]> git.proxmox.com Git - rustc.git/blame - src/librustc_trans/collector.rs
New upstream version 1.20.0+dfsg1
[rustc.git] / src / librustc_trans / collector.rs
CommitLineData
7453a54e
SL
1// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! Translation Item Collection
12//! ===========================
13//!
14//! This module is responsible for discovering all items that will contribute to
15//! to code generation of the crate. The important part here is that it not only
16//! needs to find syntax-level items (functions, structs, etc) but also all
17//! their monomorphized instantiations. Every non-generic, non-const function
18//! maps to one LLVM artifact. Every generic function can produce
19//! from zero to N artifacts, depending on the sets of type arguments it
20//! is instantiated with.
21//! This also applies to generic items from other crates: A generic definition
22//! in crate X might produce monomorphizations that are compiled into crate Y.
23//! We also have to collect these here.
24//!
25//! The following kinds of "translation items" are handled here:
26//!
27//! - Functions
28//! - Methods
29//! - Closures
30//! - Statics
31//! - Drop glue
32//!
33//! The following things also result in LLVM artifacts, but are not collected
34//! here, since we instantiate them locally on demand when needed in a given
35//! codegen unit:
36//!
37//! - Constants
38//! - Vtables
39//! - Object Shims
40//!
41//!
42//! General Algorithm
43//! -----------------
44//! Let's define some terms first:
45//!
46//! - A "translation item" is something that results in a function or global in
47//! the LLVM IR of a codegen unit. Translation items do not stand on their
48//! own, they can reference other translation items. For example, if function
49//! `foo()` calls function `bar()` then the translation item for `foo()`
50//! references the translation item for function `bar()`. In general, the
51//! definition for translation item A referencing a translation item B is that
52//! the LLVM artifact produced for A references the LLVM artifact produced
53//! for B.
54//!
32a655c1 55//! - Translation items and the references between them form a directed graph,
7453a54e
SL
56//! where the translation items are the nodes and references form the edges.
57//! Let's call this graph the "translation item graph".
58//!
59//! - The translation item graph for a program contains all translation items
60//! that are needed in order to produce the complete LLVM IR of the program.
61//!
62//! The purpose of the algorithm implemented in this module is to build the
63//! translation item graph for the current crate. It runs in two phases:
64//!
65//! 1. Discover the roots of the graph by traversing the HIR of the crate.
66//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
67//! representation of the item corresponding to a given node, until no more
68//! new nodes are found.
69//!
70//! ### Discovering roots
71//!
72//! The roots of the translation item graph correspond to the non-generic
73//! syntactic items in the source code. We find them by walking the HIR of the
74//! crate, and whenever we hit upon a function, method, or static item, we
75//! create a translation item consisting of the items DefId and, since we only
76//! consider non-generic items, an empty type-substitution set.
77//!
78//! ### Finding neighbor nodes
79//! Given a translation item node, we can discover neighbors by inspecting its
80//! MIR. We walk the MIR and any time we hit upon something that signifies a
81//! reference to another translation item, we have found a neighbor. Since the
82//! translation item we are currently at is always monomorphic, we also know the
83//! concrete type arguments of its neighbors, and so all neighbors again will be
84//! monomorphic. The specific forms a reference to a neighboring node can take
85//! in MIR are quite diverse. Here is an overview:
86//!
87//! #### Calling Functions/Methods
88//! The most obvious form of one translation item referencing another is a
89//! function or method call (represented by a CALL terminator in MIR). But
90//! calls are not the only thing that might introduce a reference between two
91//! function translation items, and as we will see below, they are just a
92//! specialized of the form described next, and consequently will don't get any
93//! special treatment in the algorithm.
94//!
95//! #### Taking a reference to a function or method
96//! A function does not need to actually be called in order to be a neighbor of
97//! another function. It suffices to just take a reference in order to introduce
98//! an edge. Consider the following example:
99//!
100//! ```rust
101//! fn print_val<T: Display>(x: T) {
102//! println!("{}", x);
103//! }
104//!
105//! fn call_fn(f: &Fn(i32), x: i32) {
106//! f(x);
107//! }
108//!
109//! fn main() {
110//! let print_i32 = print_val::<i32>;
111//! call_fn(&print_i32, 0);
112//! }
113//! ```
114//! The MIR of none of these functions will contain an explicit call to
115//! `print_val::<i32>`. Nonetheless, in order to translate this program, we need
116//! an instance of this function. Thus, whenever we encounter a function or
117//! method in operand position, we treat it as a neighbor of the current
118//! translation item. Calls are just a special case of that.
119//!
120//! #### Closures
121//! In a way, closures are a simple case. Since every closure object needs to be
122//! constructed somewhere, we can reliably discover them by observing
123//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
124//! true for closures inlined from other crates.
125//!
126//! #### Drop glue
127//! Drop glue translation items are introduced by MIR drop-statements. The
128//! generated translation item will again have drop-glue item neighbors if the
129//! type to be dropped contains nested values that also need to be dropped. It
130//! might also have a function item neighbor for the explicit `Drop::drop`
131//! implementation of its type.
132//!
133//! #### Unsizing Casts
134//! A subtle way of introducing neighbor edges is by casting to a trait object.
135//! Since the resulting fat-pointer contains a reference to a vtable, we need to
136//! instantiate all object-save methods of the trait, as we need to store
137//! pointers to these functions even if they never get called anywhere. This can
138//! be seen as a special case of taking a function reference.
139//!
140//! #### Boxes
141//! Since `Box` expression have special compiler support, no explicit calls to
142//! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
143//! compiler will generate them. We have to observe `Rvalue::Box` expressions
144//! and Box-typed drop-statements for that purpose.
145//!
146//!
147//! Interaction with Cross-Crate Inlining
148//! -------------------------------------
149//! The binary of a crate will not only contain machine code for the items
150//! defined in the source code of that crate. It will also contain monomorphic
151//! instantiations of any extern generic functions and of functions marked with
152//! #[inline].
153//! The collection algorithm handles this more or less transparently. If it is
154//! about to create a translation item for something with an external `DefId`,
155//! it will take a look if the MIR for that item is available, and if so just
9e0c209e 156//! proceed normally. If the MIR is not available, it assumes that the item is
7453a54e
SL
157//! just linked to and no node is created; which is exactly what we want, since
158//! no machine code should be generated in the current crate for such an item.
159//!
160//! Eager and Lazy Collection Mode
161//! ------------------------------
162//! Translation item collection can be performed in one of two modes:
163//!
164//! - Lazy mode means that items will only be instantiated when actually
165//! referenced. The goal is to produce the least amount of machine code
166//! possible.
167//!
168//! - Eager mode is meant to be used in conjunction with incremental compilation
169//! where a stable set of translation items is more important than a minimal
170//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
171//! in the crate, even of no drop call for that type exists (yet). It will
172//! also instantiate default implementations of trait methods, something that
173//! otherwise is only done on demand.
174//!
175//!
176//! Open Issues
177//! -----------
178//! Some things are not yet fully implemented in the current version of this
179//! module.
180//!
181//! ### Initializers of Constants and Statics
182//! Since no MIR is constructed yet for initializer expressions of constants and
183//! statics we cannot inspect these properly.
184//!
185//! ### Const Fns
186//! Ideally, no translation item should be generated for const fns unless there
187//! is a call to them that cannot be evaluated at compile time. At the moment
188//! this is not implemented however: a translation item will be produced
189//! regardless of whether it is actually needed or not.
190
54a0048b 191use rustc::hir;
476ff2be 192use rustc::hir::itemlikevisit::ItemLikeVisitor;
7453a54e 193
54a0048b
SL
194use rustc::hir::map as hir_map;
195use rustc::hir::def_id::DefId;
cc61c64b 196use rustc::middle::lang_items::{ExchangeMallocFnLangItem};
54a0048b 197use rustc::traits;
041b39d2 198use rustc::ty::subst::Substs;
a7813a04 199use rustc::ty::{self, TypeFoldable, TyCtxt};
54a0048b 200use rustc::ty::adjustment::CustomCoerceUnsized;
c30ab7b3 201use rustc::mir::{self, Location};
7453a54e
SL
202use rustc::mir::visit::Visitor as MirVisitor;
203
a7813a04 204use context::SharedCrateContext;
cc61c64b 205use common::{def_ty, instance_ty};
54a0048b 206use monomorphize::{self, Instance};
7cac9316 207use rustc::util::nodemap::{FxHashSet, FxHashMap, DefIdMap};
7453a54e 208
32a655c1
SL
209use trans_item::{TransItem, DefPathBasedNames, InstantiationMode};
210
7453a54e
SL
211#[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
212pub enum TransItemCollectionMode {
213 Eager,
214 Lazy
215}
216
a7813a04
XL
217/// Maps every translation item to all translation items it references in its
218/// body.
219pub struct InliningMap<'tcx> {
220 // Maps a source translation item to a range of target translation items
221 // that are potentially inlined by LLVM into the source.
222 // The two numbers in the tuple are the start (inclusive) and
223 // end index (exclusive) within the `targets` vecs.
476ff2be 224 index: FxHashMap<TransItem<'tcx>, (usize, usize)>,
a7813a04 225 targets: Vec<TransItem<'tcx>>,
7453a54e
SL
226}
227
a7813a04
XL
228impl<'tcx> InliningMap<'tcx> {
229
230 fn new() -> InliningMap<'tcx> {
231 InliningMap {
476ff2be 232 index: FxHashMap(),
a7813a04
XL
233 targets: Vec::new(),
234 }
235 }
236
237 fn record_inlining_canditates<I>(&mut self,
238 source: TransItem<'tcx>,
239 targets: I)
240 where I: Iterator<Item=TransItem<'tcx>>
241 {
242 assert!(!self.index.contains_key(&source));
243
244 let start_index = self.targets.len();
245 self.targets.extend(targets);
246 let end_index = self.targets.len();
247 self.index.insert(source, (start_index, end_index));
248 }
249
250 // Internally iterate over all items referenced by `source` which will be
251 // made available for inlining.
252 pub fn with_inlining_candidates<F>(&self, source: TransItem<'tcx>, mut f: F)
253 where F: FnMut(TransItem<'tcx>) {
254 if let Some(&(start_index, end_index)) = self.index.get(&source)
255 {
256 for candidate in &self.targets[start_index .. end_index] {
257 f(*candidate)
7453a54e 258 }
a7813a04 259 }
7453a54e
SL
260 }
261}
262
a7813a04 263pub fn collect_crate_translation_items<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e 264 mode: TransItemCollectionMode)
476ff2be 265 -> (FxHashSet<TransItem<'tcx>>,
a7813a04 266 InliningMap<'tcx>) {
7453a54e
SL
267 // We are not tracking dependencies of this pass as it has to be re-executed
268 // every time no matter what.
a7813a04
XL
269 scx.tcx().dep_graph.with_ignore(|| {
270 let roots = collect_roots(scx, mode);
7453a54e
SL
271
272 debug!("Building translation item graph, beginning at roots");
476ff2be 273 let mut visited = FxHashSet();
7453a54e 274 let mut recursion_depths = DefIdMap();
a7813a04 275 let mut inlining_map = InliningMap::new();
7453a54e
SL
276
277 for root in roots {
a7813a04
XL
278 collect_items_rec(scx,
279 root,
280 &mut visited,
281 &mut recursion_depths,
282 &mut inlining_map);
7453a54e
SL
283 }
284
a7813a04 285 (visited, inlining_map)
7453a54e
SL
286 })
287}
288
289// Find all non-generic items by walking the HIR. These items serve as roots to
290// start monomorphizing from.
a7813a04 291fn collect_roots<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e
SL
292 mode: TransItemCollectionMode)
293 -> Vec<TransItem<'tcx>> {
294 debug!("Collecting roots");
295 let mut roots = Vec::new();
296
297 {
298 let mut visitor = RootCollector {
a7813a04 299 scx: scx,
7453a54e
SL
300 mode: mode,
301 output: &mut roots,
7453a54e
SL
302 };
303
32a655c1 304 scx.tcx().hir.krate().visit_all_item_likes(&mut visitor);
7453a54e
SL
305 }
306
041b39d2
XL
307 // We can only translate items that are instantiable - items all of
308 // whose predicates hold. Luckily, items that aren't instantiable
309 // can't actually be used, so we can just skip translating them.
310 roots.retain(|root| root.is_instantiable(scx.tcx()));
311
7453a54e
SL
312 roots
313}
314
7453a54e 315// Collect all monomorphized translation items reachable from `starting_point`
a7813a04 316fn collect_items_rec<'a, 'tcx: 'a>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e 317 starting_point: TransItem<'tcx>,
476ff2be 318 visited: &mut FxHashSet<TransItem<'tcx>>,
a7813a04
XL
319 recursion_depths: &mut DefIdMap<usize>,
320 inlining_map: &mut InliningMap<'tcx>) {
7453a54e
SL
321 if !visited.insert(starting_point.clone()) {
322 // We've been here already, no need to search again.
323 return;
324 }
a7813a04 325 debug!("BEGIN collect_items_rec({})", starting_point.to_string(scx.tcx()));
7453a54e
SL
326
327 let mut neighbors = Vec::new();
328 let recursion_depth_reset;
329
330 match starting_point {
a7813a04 331 TransItem::Static(node_id) => {
32a655c1 332 let def_id = scx.tcx().hir.local_def_id(node_id);
cc61c64b 333 let instance = Instance::mono(scx.tcx(), def_id);
32a655c1
SL
334
335 // Sanity check whether this ended up being collected accidentally
cc61c64b 336 debug_assert!(should_trans_locally(scx.tcx(), &instance));
32a655c1 337
cc61c64b
XL
338 let ty = instance_ty(scx, &instance);
339 visit_drop_use(scx, ty, true, &mut neighbors);
a7813a04 340
7453a54e 341 recursion_depth_reset = None;
a7813a04 342
cc61c64b 343 collect_neighbours(scx, instance, &mut neighbors);
7453a54e 344 }
54a0048b 345 TransItem::Fn(instance) => {
32a655c1 346 // Sanity check whether this ended up being collected accidentally
cc61c64b 347 debug_assert!(should_trans_locally(scx.tcx(), &instance));
32a655c1 348
7453a54e 349 // Keep track of the monomorphization recursion depth
a7813a04 350 recursion_depth_reset = Some(check_recursion_limit(scx.tcx(),
54a0048b 351 instance,
7453a54e 352 recursion_depths));
476ff2be 353 check_type_length_limit(scx.tcx(), instance);
7453a54e 354
32a655c1 355 collect_neighbours(scx, instance, &mut neighbors);
7453a54e 356 }
cc61c64b
XL
357 TransItem::GlobalAsm(..) => {
358 recursion_depth_reset = None;
359 }
7453a54e
SL
360 }
361
a7813a04
XL
362 record_inlining_canditates(scx.tcx(), starting_point, &neighbors[..], inlining_map);
363
7453a54e 364 for neighbour in neighbors {
a7813a04 365 collect_items_rec(scx, neighbour, visited, recursion_depths, inlining_map);
7453a54e
SL
366 }
367
368 if let Some((def_id, depth)) = recursion_depth_reset {
369 recursion_depths.insert(def_id, depth);
370 }
371
a7813a04 372 debug!("END collect_items_rec({})", starting_point.to_string(scx.tcx()));
7453a54e
SL
373}
374
a7813a04
XL
375fn record_inlining_canditates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
376 caller: TransItem<'tcx>,
377 callees: &[TransItem<'tcx>],
378 inlining_map: &mut InliningMap<'tcx>) {
379 let is_inlining_candidate = |trans_item: &TransItem<'tcx>| {
32a655c1 380 trans_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
a7813a04
XL
381 };
382
383 let inlining_candidates = callees.into_iter()
384 .map(|x| *x)
385 .filter(is_inlining_candidate);
386
387 inlining_map.record_inlining_canditates(caller, inlining_candidates);
388}
389
390fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
391 instance: Instance<'tcx>,
392 recursion_depths: &mut DefIdMap<usize>)
393 -> (DefId, usize) {
cc61c64b
XL
394 let def_id = instance.def_id();
395 let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
7453a54e
SL
396 debug!(" => recursion depth={}", recursion_depth);
397
cc61c64b
XL
398 let recursion_depth = if Some(def_id) == tcx.lang_items.drop_in_place_fn() {
399 // HACK: drop_in_place creates tight monomorphization loops. Give
400 // it more margin.
401 recursion_depth / 4
402 } else {
403 recursion_depth
404 };
405
7453a54e
SL
406 // Code that needs to instantiate the same function recursively
407 // more than the recursion limit is assumed to be causing an
408 // infinite expansion.
a7813a04 409 if recursion_depth > tcx.sess.recursion_limit.get() {
54a0048b
SL
410 let error = format!("reached the recursion limit while instantiating `{}`",
411 instance);
cc61c64b 412 if let Some(node_id) = tcx.hir.as_local_node_id(def_id) {
32a655c1 413 tcx.sess.span_fatal(tcx.hir.span(node_id), &error);
7453a54e 414 } else {
a7813a04 415 tcx.sess.fatal(&error);
7453a54e
SL
416 }
417 }
418
cc61c64b 419 recursion_depths.insert(def_id, recursion_depth + 1);
7453a54e 420
cc61c64b 421 (def_id, recursion_depth)
7453a54e
SL
422}
423
476ff2be
SL
424fn check_type_length_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
425 instance: Instance<'tcx>)
426{
427 let type_length = instance.substs.types().flat_map(|ty| ty.walk()).count();
428 debug!(" => type length={}", type_length);
429
430 // Rust code can easily create exponentially-long types using only a
431 // polynomial recursion depth. Even with the default recursion
432 // depth, you can easily get cases that take >2^60 steps to run,
433 // which means that rustc basically hangs.
434 //
435 // Bail out in these cases to avoid that bad user experience.
436 let type_length_limit = tcx.sess.type_length_limit.get();
437 if type_length > type_length_limit {
438 // The instance name is already known to be too long for rustc. Use
439 // `{:.64}` to avoid blasting the user's terminal with thousands of
440 // lines of type-name.
441 let instance_name = instance.to_string();
442 let msg = format!("reached the type-length limit while instantiating `{:.64}...`",
443 instance_name);
cc61c64b 444 let mut diag = if let Some(node_id) = tcx.hir.as_local_node_id(instance.def_id()) {
32a655c1 445 tcx.sess.struct_span_fatal(tcx.hir.span(node_id), &msg)
476ff2be
SL
446 } else {
447 tcx.sess.struct_fatal(&msg)
448 };
449
450 diag.note(&format!(
451 "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
452 type_length_limit*2));
453 diag.emit();
454 tcx.sess.abort_if_errors();
455 }
456}
457
7453a54e 458struct MirNeighborCollector<'a, 'tcx: 'a> {
a7813a04 459 scx: &'a SharedCrateContext<'a, 'tcx>,
7453a54e
SL
460 mir: &'a mir::Mir<'tcx>,
461 output: &'a mut Vec<TransItem<'tcx>>,
462 param_substs: &'tcx Substs<'tcx>
463}
464
465impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
466
9e0c209e 467 fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
7453a54e
SL
468 debug!("visiting rvalue {:?}", *rvalue);
469
470 match *rvalue {
7453a54e
SL
471 // When doing an cast from a regular pointer to a fat pointer, we
472 // have to instantiate all methods of the trait being cast to, so we
473 // can build the appropriate vtable.
474 mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
cc61c64b
XL
475 let target_ty = self.scx.tcx().trans_apply_param_substs(self.param_substs,
476 &target_ty);
5bcae85e 477 let source_ty = operand.ty(self.mir, self.scx.tcx());
cc61c64b
XL
478 let source_ty = self.scx.tcx().trans_apply_param_substs(self.param_substs,
479 &source_ty);
a7813a04 480 let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.scx,
7453a54e
SL
481 source_ty,
482 target_ty);
483 // This could also be a different Unsize instruction, like
484 // from a fixed sized array to a slice. But we are only
485 // interested in things that produce a vtable.
486 if target_ty.is_trait() && !source_ty.is_trait() {
a7813a04 487 create_trans_items_for_vtable_methods(self.scx,
7453a54e
SL
488 target_ty,
489 source_ty,
490 self.output);
491 }
492 }
cc61c64b
XL
493 mir::Rvalue::Cast(mir::CastKind::ReifyFnPointer, ref operand, _) => {
494 let fn_ty = operand.ty(self.mir, self.scx.tcx());
495 let fn_ty = self.scx.tcx().trans_apply_param_substs(self.param_substs,
496 &fn_ty);
497 visit_fn_use(self.scx, fn_ty, false, &mut self.output);
498 }
8bb4bdeb
XL
499 mir::Rvalue::Cast(mir::CastKind::ClosureFnPointer, ref operand, _) => {
500 let source_ty = operand.ty(self.mir, self.scx.tcx());
7cac9316
XL
501 let source_ty = self.scx.tcx().trans_apply_param_substs(self.param_substs,
502 &source_ty);
8bb4bdeb
XL
503 match source_ty.sty {
504 ty::TyClosure(def_id, substs) => {
cc61c64b
XL
505 let instance = monomorphize::resolve_closure(
506 self.scx, def_id, substs, ty::ClosureKind::FnOnce);
507 self.output.push(create_fn_trans_item(instance));
8bb4bdeb
XL
508 }
509 _ => bug!(),
510 }
511 }
7cac9316 512 mir::Rvalue::NullaryOp(mir::NullOp::Box, _) => {
cc61c64b
XL
513 let tcx = self.scx.tcx();
514 let exchange_malloc_fn_def_id = tcx
515 .lang_items
516 .require(ExchangeMallocFnLangItem)
517 .unwrap_or_else(|e| self.scx.sess().fatal(&e));
518 let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
519 if should_trans_locally(tcx, &instance) {
520 self.output.push(create_fn_trans_item(instance));
32a655c1 521 }
7453a54e
SL
522 }
523 _ => { /* not interesting */ }
524 }
525
9e0c209e 526 self.super_rvalue(rvalue, location);
7453a54e
SL
527 }
528
cc61c64b
XL
529 fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: Location) {
530 debug!("visiting constant {:?} @ {:?}", *constant, location);
5bcae85e 531
cc61c64b
XL
532 if let ty::TyFnDef(..) = constant.ty.sty {
533 // function definitions are zero-sized, and only generate
534 // IR when they are called/reified.
535 self.super_constant(constant, location);
536 return
7453a54e
SL
537 }
538
cc61c64b
XL
539 if let mir::Literal::Item { def_id, substs } = constant.literal {
540 let substs = self.scx.tcx().trans_apply_param_substs(self.param_substs,
541 &substs);
542 let instance = monomorphize::resolve(self.scx, def_id, substs);
543 collect_neighbours(self.scx, instance, self.output);
a7813a04 544 }
cc61c64b
XL
545
546 self.super_constant(constant, location);
a7813a04
XL
547 }
548
a7813a04
XL
549 fn visit_terminator_kind(&mut self,
550 block: mir::BasicBlock,
9e0c209e
SL
551 kind: &mir::TerminatorKind<'tcx>,
552 location: Location) {
7cac9316
XL
553 debug!("visiting terminator {:?} @ {:?}", kind, location);
554
a7813a04
XL
555 let tcx = self.scx.tcx();
556 match *kind {
cc61c64b
XL
557 mir::TerminatorKind::Call { ref func, .. } => {
558 let callee_ty = func.ty(self.mir, tcx);
559 let callee_ty = tcx.trans_apply_param_substs(self.param_substs, &callee_ty);
560 visit_fn_use(self.scx, callee_ty, true, &mut self.output);
a7813a04 561 }
cc61c64b
XL
562 mir::TerminatorKind::Drop { ref location, .. } |
563 mir::TerminatorKind::DropAndReplace { ref location, .. } => {
564 let ty = location.ty(self.mir, self.scx.tcx())
565 .to_ty(self.scx.tcx());
566 let ty = tcx.trans_apply_param_substs(self.param_substs, &ty);
567 visit_drop_use(self.scx, ty, true, self.output);
568 }
569 mir::TerminatorKind::Goto { .. } |
570 mir::TerminatorKind::SwitchInt { .. } |
571 mir::TerminatorKind::Resume |
572 mir::TerminatorKind::Return |
573 mir::TerminatorKind::Unreachable |
574 mir::TerminatorKind::Assert { .. } => {}
a7813a04
XL
575 }
576
9e0c209e 577 self.super_terminator_kind(block, kind, location);
7453a54e
SL
578 }
579}
580
cc61c64b
XL
581fn visit_drop_use<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
582 ty: ty::Ty<'tcx>,
583 is_direct_call: bool,
584 output: &mut Vec<TransItem<'tcx>>)
585{
586 let instance = monomorphize::resolve_drop_in_place(scx, ty);
587 visit_instance_use(scx, instance, is_direct_call, output);
7453a54e
SL
588}
589
cc61c64b
XL
590fn visit_fn_use<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
591 ty: ty::Ty<'tcx>,
592 is_direct_call: bool,
593 output: &mut Vec<TransItem<'tcx>>)
594{
041b39d2 595 if let ty::TyFnDef(def_id, substs) = ty.sty {
cc61c64b
XL
596 let instance = monomorphize::resolve(scx, def_id, substs);
597 visit_instance_use(scx, instance, is_direct_call, output);
7453a54e 598 }
cc61c64b 599}
7453a54e 600
cc61c64b
XL
601fn visit_instance_use<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
602 instance: ty::Instance<'tcx>,
603 is_direct_call: bool,
604 output: &mut Vec<TransItem<'tcx>>)
605{
606 debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
607 if !should_trans_locally(scx.tcx(), &instance) {
608 return
7453a54e
SL
609 }
610
cc61c64b
XL
611 match instance.def {
612 ty::InstanceDef::Intrinsic(def_id) => {
613 if !is_direct_call {
614 bug!("intrinsic {:?} being reified", def_id);
32a655c1
SL
615 }
616 }
cc61c64b
XL
617 ty::InstanceDef::Virtual(..) |
618 ty::InstanceDef::DropGlue(_, None) => {
619 // don't need to emit shim if we are calling directly.
620 if !is_direct_call {
621 output.push(create_fn_trans_item(instance));
7453a54e
SL
622 }
623 }
7cac9316 624 ty::InstanceDef::DropGlue(_, Some(_)) => {
cc61c64b 625 output.push(create_fn_trans_item(instance));
7453a54e 626 }
cc61c64b
XL
627 ty::InstanceDef::ClosureOnceShim { .. } |
628 ty::InstanceDef::Item(..) |
629 ty::InstanceDef::FnPtrShim(..) => {
630 output.push(create_fn_trans_item(instance));
32a655c1 631 }
7453a54e
SL
632 }
633}
634
cc61c64b
XL
635// Returns true if we should translate an instance in the local crate.
636// Returns false if we can just link to the upstream crate and therefore don't
637// need a translation item.
638fn should_trans_locally<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &Instance<'tcx>)
639 -> bool {
640 let def_id = match instance.def {
641 ty::InstanceDef::Item(def_id) => def_id,
642 ty::InstanceDef::ClosureOnceShim { .. } |
643 ty::InstanceDef::Virtual(..) |
644 ty::InstanceDef::FnPtrShim(..) |
645 ty::InstanceDef::DropGlue(..) |
646 ty::InstanceDef::Intrinsic(_) => return true
647 };
648 match tcx.hir.get_if_local(def_id) {
649 Some(hir_map::NodeForeignItem(..)) => {
650 false // foreign items are linked against, not translated.
651 }
652 Some(_) => true,
653 None => {
7cac9316
XL
654 if tcx.is_exported_symbol(def_id) ||
655 tcx.is_foreign_item(def_id)
cc61c64b
XL
656 {
657 // We can link to the item in question, no instance needed
658 // in this crate
659 false
32a655c1 660 } else {
7cac9316 661 if !tcx.is_mir_available(def_id) {
cc61c64b
XL
662 bug!("Cannot create local trans-item for {:?}", def_id)
663 }
664 true
32a655c1
SL
665 }
666 }
7453a54e
SL
667 }
668}
669
670/// For given pair of source and target type that occur in an unsizing coercion,
671/// this function finds the pair of types that determines the vtable linking
672/// them.
673///
674/// For example, the source type might be `&SomeStruct` and the target type\
675/// might be `&SomeTrait` in a cast like:
676///
677/// let src: &SomeStruct = ...;
678/// let target = src as &SomeTrait;
679///
680/// Then the output of this function would be (SomeStruct, SomeTrait) since for
681/// constructing the `target` fat-pointer we need the vtable for that pair.
682///
683/// Things can get more complicated though because there's also the case where
684/// the unsized type occurs as a field:
685///
686/// ```rust
687/// struct ComplexStruct<T: ?Sized> {
688/// a: u32,
689/// b: f64,
690/// c: T
691/// }
692/// ```
693///
694/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
695/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
696/// for the pair of `T` (which is a trait) and the concrete type that `T` was
697/// originally coerced from:
698///
699/// let src: &ComplexStruct<SomeStruct> = ...;
700/// let target = src as &ComplexStruct<SomeTrait>;
701///
702/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
703/// `(SomeStruct, SomeTrait)`.
704///
705/// Finally, there is also the case of custom unsizing coercions, e.g. for
706/// smart pointers such as `Rc` and `Arc`.
a7813a04 707fn find_vtable_types_for_unsizing<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e
SL
708 source_ty: ty::Ty<'tcx>,
709 target_ty: ty::Ty<'tcx>)
710 -> (ty::Ty<'tcx>, ty::Ty<'tcx>) {
32a655c1
SL
711 let ptr_vtable = |inner_source: ty::Ty<'tcx>, inner_target: ty::Ty<'tcx>| {
712 if !scx.type_is_sized(inner_source) {
713 (inner_source, inner_target)
714 } else {
715 scx.tcx().struct_lockstep_tails(inner_source, inner_target)
716 }
717 };
7453a54e 718 match (&source_ty.sty, &target_ty.sty) {
7453a54e
SL
719 (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
720 &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
721 (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
722 &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
723 (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
724 &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
32a655c1
SL
725 ptr_vtable(a, b)
726 }
727 (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
728 ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
7453a54e
SL
729 }
730
9e0c209e
SL
731 (&ty::TyAdt(source_adt_def, source_substs),
732 &ty::TyAdt(target_adt_def, target_substs)) => {
7453a54e
SL
733 assert_eq!(source_adt_def, target_adt_def);
734
cc61c64b
XL
735 let kind =
736 monomorphize::custom_coerce_unsize_info(scx, source_ty, target_ty);
7453a54e
SL
737
738 let coerce_index = match kind {
739 CustomCoerceUnsized::Struct(i) => i
740 };
741
742 let source_fields = &source_adt_def.struct_variant().fields;
743 let target_fields = &target_adt_def.struct_variant().fields;
744
745 assert!(coerce_index < source_fields.len() &&
746 source_fields.len() == target_fields.len());
747
a7813a04
XL
748 find_vtable_types_for_unsizing(scx,
749 source_fields[coerce_index].ty(scx.tcx(),
7453a54e 750 source_substs),
a7813a04 751 target_fields[coerce_index].ty(scx.tcx(),
7453a54e
SL
752 target_substs))
753 }
54a0048b
SL
754 _ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
755 source_ty,
756 target_ty)
7453a54e
SL
757 }
758}
759
cc61c64b
XL
760fn create_fn_trans_item<'a, 'tcx>(instance: Instance<'tcx>) -> TransItem<'tcx> {
761 debug!("create_fn_trans_item(instance={})", instance);
762 TransItem::Fn(instance)
7453a54e
SL
763}
764
765/// Creates a `TransItem` for each method that is referenced by the vtable for
766/// the given trait/impl pair.
a7813a04 767fn create_trans_items_for_vtable_methods<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e
SL
768 trait_ty: ty::Ty<'tcx>,
769 impl_ty: ty::Ty<'tcx>,
770 output: &mut Vec<TransItem<'tcx>>) {
8bb4bdeb
XL
771 assert!(!trait_ty.needs_subst() && !trait_ty.has_escaping_regions() &&
772 !impl_ty.needs_subst() && !impl_ty.has_escaping_regions());
7453a54e 773
476ff2be
SL
774 if let ty::TyDynamic(ref trait_ty, ..) = trait_ty.sty {
775 if let Some(principal) = trait_ty.principal() {
776 let poly_trait_ref = principal.with_self_ty(scx.tcx(), impl_ty);
8bb4bdeb
XL
777 assert!(!poly_trait_ref.has_escaping_regions());
778
476ff2be
SL
779 // Walk all methods of the trait, including those of its supertraits
780 let methods = traits::get_vtable_methods(scx.tcx(), poly_trait_ref);
781 let methods = methods.filter_map(|method| method)
cc61c64b
XL
782 .map(|(def_id, substs)| monomorphize::resolve(scx, def_id, substs))
783 .filter(|&instance| should_trans_locally(scx.tcx(), &instance))
784 .map(|instance| create_fn_trans_item(instance));
476ff2be
SL
785 output.extend(methods);
786 }
9e0c209e 787 // Also add the destructor
cc61c64b 788 visit_drop_use(scx, impl_ty, false, output);
7453a54e
SL
789 }
790}
791
792//=-----------------------------------------------------------------------------
793// Root Collection
794//=-----------------------------------------------------------------------------
795
796struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
a7813a04 797 scx: &'b SharedCrateContext<'a, 'tcx>,
7453a54e
SL
798 mode: TransItemCollectionMode,
799 output: &'b mut Vec<TransItem<'tcx>>,
7453a54e
SL
800}
801
476ff2be 802impl<'b, 'a, 'v> ItemLikeVisitor<'v> for RootCollector<'b, 'a, 'v> {
7453a54e 803 fn visit_item(&mut self, item: &'v hir::Item) {
7453a54e
SL
804 match item.node {
805 hir::ItemExternCrate(..) |
806 hir::ItemUse(..) |
807 hir::ItemForeignMod(..) |
808 hir::ItemTy(..) |
809 hir::ItemDefaultImpl(..) |
810 hir::ItemTrait(..) |
7453a54e
SL
811 hir::ItemMod(..) => {
812 // Nothing to do, just keep recursing...
813 }
814
815 hir::ItemImpl(..) => {
816 if self.mode == TransItemCollectionMode::Eager {
9e0c209e 817 create_trans_items_for_default_impls(self.scx,
7453a54e 818 item,
7453a54e
SL
819 self.output);
820 }
821 }
822
9e0c209e
SL
823 hir::ItemEnum(_, ref generics) |
824 hir::ItemStruct(_, ref generics) |
825 hir::ItemUnion(_, ref generics) => {
7453a54e 826 if !generics.is_parameterized() {
7453a54e 827 if self.mode == TransItemCollectionMode::Eager {
32a655c1 828 let def_id = self.scx.tcx().hir.local_def_id(item.id);
7453a54e 829 debug!("RootCollector: ADT drop-glue for {}",
476ff2be 830 def_id_to_string(self.scx.tcx(), def_id));
7453a54e 831
8bb4bdeb 832 let ty = def_ty(self.scx, def_id, Substs::empty());
cc61c64b 833 visit_drop_use(self.scx, ty, true, self.output);
7453a54e
SL
834 }
835 }
836 }
cc61c64b
XL
837 hir::ItemGlobalAsm(..) => {
838 debug!("RootCollector: ItemGlobalAsm({})",
839 def_id_to_string(self.scx.tcx(),
840 self.scx.tcx().hir.local_def_id(item.id)));
841 self.output.push(TransItem::GlobalAsm(item.id));
842 }
7453a54e
SL
843 hir::ItemStatic(..) => {
844 debug!("RootCollector: ItemStatic({})",
a7813a04 845 def_id_to_string(self.scx.tcx(),
32a655c1 846 self.scx.tcx().hir.local_def_id(item.id)));
7453a54e
SL
847 self.output.push(TransItem::Static(item.id));
848 }
5bcae85e
SL
849 hir::ItemConst(..) => {
850 // const items only generate translation items if they are
851 // actually used somewhere. Just declaring them is insufficient.
852 }
9e0c209e 853 hir::ItemFn(.., ref generics, _) => {
5bcae85e 854 if !generics.is_type_parameterized() {
32a655c1 855 let def_id = self.scx.tcx().hir.local_def_id(item.id);
7453a54e
SL
856
857 debug!("RootCollector: ItemFn({})",
a7813a04 858 def_id_to_string(self.scx.tcx(), def_id));
7453a54e 859
cc61c64b 860 let instance = Instance::mono(self.scx.tcx(), def_id);
54a0048b 861 self.output.push(TransItem::Fn(instance));
7453a54e
SL
862 }
863 }
864 }
7453a54e
SL
865 }
866
32a655c1
SL
867 fn visit_trait_item(&mut self, _: &'v hir::TraitItem) {
868 // Even if there's a default body with no explicit generics,
869 // it's still generic over some `Self: Trait`, so not a root.
870 }
871
7453a54e
SL
872 fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
873 match ii.node {
874 hir::ImplItemKind::Method(hir::MethodSig {
875 ref generics,
7453a54e 876 ..
5bcae85e 877 }, _) => {
32a655c1 878 let hir_map = &self.scx.tcx().hir;
7453a54e
SL
879 let parent_node_id = hir_map.get_parent_node(ii.id);
880 let is_impl_generic = match hir_map.expect_item(parent_node_id) {
881 &hir::Item {
7cac9316 882 node: hir::ItemImpl(_, _, _, ref generics, ..),
7453a54e
SL
883 ..
884 } => {
885 generics.is_type_parameterized()
886 }
887 _ => {
54a0048b 888 bug!()
7453a54e
SL
889 }
890 };
891
892 if !generics.is_type_parameterized() && !is_impl_generic {
32a655c1 893 let def_id = self.scx.tcx().hir.local_def_id(ii.id);
7453a54e
SL
894
895 debug!("RootCollector: MethodImplItem({})",
a7813a04 896 def_id_to_string(self.scx.tcx(), def_id));
7453a54e 897
cc61c64b 898 let instance = Instance::mono(self.scx.tcx(), def_id);
54a0048b 899 self.output.push(TransItem::Fn(instance));
7453a54e
SL
900 }
901 }
902 _ => { /* Nothing to do here */ }
903 }
7453a54e
SL
904 }
905}
906
9e0c209e 907fn create_trans_items_for_default_impls<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e 908 item: &'tcx hir::Item,
7453a54e 909 output: &mut Vec<TransItem<'tcx>>) {
9e0c209e 910 let tcx = scx.tcx();
7453a54e
SL
911 match item.node {
912 hir::ItemImpl(_,
7cac9316 913 _,
7453a54e
SL
914 _,
915 ref generics,
9e0c209e 916 ..,
476ff2be 917 ref impl_item_refs) => {
7453a54e
SL
918 if generics.is_type_parameterized() {
919 return
920 }
921
32a655c1 922 let impl_def_id = tcx.hir.local_def_id(item.id);
7453a54e
SL
923
924 debug!("create_trans_items_for_default_impls(item={})",
a7813a04 925 def_id_to_string(tcx, impl_def_id));
7453a54e
SL
926
927 if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
a7813a04 928 let callee_substs = tcx.erase_regions(&trait_ref.substs);
476ff2be
SL
929 let overridden_methods: FxHashSet<_> =
930 impl_item_refs.iter()
931 .map(|iiref| iiref.name)
932 .collect();
9e0c209e
SL
933 for method in tcx.provided_trait_methods(trait_ref.def_id) {
934 if overridden_methods.contains(&method.name) {
7453a54e
SL
935 continue;
936 }
937
7cac9316 938 if !tcx.generics_of(method.def_id).types.is_empty() {
7453a54e
SL
939 continue;
940 }
941
cc61c64b
XL
942 let instance =
943 monomorphize::resolve(scx, method.def_id, callee_substs);
944
041b39d2
XL
945 let trans_item = create_fn_trans_item(instance);
946 if trans_item.is_instantiable(tcx) && should_trans_locally(tcx, &instance) {
947 output.push(trans_item);
7453a54e
SL
948 }
949 }
950 }
951 }
952 _ => {
54a0048b 953 bug!()
7453a54e
SL
954 }
955 }
956}
957
32a655c1
SL
958/// Scan the MIR in order to find function calls, closures, and drop-glue
959fn collect_neighbours<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
960 instance: Instance<'tcx>,
961 output: &mut Vec<TransItem<'tcx>>)
5bcae85e 962{
cc61c64b 963 let mir = scx.tcx().instance_mir(instance.def);
5bcae85e 964
32a655c1 965 let mut visitor = MirNeighborCollector {
5bcae85e
SL
966 scx: scx,
967 mir: &mir,
968 output: output,
32a655c1 969 param_substs: instance.substs
5bcae85e 970 };
7453a54e 971
5bcae85e
SL
972 visitor.visit_mir(&mir);
973 for promoted in &mir.promoted {
32a655c1 974 visitor.mir = promoted;
5bcae85e 975 visitor.visit_mir(promoted);
7453a54e
SL
976 }
977}
476ff2be
SL
978
979fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
980 def_id: DefId)
981 -> String {
982 let mut output = String::new();
983 let printer = DefPathBasedNames::new(tcx, false, false);
984 printer.push_def_path(def_id, &mut output);
985 output
986}