]> git.proxmox.com Git - rustc.git/blame - src/librustc_trans/back/symbol_names.rs
New upstream version 1.19.0+dfsg1
[rustc.git] / src / librustc_trans / back / symbol_names.rs
CommitLineData
54a0048b
SL
1// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! The Rust Linkage Model and Symbol Names
12//! =======================================
13//!
14//! The semantic model of Rust linkage is, broadly, that "there's no global
15//! namespace" between crates. Our aim is to preserve the illusion of this
16//! model despite the fact that it's not *quite* possible to implement on
17//! modern linkers. We initially didn't use system linkers at all, but have
18//! been convinced of their utility.
19//!
20//! There are a few issues to handle:
21//!
22//! - Linkers operate on a flat namespace, so we have to flatten names.
23//! We do this using the C++ namespace-mangling technique. Foo::bar
24//! symbols and such.
25//!
26//! - Symbols for distinct items with the same *name* need to get different
27//! linkage-names. Examples of this are monomorphizations of functions or
28//! items within anonymous scopes that end up having the same path.
29//!
30//! - Symbols in different crates but with same names "within" the crate need
31//! to get different linkage-names.
32//!
33//! - Symbol names should be deterministic: Two consecutive runs of the
34//! compiler over the same code base should produce the same symbol names for
35//! the same items.
36//!
37//! - Symbol names should not depend on any global properties of the code base,
38//! so that small modifications to the code base do not result in all symbols
39//! changing. In previous versions of the compiler, symbol names incorporated
40//! the SVH (Stable Version Hash) of the crate. This scheme turned out to be
41//! infeasible when used in conjunction with incremental compilation because
42//! small code changes would invalidate all symbols generated previously.
43//!
44//! - Even symbols from different versions of the same crate should be able to
45//! live next to each other without conflict.
46//!
47//! In order to fulfill the above requirements the following scheme is used by
48//! the compiler:
49//!
50//! The main tool for avoiding naming conflicts is the incorporation of a 64-bit
51//! hash value into every exported symbol name. Anything that makes a difference
52//! to the symbol being named, but does not show up in the regular path needs to
53//! be fed into this hash:
54//!
55//! - Different monomorphizations of the same item have the same path but differ
56//! in their concrete type parameters, so these parameters are part of the
57//! data being digested for the symbol hash.
58//!
59//! - Rust allows items to be defined in anonymous scopes, such as in
60//! `fn foo() { { fn bar() {} } { fn bar() {} } }`. Both `bar` functions have
61//! the path `foo::bar`, since the anonymous scopes do not contribute to the
62//! path of an item. The compiler already handles this case via so-called
63//! disambiguating `DefPaths` which use indices to distinguish items with the
64//! same name. The DefPaths of the functions above are thus `foo[0]::bar[0]`
65//! and `foo[0]::bar[1]`. In order to incorporate this disambiguation
66//! information into the symbol name too, these indices are fed into the
67//! symbol hash, so that the above two symbols would end up with different
68//! hash values.
69//!
70//! The two measures described above suffice to avoid intra-crate conflicts. In
71//! order to also avoid inter-crate conflicts two more measures are taken:
72//!
73//! - The name of the crate containing the symbol is prepended to the symbol
74//! name, i.e. symbols are "crate qualified". For example, a function `foo` in
75//! module `bar` in crate `baz` would get a symbol name like
76//! `baz::bar::foo::{hash}` instead of just `bar::foo::{hash}`. This avoids
77//! simple conflicts between functions from different crates.
78//!
79//! - In order to be able to also use symbols from two versions of the same
80//! crate (which naturally also have the same name), a stronger measure is
81//! required: The compiler accepts an arbitrary "disambiguator" value via the
82//! `-C metadata` commandline argument. This disambiguator is then fed into
83//! the symbol hash of every exported item. Consequently, the symbols in two
84//! identical crates but with different disambiguators are not in conflict
85//! with each other. This facility is mainly intended to be used by build
86//! tools like Cargo.
87//!
88//! A note on symbol name stability
89//! -------------------------------
90//! Previous versions of the compiler resorted to feeding NodeIds into the
91//! symbol hash in order to disambiguate between items with the same path. The
92//! current version of the name generation algorithm takes great care not to do
93//! that, since NodeIds are notoriously unstable: A small change to the
94//! code base will offset all NodeIds after the change and thus, much as using
95//! the SVH in the hash, invalidate an unbounded number of symbol names. This
96//! makes re-using previously compiled code for incremental compilation
97//! virtually impossible. Thus, symbol hash generation exclusively relies on
98//! DefPaths which are much more robust in the face of changes to the code base.
99
54a0048b 100use monomorphize::Instance;
54a0048b 101
9e0c209e 102use rustc::middle::weak_lang_items;
cc61c64b 103use rustc::hir::def_id::DefId;
3157f602 104use rustc::hir::map as hir_map;
cc61c64b 105use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
9e0c209e 106use rustc::ty::fold::TypeVisitor;
3157f602 107use rustc::ty::item_path::{self, ItemPathBuffer, RootMode};
7cac9316 108use rustc::ty::maps::Providers;
9e0c209e 109use rustc::ty::subst::Substs;
cc61c64b 110use rustc::hir::map::definitions::DefPathData;
9e0c209e 111use rustc::util::common::record_time;
54a0048b 112
3157f602 113use syntax::attr;
7cac9316 114use syntax_pos::symbol::Symbol;
54a0048b 115
cc61c64b 116use std::fmt::Write;
54a0048b 117
7cac9316
XL
118pub fn provide(providers: &mut Providers) {
119 *providers = Providers {
120 def_symbol_name,
121 symbol_name,
122 ..*providers
123 };
124}
125
cc61c64b
XL
126fn get_symbol_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
127
128 // the DefId of the item this name is for
129 def_id: Option<DefId>,
54a0048b
SL
130
131 // type of the item, without any generic
132 // parameters substituted; this is
133 // included in the hash as a kind of
134 // safeguard.
9e0c209e 135 item_type: Ty<'tcx>,
54a0048b
SL
136
137 // values for generic type parameters,
138 // if any.
9e0c209e 139 substs: Option<&'tcx Substs<'tcx>>)
7cac9316 140 -> u64 {
cc61c64b 141 debug!("get_symbol_hash(def_id={:?}, parameters={:?})", def_id, substs);
54a0048b 142
476ff2be 143 let mut hasher = ty::util::TypeIdHasher::<u64>::new(tcx);
9e0c209e 144
c30ab7b3 145 record_time(&tcx.sess.perf_stats.symbol_hash_time, || {
9e0c209e
SL
146 // the main symbol name is not necessarily unique; hash in the
147 // compiler's internal def-path, guaranteeing each symbol has a
148 // truly unique path
cc61c64b 149 hasher.hash(def_id.map(|def_id| tcx.def_path_hash(def_id)));
9e0c209e
SL
150
151 // Include the main item-type. Note that, in this case, the
152 // assertions about `needs_subst` may not hold, but this item-type
153 // ought to be the same for every reference anyway.
154 assert!(!item_type.has_erasable_regions());
155 hasher.visit_ty(item_type);
156
157 // also include any type parameters (for generic items)
158 if let Some(substs) = substs {
159 assert!(!substs.has_erasable_regions());
160 assert!(!substs.needs_subst());
161 substs.visit_with(&mut hasher);
32a655c1
SL
162
163 // If this is an instance of a generic function, we also hash in
164 // the ID of the instantiating crate. This avoids symbol conflicts
165 // in case the same instances is emitted in two crates of the same
166 // project.
167 if substs.types().next().is_some() {
cc61c64b
XL
168 hasher.hash(tcx.crate_name.as_str());
169 hasher.hash(tcx.sess.local_crate_disambiguator().as_str());
32a655c1 170 }
9e0c209e
SL
171 }
172 });
54a0048b 173
9e0c209e 174 // 64 bits should be enough to avoid collisions.
7cac9316
XL
175 hasher.finish()
176}
177
178fn def_symbol_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
179 -> ty::SymbolName
180{
181 let mut buffer = SymbolPathBuffer::new();
182 item_path::with_forced_absolute_paths(|| {
183 tcx.push_item_path(&mut buffer, def_id);
184 });
185 buffer.into_interned()
186}
187
188fn symbol_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: Instance<'tcx>)
189 -> ty::SymbolName
190{
191 ty::SymbolName { name: Symbol::intern(&compute_symbol_name(tcx, instance)).as_str() }
54a0048b
SL
192}
193
7cac9316
XL
194fn compute_symbol_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: Instance<'tcx>)
195 -> String
196{
cc61c64b
XL
197 let def_id = instance.def_id();
198 let substs = instance.substs;
3157f602 199
cc61c64b
XL
200 debug!("symbol_name(def_id={:?}, substs={:?})",
201 def_id, substs);
54a0048b 202
cc61c64b 203 let node_id = tcx.hir.as_local_node_id(def_id);
54a0048b 204
cc61c64b
XL
205 if let Some(id) = node_id {
206 if tcx.sess.plugin_registrar_fn.get() == Some(id) {
207 let idx = def_id.index;
208 let disambiguator = tcx.sess.local_crate_disambiguator();
209 return tcx.sess.generate_plugin_registrar_symbol(disambiguator, idx);
54a0048b 210 }
cc61c64b
XL
211 if tcx.sess.derive_registrar_fn.get() == Some(id) {
212 let idx = def_id.index;
213 let disambiguator = tcx.sess.local_crate_disambiguator();
214 return tcx.sess.generate_derive_registrar_symbol(disambiguator, idx);
3157f602 215 }
cc61c64b 216 }
3157f602 217
cc61c64b
XL
218 // FIXME(eddyb) Precompute a custom symbol name based on attributes.
219 let attrs = tcx.get_attrs(def_id);
220 let is_foreign = if let Some(id) = node_id {
221 match tcx.hir.get(id) {
222 hir_map::NodeForeignItem(_) => true,
223 _ => false
54a0048b 224 }
cc61c64b 225 } else {
7cac9316 226 tcx.is_foreign_item(def_id)
cc61c64b 227 };
54a0048b 228
cc61c64b
XL
229 if let Some(name) = weak_lang_items::link_name(&attrs) {
230 return name.to_string();
231 }
232
233 if is_foreign {
234 if let Some(name) = attr::first_attr_value_str_by_name(&attrs, "link_name") {
3157f602
XL
235 return name.to_string();
236 }
cc61c64b
XL
237 // Don't mangle foreign items.
238 return tcx.item_name(def_id).as_str().to_string();
239 }
54a0048b 240
cc61c64b
XL
241 if let Some(name) = attr::find_export_name_attr(tcx.sess.diagnostic(), &attrs) {
242 // Use provided name
243 return name.to_string();
244 }
54a0048b 245
cc61c64b
XL
246 if attr::contains_name(&attrs, "no_mangle") {
247 // Don't mangle
248 return tcx.item_name(def_id).as_str().to_string();
249 }
250
251 // We want to compute the "type" of this item. Unfortunately, some
252 // kinds of items (e.g., closures) don't have an entry in the
253 // item-type array. So walk back up the find the closest parent
254 // that DOES have an entry.
255 let mut ty_def_id = def_id;
256 let instance_ty;
257 loop {
258 let key = tcx.def_key(ty_def_id);
259 match key.disambiguated_data.data {
260 DefPathData::TypeNs(_) |
261 DefPathData::ValueNs(_) => {
7cac9316 262 instance_ty = tcx.type_of(ty_def_id);
cc61c64b
XL
263 break;
264 }
265 _ => {
266 // if we're making a symbol for something, there ought
267 // to be a value or type-def or something in there
268 // *somewhere*
269 ty_def_id.index = key.parent.unwrap_or_else(|| {
270 bug!("finding type for {:?}, encountered def-id {:?} with no \
271 parent", def_id, ty_def_id);
272 });
3157f602
XL
273 }
274 }
cc61c64b 275 }
54a0048b 276
cc61c64b
XL
277 // Erase regions because they may not be deterministic when hashed
278 // and should not matter anyhow.
279 let instance_ty = tcx.erase_regions(&instance_ty);
3157f602 280
cc61c64b 281 let hash = get_symbol_hash(tcx, Some(def_id), instance_ty, Some(substs));
3157f602 282
7cac9316 283 SymbolPathBuffer::from_interned(tcx.def_symbol_name(def_id)).finish(hash)
cc61c64b 284}
3157f602 285
cc61c64b
XL
286// Follow C++ namespace-mangling style, see
287// http://en.wikipedia.org/wiki/Name_mangling for more info.
288//
289// It turns out that on macOS you can actually have arbitrary symbols in
290// function names (at least when given to LLVM), but this is not possible
291// when using unix's linker. Perhaps one day when we just use a linker from LLVM
292// we won't need to do this name mangling. The problem with name mangling is
293// that it seriously limits the available characters. For example we can't
294// have things like &T in symbol names when one would theoretically
295// want them for things like impls of traits on that type.
296//
297// To be able to work on all platforms and get *some* reasonable output, we
298// use C++ name-mangling.
299struct SymbolPathBuffer {
300 result: String,
301 temp_buf: String
302}
54a0048b 303
cc61c64b
XL
304impl SymbolPathBuffer {
305 fn new() -> Self {
306 let mut result = SymbolPathBuffer {
307 result: String::with_capacity(64),
308 temp_buf: String::with_capacity(16)
309 };
310 result.result.push_str("_ZN"); // _Z == Begin name-sequence, N == nested
311 result
3157f602 312 }
54a0048b 313
7cac9316
XL
314 fn from_interned(symbol: ty::SymbolName) -> Self {
315 let mut result = SymbolPathBuffer {
316 result: String::with_capacity(64),
317 temp_buf: String::with_capacity(16)
318 };
319 result.result.push_str(&symbol.name);
320 result
321 }
322
323 fn into_interned(self) -> ty::SymbolName {
324 ty::SymbolName { name: Symbol::intern(&self.result).as_str() }
325 }
326
327 fn finish(mut self, hash: u64) -> String {
328 // E = end name-sequence
329 let _ = write!(self.result, "17h{:016x}E", hash);
cc61c64b
XL
330 self.result
331 }
54a0048b
SL
332}
333
334impl ItemPathBuffer for SymbolPathBuffer {
335 fn root_mode(&self) -> &RootMode {
336 const ABSOLUTE: &'static RootMode = &RootMode::Absolute;
337 ABSOLUTE
338 }
339
340 fn push(&mut self, text: &str) {
cc61c64b
XL
341 self.temp_buf.clear();
342 let need_underscore = sanitize(&mut self.temp_buf, text);
343 let _ = write!(self.result, "{}", self.temp_buf.len() + (need_underscore as usize));
344 if need_underscore {
345 self.result.push('_');
346 }
347 self.result.push_str(&self.temp_buf);
54a0048b
SL
348 }
349}
350
54a0048b
SL
351// Name sanitation. LLVM will happily accept identifiers with weird names, but
352// gas doesn't!
353// gas accepts the following characters in symbols: a-z, A-Z, 0-9, ., _, $
cc61c64b
XL
354//
355// returns true if an underscore must be added at the start
356pub fn sanitize(result: &mut String, s: &str) -> bool {
54a0048b
SL
357 for c in s.chars() {
358 match c {
359 // Escape these with $ sequences
360 '@' => result.push_str("$SP$"),
361 '*' => result.push_str("$BP$"),
362 '&' => result.push_str("$RF$"),
363 '<' => result.push_str("$LT$"),
364 '>' => result.push_str("$GT$"),
365 '(' => result.push_str("$LP$"),
366 ')' => result.push_str("$RP$"),
367 ',' => result.push_str("$C$"),
368
369 // '.' doesn't occur in types and functions, so reuse it
370 // for ':' and '-'
371 '-' | ':' => result.push('.'),
372
373 // These are legal symbols
374 'a' ... 'z'
375 | 'A' ... 'Z'
376 | '0' ... '9'
377 | '_' | '.' | '$' => result.push(c),
378
379 _ => {
380 result.push('$');
381 for c in c.escape_unicode().skip(1) {
382 match c {
383 '{' => {},
384 '}' => result.push('$'),
385 c => result.push(c),
386 }
387 }
388 }
389 }
390 }
391
392 // Underscore-qualify anything that didn't start as an ident.
cc61c64b 393 !result.is_empty() &&
54a0048b 394 result.as_bytes()[0] != '_' as u8 &&
cc61c64b 395 ! (result.as_bytes()[0] as char).is_xid_start()
54a0048b 396}