]> git.proxmox.com Git - rustc.git/blame - src/librustc_symbol_mangling/lib.rs
New upstream version 1.45.0+dfsg1
[rustc.git] / src / librustc_symbol_mangling / lib.rs
CommitLineData
54a0048b
SL
1//! The Rust Linkage Model and Symbol Names
2//! =======================================
3//!
4//! The semantic model of Rust linkage is, broadly, that "there's no global
5//! namespace" between crates. Our aim is to preserve the illusion of this
6//! model despite the fact that it's not *quite* possible to implement on
7//! modern linkers. We initially didn't use system linkers at all, but have
8//! been convinced of their utility.
9//!
10//! There are a few issues to handle:
11//!
12//! - Linkers operate on a flat namespace, so we have to flatten names.
13//! We do this using the C++ namespace-mangling technique. Foo::bar
14//! symbols and such.
15//!
16//! - Symbols for distinct items with the same *name* need to get different
17//! linkage-names. Examples of this are monomorphizations of functions or
18//! items within anonymous scopes that end up having the same path.
19//!
20//! - Symbols in different crates but with same names "within" the crate need
21//! to get different linkage-names.
22//!
23//! - Symbol names should be deterministic: Two consecutive runs of the
24//! compiler over the same code base should produce the same symbol names for
25//! the same items.
26//!
27//! - Symbol names should not depend on any global properties of the code base,
28//! so that small modifications to the code base do not result in all symbols
29//! changing. In previous versions of the compiler, symbol names incorporated
30//! the SVH (Stable Version Hash) of the crate. This scheme turned out to be
31//! infeasible when used in conjunction with incremental compilation because
32//! small code changes would invalidate all symbols generated previously.
33//!
34//! - Even symbols from different versions of the same crate should be able to
35//! live next to each other without conflict.
36//!
37//! In order to fulfill the above requirements the following scheme is used by
38//! the compiler:
39//!
40//! The main tool for avoiding naming conflicts is the incorporation of a 64-bit
41//! hash value into every exported symbol name. Anything that makes a difference
42//! to the symbol being named, but does not show up in the regular path needs to
43//! be fed into this hash:
44//!
45//! - Different monomorphizations of the same item have the same path but differ
46//! in their concrete type parameters, so these parameters are part of the
47//! data being digested for the symbol hash.
48//!
49//! - Rust allows items to be defined in anonymous scopes, such as in
50//! `fn foo() { { fn bar() {} } { fn bar() {} } }`. Both `bar` functions have
51//! the path `foo::bar`, since the anonymous scopes do not contribute to the
52//! path of an item. The compiler already handles this case via so-called
53//! disambiguating `DefPaths` which use indices to distinguish items with the
54//! same name. The DefPaths of the functions above are thus `foo[0]::bar[0]`
55//! and `foo[0]::bar[1]`. In order to incorporate this disambiguation
56//! information into the symbol name too, these indices are fed into the
57//! symbol hash, so that the above two symbols would end up with different
58//! hash values.
59//!
60//! The two measures described above suffice to avoid intra-crate conflicts. In
61//! order to also avoid inter-crate conflicts two more measures are taken:
62//!
63//! - The name of the crate containing the symbol is prepended to the symbol
0731742a 64//! name, i.e., symbols are "crate qualified". For example, a function `foo` in
54a0048b
SL
65//! module `bar` in crate `baz` would get a symbol name like
66//! `baz::bar::foo::{hash}` instead of just `bar::foo::{hash}`. This avoids
67//! simple conflicts between functions from different crates.
68//!
69//! - In order to be able to also use symbols from two versions of the same
70//! crate (which naturally also have the same name), a stronger measure is
71//! required: The compiler accepts an arbitrary "disambiguator" value via the
a1dfa0c6 72//! `-C metadata` command-line argument. This disambiguator is then fed into
54a0048b
SL
73//! the symbol hash of every exported item. Consequently, the symbols in two
74//! identical crates but with different disambiguators are not in conflict
75//! with each other. This facility is mainly intended to be used by build
76//! tools like Cargo.
77//!
78//! A note on symbol name stability
79//! -------------------------------
80//! Previous versions of the compiler resorted to feeding NodeIds into the
81//! symbol hash in order to disambiguate between items with the same path. The
82//! current version of the name generation algorithm takes great care not to do
83//! that, since NodeIds are notoriously unstable: A small change to the
84//! code base will offset all NodeIds after the change and thus, much as using
85//! the SVH in the hash, invalidate an unbounded number of symbol names. This
86//! makes re-using previously compiled code for incremental compilation
87//! virtually impossible. Thus, symbol hash generation exclusively relies on
88//! DefPaths which are much more robust in the face of changes to the code base.
89
ba9703b0
XL
90#![doc(html_root_url = "https://doc.rust-lang.org/nightly/")]
91#![feature(never_type)]
92#![feature(nll)]
93#![feature(or_patterns)]
94#![feature(in_band_lifetimes)]
95#![recursion_limit = "256"]
96
97#[macro_use]
98extern crate rustc_middle;
99
dfeec247
XL
100use rustc_hir::def_id::{CrateNum, LOCAL_CRATE};
101use rustc_hir::Node;
ba9703b0
XL
102use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
103use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
104use rustc_middle::ty::query::Providers;
105use rustc_middle::ty::subst::SubstsRef;
106use rustc_middle::ty::{self, Instance, TyCtxt};
107use rustc_session::config::SymbolManglingVersion;
54a0048b 108
dfeec247 109use rustc_span::symbol::Symbol;
54a0048b 110
9fa01778
XL
111use log::debug;
112
dc9dc135
XL
113mod legacy;
114mod v0;
54a0048b 115
ba9703b0
XL
116pub mod test;
117
dfeec247
XL
118/// This function computes the symbol name for the given `instance` and the
119/// given instantiating crate. That is, if you know that instance X is
120/// instantiated in crate Y, this is the symbol name this instance would have.
121pub fn symbol_name_for_instance_in_crate(
122 tcx: TyCtxt<'tcx>,
123 instance: Instance<'tcx>,
124 instantiating_crate: CrateNum,
125) -> String {
126 compute_symbol_name(tcx, instance, || instantiating_crate)
127}
128
9fa01778 129pub fn provide(providers: &mut Providers<'_>) {
dfeec247
XL
130 *providers = Providers { symbol_name: symbol_name_provider, ..*providers };
131}
ea8adc8c 132
dfeec247
XL
133// The `symbol_name` query provides the symbol name for calling a given
134// instance from the local crate. In particular, it will also look up the
135// correct symbol name of instances from upstream crates.
136fn symbol_name_provider(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> ty::SymbolName {
137 let symbol_name = compute_symbol_name(tcx, instance, || {
138 // This closure determines the instantiating crate for instances that
139 // need an instantiating-crate-suffix for their symbol name, in order
140 // to differentiate between local copies.
141 if is_generic(instance.substs) {
142 // For generics we might find re-usable upstream instances. If there
143 // is one, we rely on the symbol being instantiated locally.
144 instance.upstream_monomorphization(tcx).unwrap_or(LOCAL_CRATE)
145 } else {
146 // For non-generic things that need to avoid naming conflicts, we
147 // always instantiate a copy in the local crate.
148 LOCAL_CRATE
149 }
150 });
151
152 ty::SymbolName { name: Symbol::intern(&symbol_name) }
7cac9316
XL
153}
154
dfeec247
XL
155/// Computes the symbol name for the given instance. This function will call
156/// `compute_instantiating_crate` if it needs to factor the instantiating crate
157/// into the symbol name.
158fn compute_symbol_name(
159 tcx: TyCtxt<'tcx>,
160 instance: Instance<'tcx>,
161 compute_instantiating_crate: impl FnOnce() -> CrateNum,
162) -> String {
cc61c64b
XL
163 let def_id = instance.def_id();
164 let substs = instance.substs;
3157f602 165
94b46f34 166 debug!("symbol_name(def_id={:?}, substs={:?})", def_id, substs);
54a0048b 167
f9f354fc
XL
168 // FIXME(eddyb) Precompute a custom symbol name based on attributes.
169 let is_foreign = if let Some(def_id) = def_id.as_local() {
170 if tcx.plugin_registrar_fn(LOCAL_CRATE) == Some(def_id.to_def_id()) {
cc61c64b 171 let disambiguator = tcx.sess.local_crate_disambiguator();
dfeec247 172 return tcx.sess.generate_plugin_registrar_symbol(disambiguator);
54a0048b 173 }
f9f354fc 174 if tcx.proc_macro_decls_static(LOCAL_CRATE) == Some(def_id.to_def_id()) {
cc61c64b 175 let disambiguator = tcx.sess.local_crate_disambiguator();
dfeec247 176 return tcx.sess.generate_proc_macro_decls_symbol(disambiguator);
3157f602 177 }
f9f354fc
XL
178 let hir_id = tcx.hir().as_local_hir_id(def_id);
179 match tcx.hir().get(hir_id) {
b7449926 180 Node::ForeignItem(_) => true,
94b46f34 181 _ => false,
54a0048b 182 }
cc61c64b 183 } else {
7cac9316 184 tcx.is_foreign_item(def_id)
cc61c64b 185 };
54a0048b 186
b7449926 187 let attrs = tcx.codegen_fn_attrs(def_id);
dfeec247
XL
188
189 // Foreign items by default use no mangling for their symbol name. There's a
190 // few exceptions to this rule though:
191 //
192 // * This can be overridden with the `#[link_name]` attribute
193 //
194 // * On the wasm32 targets there is a bug (or feature) in LLD [1] where the
195 // same-named symbol when imported from different wasm modules will get
74b04a01 196 // hooked up incorrectly. As a result foreign symbols, on the wasm target,
dfeec247
XL
197 // with a wasm import module, get mangled. Additionally our codegen will
198 // deduplicate symbols based purely on the symbol name, but for wasm this
199 // isn't quite right because the same-named symbol on wasm can come from
200 // different modules. For these reasons if `#[link(wasm_import_module)]`
201 // is present we mangle everything on wasm because the demangled form will
202 // show up in the `wasm-import-name` custom attribute in LLVM IR.
203 //
204 // [1]: https://bugs.llvm.org/show_bug.cgi?id=44316
cc61c64b 205 if is_foreign {
dfeec247
XL
206 if tcx.sess.target.target.arch != "wasm32"
207 || !tcx.wasm_import_module_map(def_id.krate).contains_key(&def_id)
208 {
209 if let Some(name) = attrs.link_name {
210 return name.to_string();
211 }
212 return tcx.item_name(def_id).to_string();
3157f602 213 }
cc61c64b 214 }
54a0048b 215
e74abb32 216 if let Some(name) = attrs.export_name {
cc61c64b 217 // Use provided name
dfeec247 218 return name.to_string();
cc61c64b 219 }
54a0048b 220
b7449926 221 if attrs.flags.contains(CodegenFnAttrFlags::NO_MANGLE) {
cc61c64b 222 // Don't mangle
dfeec247 223 return tcx.item_name(def_id).to_string();
dc9dc135
XL
224 }
225
dc9dc135
XL
226 let avoid_cross_crate_conflicts =
227 // If this is an instance of a generic function, we also hash in
228 // the ID of the instantiating crate. This avoids symbol conflicts
229 // in case the same instances is emitted in two crates of the same
230 // project.
dfeec247 231 is_generic(substs) ||
dc9dc135
XL
232
233 // If we're dealing with an instance of a function that's inlined from
234 // another crate but we're marking it as globally shared to our
235 // compliation (aka we're not making an internal copy in each of our
236 // codegen units) then this symbol may become an exported (but hidden
237 // visibility) symbol. This means that multiple crates may do the same
238 // and we want to be sure to avoid any symbol conflicts here.
239 match MonoItem::Fn(instance).instantiation_mode(tcx) {
240 InstantiationMode::GloballyShared { may_conflict: true } => true,
241 _ => false,
cc61c64b 242 };
54a0048b 243
dfeec247
XL
244 let instantiating_crate =
245 if avoid_cross_crate_conflicts { Some(compute_instantiating_crate()) } else { None };
9fa01778 246
dc9dc135
XL
247 // Pick the crate responsible for the symbol mangling version, which has to:
248 // 1. be stable for each instance, whether it's being defined or imported
249 // 2. obey each crate's own `-Z symbol-mangling-version`, as much as possible
250 // We solve these as follows:
251 // 1. because symbol names depend on both `def_id` and `instantiating_crate`,
252 // both their `CrateNum`s are stable for any given instance, so we can pick
253 // either and have a stable choice of symbol mangling version
254 // 2. we favor `instantiating_crate` where possible (i.e. when `Some`)
255 let mangling_version_crate = instantiating_crate.unwrap_or(def_id.krate);
256 let mangling_version = if mangling_version_crate == LOCAL_CRATE {
257 tcx.sess.opts.debugging_opts.symbol_mangling_version
258 } else {
259 tcx.symbol_mangling_version(mangling_version_crate)
260 };
9fa01778 261
dfeec247 262 match mangling_version {
dc9dc135
XL
263 SymbolManglingVersion::Legacy => legacy::mangle(tcx, instance, instantiating_crate),
264 SymbolManglingVersion::V0 => v0::mangle(tcx, instance, instantiating_crate),
dfeec247
XL
265 }
266}
9fa01778 267
dfeec247
XL
268fn is_generic(substs: SubstsRef<'_>) -> bool {
269 substs.non_erasable_generics().next().is_some()
54a0048b 270}