
747 false
32a655c1 748 } else {
7cac9316 749 if !tcx.is_mir_available(def_id) {
ff7c6d11 750 bug!("Cannot create local mono-item for {:?}", def_id)
cc61c64b
XL
751 }
752 true
32a655c1
SL
753 }
754 }
83c7162d
XL
755 };
756
757 fn is_available_upstream_generic<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
758 def_id: DefId,
759 substs: &'tcx Substs<'tcx>)
760 -> bool {
761 debug_assert!(!def_id.is_local());
762
763 // If we are not in share generics mode, we don't link to upstream
764 // monomorphizations but always instantiate our own internal versions
765 // instead.
766 if !tcx.share_generics() {
767 return false
768 }
769
770 // If this instance has no type parameters, it cannot be a shared
771 // monomorphization. Non-generic instances are already handled above
772 // by `is_reachable_non_generic()`
773 if substs.types().next().is_none() {
774 return false
775 }
776
777 // Take a look at the available monomorphizations listed in the metadata
778 // of upstream crates.
779 tcx.upstream_monomorphizations_for(def_id)
780 .map(|set| set.contains_key(substs))
781 .unwrap_or(false)
7453a54e
SL
782 }
783}
784
785/// For given pair of source and target type that occur in an unsizing coercion,
786/// this function finds the pair of types that determines the vtable linking
787/// them.
788///
789/// For example, the source type might be `&SomeStruct` and the target type\
790/// might be `&SomeTrait` in a cast like:
791///
792/// let src: &SomeStruct = ...;
793/// let target = src as &SomeTrait;
794///
795/// Then the output of this function would be (SomeStruct, SomeTrait) since for
796/// constructing the `target` fat-pointer we need the vtable for that pair.
797///
798/// Things can get more complicated though because there's also the case where
799/// the unsized type occurs as a field:
800///
801/// ```rust
802/// struct ComplexStruct<T: ?Sized> {
803/// a: u32,
804/// b: f64,
805/// c: T
806/// }
807/// ```
808///
809/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
810/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
811/// for the pair of `T` (which is a trait) and the concrete type that `T` was
812/// originally coerced from:
813///
814/// let src: &ComplexStruct<SomeStruct> = ...;
815/// let target = src as &ComplexStruct<SomeTrait>;
816///
817/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
818/// `(SomeStruct, SomeTrait)`.
819///
820/// Finally, there is also the case of custom unsizing coercions, e.g. for
821/// smart pointers such as `Rc` and `Arc`.
ea8adc8c
XL
822fn find_vtable_types_for_unsizing<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
823 source_ty: Ty<'tcx>,
824 target_ty: Ty<'tcx>)
825 -> (Ty<'tcx>, Ty<'tcx>) {
826 let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
ff7c6d11
XL
827 let type_has_metadata = |ty: Ty<'tcx>| -> bool {
828 use syntax_pos::DUMMY_SP;
0531ce1d 829 if ty.is_sized(tcx.at(DUMMY_SP), ty::ParamEnv::reveal_all()) {
ff7c6d11
XL
830 return false;
831 }
832 let tail = tcx.struct_tail(ty);
833 match tail.sty {
834 ty::TyForeign(..) => false,
835 ty::TyStr | ty::TySlice(..) | ty::TyDynamic(..) => true,
836 _ => bug!("unexpected unsized tail: {:?}", tail.sty),
837 }
838 };
839 if type_has_metadata(inner_source) {
32a655c1
SL
840 (inner_source, inner_target)
841 } else {
ea8adc8c 842 tcx.struct_lockstep_tails(inner_source, inner_target)
32a655c1
SL
843 }
844 };
ff7c6d11 845
7453a54e 846 match (&source_ty.sty, &target_ty.sty) {
7453a54e
SL
847 (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
848 &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
849 (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
850 &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
851 (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
852 &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
32a655c1
SL
853 ptr_vtable(a, b)
854 }
855 (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
856 ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
7453a54e
SL
857 }
858
9e0c209e
SL
859 (&ty::TyAdt(source_adt_def, source_substs),
860 &ty::TyAdt(target_adt_def, target_substs)) => {
7453a54e
SL
861 assert_eq!(source_adt_def, target_adt_def);
862
cc61c64b 863 let kind =
ea8adc8c 864 monomorphize::custom_coerce_unsize_info(tcx, source_ty, target_ty);
7453a54e
SL
865
866 let coerce_index = match kind {
867 CustomCoerceUnsized::Struct(i) => i
868 };
869
2c00a5a8
XL
870 let source_fields = &source_adt_def.non_enum_variant().fields;
871 let target_fields = &target_adt_def.non_enum_variant().fields;
7453a54e
SL
872
873 assert!(coerce_index < source_fields.len() &&
874 source_fields.len() == target_fields.len());
875
ea8adc8c
XL
876 find_vtable_types_for_unsizing(tcx,
877 source_fields[coerce_index].ty(tcx,
7453a54e 878 source_substs),
ea8adc8c 879 target_fields[coerce_index].ty(tcx,
7453a54e
SL
880 target_substs))
881 }
54a0048b
SL
882 _ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
883 source_ty,
884 target_ty)
7453a54e
SL
885 }
886}
887
ff7c6d11
XL
888fn create_fn_mono_item<'a, 'tcx>(instance: Instance<'tcx>) -> MonoItem<'tcx> {
889 debug!("create_fn_mono_item(instance={})", instance);
890 MonoItem::Fn(instance)
7453a54e
SL
891}
892
ff7c6d11 893/// Creates a `MonoItem` for each method that is referenced by the vtable for
7453a54e 894/// the given trait/impl pair.
ff7c6d11
XL
895fn create_mono_items_for_vtable_methods<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
896 trait_ty: Ty<'tcx>,
897 impl_ty: Ty<'tcx>,
898 output: &mut Vec<MonoItem<'tcx>>) {
8bb4bdeb
XL
899 assert!(!trait_ty.needs_subst() && !trait_ty.has_escaping_regions() &&
900 !impl_ty.needs_subst() && !impl_ty.has_escaping_regions());
7453a54e 901
476ff2be
SL
902 if let ty::TyDynamic(ref trait_ty, ..) = trait_ty.sty {
903 if let Some(principal) = trait_ty.principal() {
ea8adc8c 904 let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
8bb4bdeb
XL
905 assert!(!poly_trait_ref.has_escaping_regions());
906
476ff2be 907 // Walk all methods of the trait, including those of its supertraits
abe05a73
XL
908 let methods = tcx.vtable_methods(poly_trait_ref);
909 let methods = methods.iter().cloned().filter_map(|method| method)
ea8adc8c
XL
910 .map(|(def_id, substs)| ty::Instance::resolve(
911 tcx,
0531ce1d 912 ty::ParamEnv::reveal_all(),
ea8adc8c
XL
913 def_id,
914 substs).unwrap())
ff7c6d11
XL
915 .filter(|&instance| should_monomorphize_locally(tcx, &instance))
916 .map(|instance| create_fn_mono_item(instance));
476ff2be
SL
917 output.extend(methods);
918 }
9e0c209e 919 // Also add the destructor
ea8adc8c 920 visit_drop_use(tcx, impl_ty, false, output);
7453a54e
SL
921 }
922}
923
924//=-----------------------------------------------------------------------------
925// Root Collection
926//=-----------------------------------------------------------------------------
927
928struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
ea8adc8c 929 tcx: TyCtxt<'a, 'tcx, 'tcx>,
ff7c6d11
XL
930 mode: MonoItemCollectionMode,
931 output: &'b mut Vec<MonoItem<'tcx>>,
abe05a73 932 entry_fn: Option<DefId>,
7453a54e
SL
933}
934
476ff2be 935impl<'b, 'a, 'v> ItemLikeVisitor<'v> for RootCollector<'b, 'a, 'v> {
7453a54e 936 fn visit_item(&mut self, item: &'v hir::Item) {
7453a54e
SL
937 match item.node {
938 hir::ItemExternCrate(..) |
939 hir::ItemUse(..) |
940 hir::ItemForeignMod(..) |
941 hir::ItemTy(..) |
7453a54e 942 hir::ItemTrait(..) |
ff7c6d11 943 hir::ItemTraitAlias(..) |
7453a54e
SL
944 hir::ItemMod(..) => {
945 // Nothing to do, just keep recursing...
946 }
947
948 hir::ItemImpl(..) => {
ff7c6d11
XL
949 if self.mode == MonoItemCollectionMode::Eager {
950 create_mono_items_for_default_impls(self.tcx,
951 item,
952 self.output);
7453a54e
SL
953 }
954 }
955
9e0c209e
SL
956 hir::ItemEnum(_, ref generics) |
957 hir::ItemStruct(_, ref generics) |
958 hir::ItemUnion(_, ref generics) => {
ff7c6d11
XL
959 if generics.params.is_empty() {
960 if self.mode == MonoItemCollectionMode::Eager {
ea8adc8c 961 let def_id = self.tcx.hir.local_def_id(item.id);
7453a54e 962 debug!("RootCollector: ADT drop-glue for {}",
ea8adc8c 963 def_id_to_string(self.tcx, def_id));
7453a54e 964
ff7c6d11 965 let ty = Instance::new(def_id, Substs::empty()).ty(self.tcx);
ea8adc8c 966 visit_drop_use(self.tcx, ty, true, self.output);
7453a54e
SL
967 }
968 }
969 }
cc61c64b
XL
970 hir::ItemGlobalAsm(..) => {
971 debug!("RootCollector: ItemGlobalAsm({})",
ea8adc8c
XL
972 def_id_to_string(self.tcx,
973 self.tcx.hir.local_def_id(item.id)));
ff7c6d11 974 self.output.push(MonoItem::GlobalAsm(item.id));
cc61c64b 975 }
7453a54e 976 hir::ItemStatic(..) => {
0531ce1d 977 let def_id = self.tcx.hir.local_def_id(item.id);
7453a54e 978 debug!("RootCollector: ItemStatic({})",
0531ce1d
XL
979 def_id_to_string(self.tcx, def_id));
980 self.output.push(MonoItem::Static(def_id));
7453a54e 981 }
5bcae85e 982 hir::ItemConst(..) => {
ff7c6d11 983 // const items only generate mono items if they are
5bcae85e
SL
984 // actually used somewhere. Just declaring them is insufficient.
985 }
3b2f2976 986 hir::ItemFn(..) => {
ff7c6d11
XL
987 let def_id = self.tcx.hir.local_def_id(item.id);
988 self.push_if_root(def_id);
7453a54e
SL
989 }
990 }
7453a54e
SL
991 }
992
32a655c1
SL
993 fn visit_trait_item(&mut self, _: &'v hir::TraitItem) {
994 // Even if there's a default body with no explicit generics,
995 // it's still generic over some `Self: Trait`, so not a root.
996 }
997
7453a54e
SL
998 fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
999 match ii.node {
3b2f2976 1000 hir::ImplItemKind::Method(hir::MethodSig { .. }, _) => {
ff7c6d11
XL
1001 let def_id = self.tcx.hir.local_def_id(ii.id);
1002 self.push_if_root(def_id);
7453a54e
SL
1003 }
1004 _ => { /* Nothing to do here */ }
1005 }
7453a54e
SL
1006 }
1007}
1008
abe05a73
XL
1009impl<'b, 'a, 'v> RootCollector<'b, 'a, 'v> {
1010 fn is_root(&self, def_id: DefId) -> bool {
1011 !item_has_type_parameters(self.tcx, def_id) && match self.mode {
ff7c6d11 1012 MonoItemCollectionMode::Eager => {
abe05a73
XL
1013 true
1014 }
ff7c6d11 1015 MonoItemCollectionMode::Lazy => {
abe05a73 1016 self.entry_fn == Some(def_id) ||
0531ce1d
XL
1017 self.tcx.is_reachable_non_generic(def_id) ||
1018 self.tcx.trans_fn_attrs(def_id).flags.contains(
1019 TransFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
abe05a73
XL
1020 }
1021 }
1022 }
ff7c6d11
XL
1023
1024 /// If `def_id` represents a root, then push it onto the list of
1025 /// outputs. (Note that all roots must be monomorphic.)
1026 fn push_if_root(&mut self, def_id: DefId) {
1027 if self.is_root(def_id) {
1028 debug!("RootCollector::push_if_root: found root def_id={:?}", def_id);
1029
1030 let instance = Instance::mono(self.tcx, def_id);
1031 self.output.push(create_fn_mono_item(instance));
ff7c6d11
XL
1032 }
1033 }
1034
1035 /// As a special case, when/if we encounter the
1036 /// `main()` function, we also have to generate a
1037 /// monomorphized copy of the start lang item based on
1038 /// the return type of `main`. This is not needed when
1039 /// the user writes their own `start` manually.
0531ce1d 1040 fn push_extra_entry_roots(&mut self) {
83c7162d 1041 if self.tcx.sess.entry_fn.get().map(|e| e.2) != Some(config::EntryMain) {
0531ce1d 1042 return
ff7c6d11
XL
1043 }
1044
0531ce1d
XL
1045 let main_def_id = if let Some(def_id) = self.entry_fn {
1046 def_id
1047 } else {
1048 return
1049 };
1050
ff7c6d11
XL
1051 let start_def_id = match self.tcx.lang_items().require(StartFnLangItem) {
1052 Ok(s) => s,
1053 Err(err) => self.tcx.sess.fatal(&err),
1054 };
0531ce1d 1055 let main_ret_ty = self.tcx.fn_sig(main_def_id).output();
ff7c6d11
XL
1056
1057 // Given that `main()` has no arguments,
1058 // then its return type cannot have
1059 // late-bound regions, since late-bound
1060 // regions must appear in the argument
1061 // listing.
0531ce1d
XL
1062 let main_ret_ty = self.tcx.erase_regions(
1063 &main_ret_ty.no_late_bound_regions().unwrap(),
1064 );
ff7c6d11
XL
1065
1066 let start_instance = Instance::resolve(
1067 self.tcx,
0531ce1d 1068 ty::ParamEnv::reveal_all(),
ff7c6d11 1069 start_def_id,
0531ce1d 1070 self.tcx.intern_substs(&[Kind::from(main_ret_ty)])
ff7c6d11
XL
1071 ).unwrap();
1072
1073 self.output.push(create_fn_mono_item(start_instance));
1074 }
abe05a73
XL
1075}
1076
3b2f2976
XL
1077fn item_has_type_parameters<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool {
1078 let generics = tcx.generics_of(def_id);
1079 generics.parent_types as usize + generics.types.len() > 0
1080}
1081
ff7c6d11
XL
1082fn create_mono_items_for_default_impls<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1083 item: &'tcx hir::Item,
1084 output: &mut Vec<MonoItem<'tcx>>) {
7453a54e
SL
1085 match item.node {
1086 hir::ItemImpl(_,
7cac9316 1087 _,
7453a54e
SL
1088 _,
1089 ref generics,
9e0c209e 1090 ..,
476ff2be 1091 ref impl_item_refs) => {
7453a54e
SL
1092 if generics.is_type_parameterized() {
1093 return
1094 }
1095
32a655c1 1096 let impl_def_id = tcx.hir.local_def_id(item.id);
7453a54e 1097
ff7c6d11 1098 debug!("create_mono_items_for_default_impls(item={})",
a7813a04 1099 def_id_to_string(tcx, impl_def_id));
7453a54e
SL
1100
1101 if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
476ff2be
SL
1102 let overridden_methods: FxHashSet<_> =
1103 impl_item_refs.iter()
1104 .map(|iiref| iiref.name)
1105 .collect();
9e0c209e
SL
1106 for method in tcx.provided_trait_methods(trait_ref.def_id) {
1107 if overridden_methods.contains(&method.name) {
7453a54e
SL
1108 continue;
1109 }
1110
7cac9316 1111 if !tcx.generics_of(method.def_id).types.is_empty() {
7453a54e
SL
1112 continue;
1113 }
1114
0531ce1d
XL
1115 let substs = Substs::for_item(tcx,
1116 method.def_id,
1117 |_, _| tcx.types.re_erased,
1118 |def, _| trait_ref.substs.type_for_def(def));
1119
ea8adc8c 1120 let instance = ty::Instance::resolve(tcx,
0531ce1d 1121 ty::ParamEnv::reveal_all(),
ea8adc8c 1122 method.def_id,
0531ce1d 1123 substs).unwrap();
cc61c64b 1124
ff7c6d11
XL
1125 let mono_item = create_fn_mono_item(instance);
1126 if mono_item.is_instantiable(tcx)
1127 && should_monomorphize_locally(tcx, &instance) {
1128 output.push(mono_item);
7453a54e
SL
1129 }
1130 }
1131 }
1132 }
1133 _ => {
54a0048b 1134 bug!()
7453a54e
SL
1135 }
1136 }
1137}
1138
0531ce1d
XL
1139/// Scan the miri alloc in order to find function calls, closures, and drop-glue
1140fn collect_miri<'a, 'tcx>(
1141 tcx: TyCtxt<'a, 'tcx, 'tcx>,
1142 alloc_id: AllocId,
1143 output: &mut Vec<MonoItem<'tcx>>,
1144) {
1145 if let Some(did) = tcx.interpret_interner.get_static(alloc_id) {
1146 let instance = Instance::mono(tcx, did);
1147 if should_monomorphize_locally(tcx, &instance) {
1148 trace!("collecting static {:?}", did);
1149 output.push(MonoItem::Static(did));
1150 }
1151 } else if let Some(alloc) = tcx.interpret_interner.get_alloc(alloc_id) {
1152 trace!("collecting {:?} with {:#?}", alloc_id, alloc);
1153 for &inner in alloc.relocations.values() {
1154 collect_miri(tcx, inner, output);
1155 }
1156 } else if let Some(fn_instance) = tcx.interpret_interner.get_fn(alloc_id) {
1157 if should_monomorphize_locally(tcx, &fn_instance) {
1158 trace!("collecting {:?} with {:#?}", alloc_id, fn_instance);
1159 output.push(create_fn_mono_item(fn_instance));
1160 }
1161 } else {
1162 bug!("alloc id without corresponding allocation: {}", alloc_id);
1163 }
1164}
1165
32a655c1 1166/// Scan the MIR in order to find function calls, closures, and drop-glue
ea8adc8c 1167fn collect_neighbours<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
32a655c1 1168 instance: Instance<'tcx>,
ff7c6d11 1169 output: &mut Vec<MonoItem<'tcx>>)
5bcae85e 1170{
ea8adc8c 1171 let mir = tcx.instance_mir(instance.def);
5bcae85e 1172
0531ce1d 1173 MirNeighborCollector {
ea8adc8c 1174 tcx,
5bcae85e 1175 mir: &mir,
3b2f2976
XL
1176 output,
1177 param_substs: instance.substs,
0531ce1d
XL
1178 }.visit_mir(&mir);
1179 let param_env = ty::ParamEnv::reveal_all();
1180 for i in 0..mir.promoted.len() {
1181 use rustc_data_structures::indexed_vec::Idx;
1182 let cid = GlobalId {
1183 instance,
1184 promoted: Some(Promoted::new(i)),
1185 };
1186 match tcx.const_eval(param_env.and(cid)) {
1187 Ok(val) => collect_const(tcx, val, instance.substs, output),
1188 Err(_) => {},
1189 }
7453a54e
SL
1190 }
1191}
476ff2be
SL
1192
1193fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1194 def_id: DefId)
1195 -> String {
1196 let mut output = String::new();
1197 let printer = DefPathBasedNames::new(tcx, false, false);
1198 printer.push_def_path(def_id, &mut output);
1199 output
1200}
0531ce1d
XL
1201
1202fn collect_const<'a, 'tcx>(
1203 tcx: TyCtxt<'a, 'tcx, 'tcx>,
1204 constant: &ty::Const<'tcx>,
1205 param_substs: &'tcx Substs<'tcx>,
1206 output: &mut Vec<MonoItem<'tcx>>,
1207) {
1208 debug!("visiting const {:?}", *constant);
1209
1210 let val = match constant.val {
1211 ConstVal::Unevaluated(def_id, substs) => {
1212 let param_env = ty::ParamEnv::reveal_all();
1213 let substs = tcx.subst_and_normalize_erasing_regions(
1214 param_substs,
1215 param_env,
1216 &substs,
1217 );
1218 let instance = ty::Instance::resolve(tcx,
1219 param_env,
1220 def_id,
1221 substs).unwrap();
1222
1223 let cid = GlobalId {
1224 instance,
1225 promoted: None,
1226 };
1227 match tcx.const_eval(param_env.and(cid)) {
1228 Ok(val) => val.val,
1229 Err(err) => {
1230 let span = tcx.def_span(def_id);
1231 err.report(tcx, span, "constant");
1232 return;
1233 }
1234 }
1235 },
1236 _ => constant.val,
1237 };
1238 match val {
1239 ConstVal::Unevaluated(..) => bug!("const eval yielded unevaluated const"),
1240 ConstVal::Value(Value::ByValPair(PrimVal::Ptr(a), PrimVal::Ptr(b))) => {
1241 collect_miri(tcx, a.alloc_id, output);
1242 collect_miri(tcx, b.alloc_id, output);
1243 }
1244 ConstVal::Value(Value::ByValPair(_, PrimVal::Ptr(ptr))) |
1245 ConstVal::Value(Value::ByValPair(PrimVal::Ptr(ptr), _)) |
1246 ConstVal::Value(Value::ByVal(PrimVal::Ptr(ptr))) =>
1247 collect_miri(tcx, ptr.alloc_id, output),
1248 ConstVal::Value(Value::ByRef(Pointer { primval: PrimVal::Ptr(ptr) }, _)) => {
1249 // by ref should only collect the inner allocation, not the value itself
1250 let alloc = tcx
1251 .interpret_interner
1252 .get_alloc(ptr.alloc_id)
1253 .expect("ByRef to extern static is not allowed");
1254 for &inner in alloc.relocations.values() {
1255 collect_miri(tcx, inner, output);
1256 }
1257 }
1258 _ => {},
1259 }
1260}