]> git.proxmox.com Git - rustc.git/blame - src/librustc_passes/region.rs
New upstream version 1.43.0+dfsg1
[rustc.git] / src / librustc_passes / region.rs
CommitLineData
dfeec247
XL
1//! This file builds up the `ScopeTree`, which describes
2//! the parent links in the region hierarchy.
3//!
4//! For more information about how MIR-based region-checking works,
5//! see the [rustc guide].
6//!
74b04a01 7//! [rustc guide]: https://rust-lang.github.io/rustc-guide/borrow_check.html
dfeec247
XL
8
9use rustc::hir::map::Map;
10use rustc::middle::region::*;
11use rustc::ty::query::Providers;
12use rustc::ty::TyCtxt;
74b04a01 13use rustc_ast::walk_list;
dfeec247
XL
14use rustc_data_structures::fx::FxHashSet;
15use rustc_hir as hir;
16use rustc_hir::def_id::DefId;
17use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
18use rustc_hir::{Arm, Block, Expr, Local, Node, Pat, PatKind, Stmt};
19use rustc_index::vec::Idx;
20use rustc_span::source_map;
21use rustc_span::Span;
dfeec247
XL
22
23use std::mem;
24
25#[derive(Debug, Copy, Clone)]
26pub struct Context {
27 /// The root of the current region tree. This is typically the id
28 /// of the innermost fn body. Each fn forms its own disjoint tree
29 /// in the region hierarchy. These fn bodies are themselves
30 /// arranged into a tree. See the "Modeling closures" section of
31 /// the README in `infer::region_constraints` for more
32 /// details.
33 root_id: Option<hir::ItemLocalId>,
34
35 /// The scope that contains any new variables declared, plus its depth in
36 /// the scope tree.
37 var_parent: Option<(Scope, ScopeDepth)>,
38
39 /// Region parent of expressions, etc., plus its depth in the scope tree.
40 parent: Option<(Scope, ScopeDepth)>,
41}
42
43struct RegionResolutionVisitor<'tcx> {
44 tcx: TyCtxt<'tcx>,
45
46 // The number of expressions and patterns visited in the current body.
47 expr_and_pat_count: usize,
48 // When this is `true`, we record the `Scopes` we encounter
49 // when processing a Yield expression. This allows us to fix
50 // up their indices.
51 pessimistic_yield: bool,
52 // Stores scopes when `pessimistic_yield` is `true`.
53 fixup_scopes: Vec<Scope>,
54 // The generated scope tree.
55 scope_tree: ScopeTree,
56
57 cx: Context,
58
59 /// `terminating_scopes` is a set containing the ids of each
60 /// statement, or conditional/repeating expression. These scopes
61 /// are calling "terminating scopes" because, when attempting to
62 /// find the scope of a temporary, by default we search up the
63 /// enclosing scopes until we encounter the terminating scope. A
64 /// conditional/repeating expression is one which is not
65 /// guaranteed to execute exactly once upon entering the parent
66 /// scope. This could be because the expression only executes
67 /// conditionally, such as the expression `b` in `a && b`, or
68 /// because the expression may execute many times, such as a loop
69 /// body. The reason that we distinguish such expressions is that,
70 /// upon exiting the parent scope, we cannot statically know how
71 /// many times the expression executed, and thus if the expression
72 /// creates temporaries we cannot know statically how many such
73 /// temporaries we would have to cleanup. Therefore, we ensure that
74 /// the temporaries never outlast the conditional/repeating
75 /// expression, preventing the need for dynamic checks and/or
76 /// arbitrary amounts of stack space. Terminating scopes end
77 /// up being contained in a DestructionScope that contains the
78 /// destructor's execution.
79 terminating_scopes: FxHashSet<hir::ItemLocalId>,
80}
81
82/// Records the lifetime of a local variable as `cx.var_parent`
83fn record_var_lifetime(
84 visitor: &mut RegionResolutionVisitor<'_>,
85 var_id: hir::ItemLocalId,
86 _sp: Span,
87) {
88 match visitor.cx.var_parent {
89 None => {
90 // this can happen in extern fn declarations like
91 //
92 // extern fn isalnum(c: c_int) -> c_int
93 }
94 Some((parent_scope, _)) => visitor.scope_tree.record_var_scope(var_id, parent_scope),
95 }
96}
97
98fn resolve_block<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, blk: &'tcx hir::Block<'tcx>) {
99 debug!("resolve_block(blk.hir_id={:?})", blk.hir_id);
100
101 let prev_cx = visitor.cx;
102
103 // We treat the tail expression in the block (if any) somewhat
104 // differently from the statements. The issue has to do with
105 // temporary lifetimes. Consider the following:
106 //
107 // quux({
108 // let inner = ... (&bar()) ...;
109 //
110 // (... (&foo()) ...) // (the tail expression)
111 // }, other_argument());
112 //
113 // Each of the statements within the block is a terminating
114 // scope, and thus a temporary (e.g., the result of calling
115 // `bar()` in the initializer expression for `let inner = ...;`)
116 // will be cleaned up immediately after its corresponding
117 // statement (i.e., `let inner = ...;`) executes.
118 //
119 // On the other hand, temporaries associated with evaluating the
120 // tail expression for the block are assigned lifetimes so that
121 // they will be cleaned up as part of the terminating scope
122 // *surrounding* the block expression. Here, the terminating
123 // scope for the block expression is the `quux(..)` call; so
124 // those temporaries will only be cleaned up *after* both
125 // `other_argument()` has run and also the call to `quux(..)`
126 // itself has returned.
127
128 visitor.enter_node_scope_with_dtor(blk.hir_id.local_id);
129 visitor.cx.var_parent = visitor.cx.parent;
130
131 {
132 // This block should be kept approximately in sync with
133 // `intravisit::walk_block`. (We manually walk the block, rather
134 // than call `walk_block`, in order to maintain precise
135 // index information.)
136
137 for (i, statement) in blk.stmts.iter().enumerate() {
138 match statement.kind {
139 hir::StmtKind::Local(..) | hir::StmtKind::Item(..) => {
140 // Each declaration introduces a subscope for bindings
141 // introduced by the declaration; this subscope covers a
142 // suffix of the block. Each subscope in a block has the
143 // previous subscope in the block as a parent, except for
144 // the first such subscope, which has the block itself as a
145 // parent.
146 visitor.enter_scope(Scope {
147 id: blk.hir_id.local_id,
148 data: ScopeData::Remainder(FirstStatementIndex::new(i)),
149 });
150 visitor.cx.var_parent = visitor.cx.parent;
151 }
152 hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {}
153 }
154 visitor.visit_stmt(statement)
155 }
156 walk_list!(visitor, visit_expr, &blk.expr);
157 }
158
159 visitor.cx = prev_cx;
160}
161
162fn resolve_arm<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, arm: &'tcx hir::Arm<'tcx>) {
163 let prev_cx = visitor.cx;
164
165 visitor.enter_scope(Scope { id: arm.hir_id.local_id, data: ScopeData::Node });
166 visitor.cx.var_parent = visitor.cx.parent;
167
168 visitor.terminating_scopes.insert(arm.body.hir_id.local_id);
169
170 if let Some(hir::Guard::If(ref expr)) = arm.guard {
171 visitor.terminating_scopes.insert(expr.hir_id.local_id);
172 }
173
174 intravisit::walk_arm(visitor, arm);
175
176 visitor.cx = prev_cx;
177}
178
179fn resolve_pat<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, pat: &'tcx hir::Pat<'tcx>) {
180 visitor.record_child_scope(Scope { id: pat.hir_id.local_id, data: ScopeData::Node });
181
182 // If this is a binding then record the lifetime of that binding.
183 if let PatKind::Binding(..) = pat.kind {
184 record_var_lifetime(visitor, pat.hir_id.local_id, pat.span);
185 }
186
187 debug!("resolve_pat - pre-increment {} pat = {:?}", visitor.expr_and_pat_count, pat);
188
189 intravisit::walk_pat(visitor, pat);
190
191 visitor.expr_and_pat_count += 1;
192
193 debug!("resolve_pat - post-increment {} pat = {:?}", visitor.expr_and_pat_count, pat);
194}
195
196fn resolve_stmt<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, stmt: &'tcx hir::Stmt<'tcx>) {
197 let stmt_id = stmt.hir_id.local_id;
198 debug!("resolve_stmt(stmt.id={:?})", stmt_id);
199
200 // Every statement will clean up the temporaries created during
201 // execution of that statement. Therefore each statement has an
202 // associated destruction scope that represents the scope of the
203 // statement plus its destructors, and thus the scope for which
204 // regions referenced by the destructors need to survive.
205 visitor.terminating_scopes.insert(stmt_id);
206
207 let prev_parent = visitor.cx.parent;
208 visitor.enter_node_scope_with_dtor(stmt_id);
209
210 intravisit::walk_stmt(visitor, stmt);
211
212 visitor.cx.parent = prev_parent;
213}
214
215fn resolve_expr<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
216 debug!("resolve_expr - pre-increment {} expr = {:?}", visitor.expr_and_pat_count, expr);
217
218 let prev_cx = visitor.cx;
219 visitor.enter_node_scope_with_dtor(expr.hir_id.local_id);
220
221 {
222 let terminating_scopes = &mut visitor.terminating_scopes;
223 let mut terminating = |id: hir::ItemLocalId| {
224 terminating_scopes.insert(id);
225 };
226 match expr.kind {
227 // Conditional or repeating scopes are always terminating
228 // scopes, meaning that temporaries cannot outlive them.
229 // This ensures fixed size stacks.
230 hir::ExprKind::Binary(
231 source_map::Spanned { node: hir::BinOpKind::And, .. },
232 _,
233 ref r,
234 )
235 | hir::ExprKind::Binary(
236 source_map::Spanned { node: hir::BinOpKind::Or, .. },
237 _,
238 ref r,
239 ) => {
240 // For shortcircuiting operators, mark the RHS as a terminating
241 // scope since it only executes conditionally.
242 terminating(r.hir_id.local_id);
243 }
244
245 hir::ExprKind::Loop(ref body, _, _) => {
246 terminating(body.hir_id.local_id);
247 }
248
249 hir::ExprKind::DropTemps(ref expr) => {
250 // `DropTemps(expr)` does not denote a conditional scope.
251 // Rather, we want to achieve the same behavior as `{ let _t = expr; _t }`.
252 terminating(expr.hir_id.local_id);
253 }
254
255 hir::ExprKind::AssignOp(..)
256 | hir::ExprKind::Index(..)
257 | hir::ExprKind::Unary(..)
258 | hir::ExprKind::Call(..)
259 | hir::ExprKind::MethodCall(..) => {
260 // FIXME(https://github.com/rust-lang/rfcs/issues/811) Nested method calls
261 //
262 // The lifetimes for a call or method call look as follows:
263 //
264 // call.id
265 // - arg0.id
266 // - ...
267 // - argN.id
268 // - call.callee_id
269 //
270 // The idea is that call.callee_id represents *the time when
271 // the invoked function is actually running* and call.id
272 // represents *the time to prepare the arguments and make the
273 // call*. See the section "Borrows in Calls" borrowck/README.md
274 // for an extended explanation of why this distinction is
275 // important.
276 //
277 // record_superlifetime(new_cx, expr.callee_id);
278 }
279
280 _ => {}
281 }
282 }
283
284 let prev_pessimistic = visitor.pessimistic_yield;
285
286 // Ordinarily, we can rely on the visit order of HIR intravisit
287 // to correspond to the actual execution order of statements.
74b04a01 288 // However, there's a weird corner case with compound assignment
dfeec247
XL
289 // operators (e.g. `a += b`). The evaluation order depends on whether
290 // or not the operator is overloaded (e.g. whether or not a trait
291 // like AddAssign is implemented).
292
293 // For primitive types (which, despite having a trait impl, don't actually
294 // end up calling it), the evluation order is right-to-left. For example,
295 // the following code snippet:
296 //
297 // let y = &mut 0;
298 // *{println!("LHS!"); y} += {println!("RHS!"); 1};
299 //
300 // will print:
301 //
302 // RHS!
303 // LHS!
304 //
305 // However, if the operator is used on a non-primitive type,
306 // the evaluation order will be left-to-right, since the operator
307 // actually get desugared to a method call. For example, this
308 // nearly identical code snippet:
309 //
310 // let y = &mut String::new();
311 // *{println!("LHS String"); y} += {println!("RHS String"); "hi"};
312 //
313 // will print:
314 // LHS String
315 // RHS String
316 //
317 // To determine the actual execution order, we need to perform
318 // trait resolution. Unfortunately, we need to be able to compute
319 // yield_in_scope before type checking is even done, as it gets
320 // used by AST borrowcheck.
321 //
322 // Fortunately, we don't need to know the actual execution order.
323 // It suffices to know the 'worst case' order with respect to yields.
324 // Specifically, we need to know the highest 'expr_and_pat_count'
325 // that we could assign to the yield expression. To do this,
326 // we pick the greater of the two values from the left-hand
327 // and right-hand expressions. This makes us overly conservative
328 // about what types could possibly live across yield points,
329 // but we will never fail to detect that a type does actually
330 // live across a yield point. The latter part is critical -
331 // we're already overly conservative about what types will live
332 // across yield points, as the generated MIR will determine
333 // when things are actually live. However, for typecheck to work
334 // properly, we can't miss any types.
335
336 match expr.kind {
337 // Manually recurse over closures, because they are the only
338 // case of nested bodies that share the parent environment.
339 hir::ExprKind::Closure(.., body, _, _) => {
340 let body = visitor.tcx.hir().body(body);
341 visitor.visit_body(body);
342 }
343 hir::ExprKind::AssignOp(_, ref left_expr, ref right_expr) => {
344 debug!(
345 "resolve_expr - enabling pessimistic_yield, was previously {}",
346 prev_pessimistic
347 );
348
349 let start_point = visitor.fixup_scopes.len();
350 visitor.pessimistic_yield = true;
351
352 // If the actual execution order turns out to be right-to-left,
353 // then we're fine. However, if the actual execution order is left-to-right,
354 // then we'll assign too low a count to any `yield` expressions
355 // we encounter in 'right_expression' - they should really occur after all of the
356 // expressions in 'left_expression'.
357 visitor.visit_expr(&right_expr);
358 visitor.pessimistic_yield = prev_pessimistic;
359
360 debug!("resolve_expr - restoring pessimistic_yield to {}", prev_pessimistic);
361 visitor.visit_expr(&left_expr);
362 debug!("resolve_expr - fixing up counts to {}", visitor.expr_and_pat_count);
363
364 // Remove and process any scopes pushed by the visitor
365 let target_scopes = visitor.fixup_scopes.drain(start_point..);
366
367 for scope in target_scopes {
368 let mut yield_data = visitor.scope_tree.yield_in_scope.get_mut(&scope).unwrap();
369 let count = yield_data.expr_and_pat_count;
370 let span = yield_data.span;
371
372 // expr_and_pat_count never decreases. Since we recorded counts in yield_in_scope
373 // before walking the left-hand side, it should be impossible for the recorded
374 // count to be greater than the left-hand side count.
375 if count > visitor.expr_and_pat_count {
376 bug!(
377 "Encountered greater count {} at span {:?} - expected no greater than {}",
378 count,
379 span,
380 visitor.expr_and_pat_count
381 );
382 }
383 let new_count = visitor.expr_and_pat_count;
384 debug!(
385 "resolve_expr - increasing count for scope {:?} from {} to {} at span {:?}",
386 scope, count, new_count, span
387 );
388
389 yield_data.expr_and_pat_count = new_count;
390 }
391 }
392
393 _ => intravisit::walk_expr(visitor, expr),
394 }
395
396 visitor.expr_and_pat_count += 1;
397
398 debug!("resolve_expr post-increment {}, expr = {:?}", visitor.expr_and_pat_count, expr);
399
400 if let hir::ExprKind::Yield(_, source) = &expr.kind {
401 // Mark this expr's scope and all parent scopes as containing `yield`.
402 let mut scope = Scope { id: expr.hir_id.local_id, data: ScopeData::Node };
403 loop {
404 let data = YieldData {
405 span: expr.span,
406 expr_and_pat_count: visitor.expr_and_pat_count,
407 source: *source,
408 };
409 visitor.scope_tree.yield_in_scope.insert(scope, data);
410 if visitor.pessimistic_yield {
411 debug!("resolve_expr in pessimistic_yield - marking scope {:?} for fixup", scope);
412 visitor.fixup_scopes.push(scope);
413 }
414
415 // Keep traversing up while we can.
416 match visitor.scope_tree.parent_map.get(&scope) {
417 // Don't cross from closure bodies to their parent.
418 Some(&(superscope, _)) => match superscope.data {
419 ScopeData::CallSite => break,
420 _ => scope = superscope,
421 },
422 None => break,
423 }
424 }
425 }
426
427 visitor.cx = prev_cx;
428}
429
430fn resolve_local<'tcx>(
431 visitor: &mut RegionResolutionVisitor<'tcx>,
432 pat: Option<&'tcx hir::Pat<'tcx>>,
433 init: Option<&'tcx hir::Expr<'tcx>>,
434) {
435 debug!("resolve_local(pat={:?}, init={:?})", pat, init);
436
437 let blk_scope = visitor.cx.var_parent.map(|(p, _)| p);
438
439 // As an exception to the normal rules governing temporary
440 // lifetimes, initializers in a let have a temporary lifetime
441 // of the enclosing block. This means that e.g., a program
442 // like the following is legal:
443 //
444 // let ref x = HashMap::new();
445 //
446 // Because the hash map will be freed in the enclosing block.
447 //
448 // We express the rules more formally based on 3 grammars (defined
449 // fully in the helpers below that implement them):
450 //
451 // 1. `E&`, which matches expressions like `&<rvalue>` that
452 // own a pointer into the stack.
453 //
454 // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
455 // y)` that produce ref bindings into the value they are
456 // matched against or something (at least partially) owned by
457 // the value they are matched against. (By partially owned,
458 // I mean that creating a binding into a ref-counted or managed value
459 // would still count.)
460 //
461 // 3. `ET`, which matches both rvalues like `foo()` as well as places
462 // based on rvalues like `foo().x[2].y`.
463 //
464 // A subexpression `<rvalue>` that appears in a let initializer
465 // `let pat [: ty] = expr` has an extended temporary lifetime if
466 // any of the following conditions are met:
467 //
468 // A. `pat` matches `P&` and `expr` matches `ET`
469 // (covers cases where `pat` creates ref bindings into an rvalue
470 // produced by `expr`)
471 // B. `ty` is a borrowed pointer and `expr` matches `ET`
472 // (covers cases where coercion creates a borrow)
473 // C. `expr` matches `E&`
474 // (covers cases `expr` borrows an rvalue that is then assigned
475 // to memory (at least partially) owned by the binding)
476 //
477 // Here are some examples hopefully giving an intuition where each
478 // rule comes into play and why:
479 //
480 // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
481 // would have an extended lifetime, but not `foo()`.
482 //
483 // Rule B. `let x = &foo().x`. The rvalue `foo()` would have extended
484 // lifetime.
485 //
486 // In some cases, multiple rules may apply (though not to the same
487 // rvalue). For example:
488 //
489 // let ref x = [&a(), &b()];
490 //
491 // Here, the expression `[...]` has an extended lifetime due to rule
492 // A, but the inner rvalues `a()` and `b()` have an extended lifetime
493 // due to rule C.
494
495 if let Some(expr) = init {
496 record_rvalue_scope_if_borrow_expr(visitor, &expr, blk_scope);
497
498 if let Some(pat) = pat {
499 if is_binding_pat(pat) {
500 record_rvalue_scope(visitor, &expr, blk_scope);
501 }
502 }
503 }
504
505 // Make sure we visit the initializer first, so expr_and_pat_count remains correct
506 if let Some(expr) = init {
507 visitor.visit_expr(expr);
508 }
509 if let Some(pat) = pat {
510 visitor.visit_pat(pat);
511 }
512
513 /// Returns `true` if `pat` match the `P&` non-terminal.
514 ///
515 /// ```text
516 /// P& = ref X
517 /// | StructName { ..., P&, ... }
518 /// | VariantName(..., P&, ...)
519 /// | [ ..., P&, ... ]
520 /// | ( ..., P&, ... )
521 /// | ... "|" P& "|" ...
522 /// | box P&
523 /// ```
524 fn is_binding_pat(pat: &hir::Pat<'_>) -> bool {
525 // Note that the code below looks for *explicit* refs only, that is, it won't
526 // know about *implicit* refs as introduced in #42640.
527 //
528 // This is not a problem. For example, consider
529 //
530 // let (ref x, ref y) = (Foo { .. }, Bar { .. });
531 //
532 // Due to the explicit refs on the left hand side, the below code would signal
533 // that the temporary value on the right hand side should live until the end of
534 // the enclosing block (as opposed to being dropped after the let is complete).
535 //
536 // To create an implicit ref, however, you must have a borrowed value on the RHS
537 // already, as in this example (which won't compile before #42640):
538 //
539 // let Foo { x, .. } = &Foo { x: ..., ... };
540 //
541 // in place of
542 //
543 // let Foo { ref x, .. } = Foo { ... };
544 //
545 // In the former case (the implicit ref version), the temporary is created by the
546 // & expression, and its lifetime would be extended to the end of the block (due
547 // to a different rule, not the below code).
548 match pat.kind {
549 PatKind::Binding(hir::BindingAnnotation::Ref, ..)
550 | PatKind::Binding(hir::BindingAnnotation::RefMut, ..) => true,
551
552 PatKind::Struct(_, ref field_pats, _) => {
553 field_pats.iter().any(|fp| is_binding_pat(&fp.pat))
554 }
555
556 PatKind::Slice(ref pats1, ref pats2, ref pats3) => {
557 pats1.iter().any(|p| is_binding_pat(&p))
558 || pats2.iter().any(|p| is_binding_pat(&p))
559 || pats3.iter().any(|p| is_binding_pat(&p))
560 }
561
562 PatKind::Or(ref subpats)
563 | PatKind::TupleStruct(_, ref subpats, _)
564 | PatKind::Tuple(ref subpats, _) => subpats.iter().any(|p| is_binding_pat(&p)),
565
566 PatKind::Box(ref subpat) => is_binding_pat(&subpat),
567
568 PatKind::Ref(_, _)
569 | PatKind::Binding(hir::BindingAnnotation::Unannotated, ..)
570 | PatKind::Binding(hir::BindingAnnotation::Mutable, ..)
571 | PatKind::Wild
572 | PatKind::Path(_)
573 | PatKind::Lit(_)
574 | PatKind::Range(_, _, _) => false,
575 }
576 }
577
578 /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate:
579 ///
580 /// ```text
581 /// E& = & ET
582 /// | StructName { ..., f: E&, ... }
583 /// | [ ..., E&, ... ]
584 /// | ( ..., E&, ... )
585 /// | {...; E&}
586 /// | box E&
587 /// | E& as ...
588 /// | ( E& )
589 /// ```
590 fn record_rvalue_scope_if_borrow_expr<'tcx>(
591 visitor: &mut RegionResolutionVisitor<'tcx>,
592 expr: &hir::Expr<'_>,
593 blk_id: Option<Scope>,
594 ) {
595 match expr.kind {
596 hir::ExprKind::AddrOf(_, _, ref subexpr) => {
597 record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id);
598 record_rvalue_scope(visitor, &subexpr, blk_id);
599 }
600 hir::ExprKind::Struct(_, fields, _) => {
601 for field in fields {
602 record_rvalue_scope_if_borrow_expr(visitor, &field.expr, blk_id);
603 }
604 }
605 hir::ExprKind::Array(subexprs) | hir::ExprKind::Tup(subexprs) => {
606 for subexpr in subexprs {
607 record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id);
608 }
609 }
610 hir::ExprKind::Cast(ref subexpr, _) => {
611 record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id)
612 }
613 hir::ExprKind::Block(ref block, _) => {
614 if let Some(ref subexpr) = block.expr {
615 record_rvalue_scope_if_borrow_expr(visitor, &subexpr, blk_id);
616 }
617 }
618 _ => {}
619 }
620 }
621
622 /// Applied to an expression `expr` if `expr` -- or something owned or partially owned by
623 /// `expr` -- is going to be indirectly referenced by a variable in a let statement. In that
624 /// case, the "temporary lifetime" or `expr` is extended to be the block enclosing the `let`
625 /// statement.
626 ///
627 /// More formally, if `expr` matches the grammar `ET`, record the rvalue scope of the matching
628 /// `<rvalue>` as `blk_id`:
629 ///
630 /// ```text
631 /// ET = *ET
632 /// | ET[...]
633 /// | ET.f
634 /// | (ET)
635 /// | <rvalue>
636 /// ```
637 ///
638 /// Note: ET is intended to match "rvalues or places based on rvalues".
639 fn record_rvalue_scope<'tcx>(
640 visitor: &mut RegionResolutionVisitor<'tcx>,
641 expr: &hir::Expr<'_>,
642 blk_scope: Option<Scope>,
643 ) {
644 let mut expr = expr;
645 loop {
646 // Note: give all the expressions matching `ET` with the
647 // extended temporary lifetime, not just the innermost rvalue,
648 // because in codegen if we must compile e.g., `*rvalue()`
649 // into a temporary, we request the temporary scope of the
650 // outer expression.
651 visitor.scope_tree.record_rvalue_scope(expr.hir_id.local_id, blk_scope);
652
653 match expr.kind {
654 hir::ExprKind::AddrOf(_, _, ref subexpr)
655 | hir::ExprKind::Unary(hir::UnOp::UnDeref, ref subexpr)
656 | hir::ExprKind::Field(ref subexpr, _)
657 | hir::ExprKind::Index(ref subexpr, _) => {
658 expr = &subexpr;
659 }
660 _ => {
661 return;
662 }
663 }
664 }
665 }
666}
667
668impl<'tcx> RegionResolutionVisitor<'tcx> {
669 /// Records the current parent (if any) as the parent of `child_scope`.
670 /// Returns the depth of `child_scope`.
671 fn record_child_scope(&mut self, child_scope: Scope) -> ScopeDepth {
672 let parent = self.cx.parent;
673 self.scope_tree.record_scope_parent(child_scope, parent);
674 // If `child_scope` has no parent, it must be the root node, and so has
675 // a depth of 1. Otherwise, its depth is one more than its parent's.
676 parent.map_or(1, |(_p, d)| d + 1)
677 }
678
679 /// Records the current parent (if any) as the parent of `child_scope`,
680 /// and sets `child_scope` as the new current parent.
681 fn enter_scope(&mut self, child_scope: Scope) {
682 let child_depth = self.record_child_scope(child_scope);
683 self.cx.parent = Some((child_scope, child_depth));
684 }
685
686 fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId) {
687 // If node was previously marked as a terminating scope during the
688 // recursive visit of its parent node in the AST, then we need to
689 // account for the destruction scope representing the scope of
690 // the destructors that run immediately after it completes.
691 if self.terminating_scopes.contains(&id) {
692 self.enter_scope(Scope { id, data: ScopeData::Destruction });
693 }
694 self.enter_scope(Scope { id, data: ScopeData::Node });
695 }
696}
697
698impl<'tcx> Visitor<'tcx> for RegionResolutionVisitor<'tcx> {
699 type Map = Map<'tcx>;
700
701 fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
702 NestedVisitorMap::None
703 }
704
705 fn visit_block(&mut self, b: &'tcx Block<'tcx>) {
706 resolve_block(self, b);
707 }
708
709 fn visit_body(&mut self, body: &'tcx hir::Body<'tcx>) {
710 let body_id = body.id();
711 let owner_id = self.tcx.hir().body_owner(body_id);
712
713 debug!(
714 "visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})",
715 owner_id,
716 self.tcx.sess.source_map().span_to_string(body.value.span),
717 body_id,
718 self.cx.parent
719 );
720
721 let outer_ec = mem::replace(&mut self.expr_and_pat_count, 0);
722 let outer_cx = self.cx;
723 let outer_ts = mem::take(&mut self.terminating_scopes);
724 self.terminating_scopes.insert(body.value.hir_id.local_id);
725
726 if let Some(root_id) = self.cx.root_id {
727 self.scope_tree.record_closure_parent(body.value.hir_id.local_id, root_id);
728 }
729 self.cx.root_id = Some(body.value.hir_id.local_id);
730
731 self.enter_scope(Scope { id: body.value.hir_id.local_id, data: ScopeData::CallSite });
732 self.enter_scope(Scope { id: body.value.hir_id.local_id, data: ScopeData::Arguments });
733
734 // The arguments and `self` are parented to the fn.
735 self.cx.var_parent = self.cx.parent.take();
736 for param in body.params {
737 self.visit_pat(&param.pat);
738 }
739
740 // The body of the every fn is a root scope.
741 self.cx.parent = self.cx.var_parent;
742 if self.tcx.hir().body_owner_kind(owner_id).is_fn_or_closure() {
743 self.visit_expr(&body.value)
744 } else {
745 // Only functions have an outer terminating (drop) scope, while
746 // temporaries in constant initializers may be 'static, but only
747 // according to rvalue lifetime semantics, using the same
748 // syntactical rules used for let initializers.
749 //
750 // e.g., in `let x = &f();`, the temporary holding the result from
751 // the `f()` call lives for the entirety of the surrounding block.
752 //
753 // Similarly, `const X: ... = &f();` would have the result of `f()`
754 // live for `'static`, implying (if Drop restrictions on constants
755 // ever get lifted) that the value *could* have a destructor, but
756 // it'd get leaked instead of the destructor running during the
757 // evaluation of `X` (if at all allowed by CTFE).
758 //
759 // However, `const Y: ... = g(&f());`, like `let y = g(&f());`,
760 // would *not* let the `f()` temporary escape into an outer scope
761 // (i.e., `'static`), which means that after `g` returns, it drops,
762 // and all the associated destruction scope rules apply.
763 self.cx.var_parent = None;
764 resolve_local(self, None, Some(&body.value));
765 }
766
767 if body.generator_kind.is_some() {
768 self.scope_tree.body_expr_count.insert(body_id, self.expr_and_pat_count);
769 }
770
771 // Restore context we had at the start.
772 self.expr_and_pat_count = outer_ec;
773 self.cx = outer_cx;
774 self.terminating_scopes = outer_ts;
775 }
776
777 fn visit_arm(&mut self, a: &'tcx Arm<'tcx>) {
778 resolve_arm(self, a);
779 }
780 fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) {
781 resolve_pat(self, p);
782 }
783 fn visit_stmt(&mut self, s: &'tcx Stmt<'tcx>) {
784 resolve_stmt(self, s);
785 }
786 fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
787 resolve_expr(self, ex);
788 }
789 fn visit_local(&mut self, l: &'tcx Local<'tcx>) {
790 resolve_local(self, Some(&l.pat), l.init.as_ref().map(|e| &**e));
791 }
792}
793
794fn region_scope_tree(tcx: TyCtxt<'_>, def_id: DefId) -> &ScopeTree {
795 let closure_base_def_id = tcx.closure_base_def_id(def_id);
796 if closure_base_def_id != def_id {
797 return tcx.region_scope_tree(closure_base_def_id);
798 }
799
800 let id = tcx.hir().as_local_hir_id(def_id).unwrap();
801 let scope_tree = if let Some(body_id) = tcx.hir().maybe_body_owned_by(id) {
802 let mut visitor = RegionResolutionVisitor {
803 tcx,
804 scope_tree: ScopeTree::default(),
805 expr_and_pat_count: 0,
806 cx: Context { root_id: None, parent: None, var_parent: None },
807 terminating_scopes: Default::default(),
808 pessimistic_yield: false,
809 fixup_scopes: vec![],
810 };
811
812 let body = tcx.hir().body(body_id);
813 visitor.scope_tree.root_body = Some(body.value.hir_id);
814
815 // If the item is an associated const or a method,
816 // record its impl/trait parent, as it can also have
817 // lifetime parameters free in this body.
818 match tcx.hir().get(id) {
819 Node::ImplItem(_) | Node::TraitItem(_) => {
820 visitor.scope_tree.root_parent = Some(tcx.hir().get_parent_item(id));
821 }
822 _ => {}
823 }
824
825 visitor.visit_body(body);
826
827 visitor.scope_tree
828 } else {
829 ScopeTree::default()
830 };
831
832 tcx.arena.alloc(scope_tree)
833}
834
835pub fn provide(providers: &mut Providers<'_>) {
836 *providers = Providers { region_scope_tree, ..*providers };
837}