]> git.proxmox.com Git - rustc.git/blame - src/librustc_trans/collector.rs
New upstream version 1.17.0+dfsg1
[rustc.git] / src / librustc_trans / collector.rs
CommitLineData
7453a54e
SL
1// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! Translation Item Collection
12//! ===========================
13//!
14//! This module is responsible for discovering all items that will contribute to
15//! to code generation of the crate. The important part here is that it not only
16//! needs to find syntax-level items (functions, structs, etc) but also all
17//! their monomorphized instantiations. Every non-generic, non-const function
18//! maps to one LLVM artifact. Every generic function can produce
19//! from zero to N artifacts, depending on the sets of type arguments it
20//! is instantiated with.
21//! This also applies to generic items from other crates: A generic definition
22//! in crate X might produce monomorphizations that are compiled into crate Y.
23//! We also have to collect these here.
24//!
25//! The following kinds of "translation items" are handled here:
26//!
27//! - Functions
28//! - Methods
29//! - Closures
30//! - Statics
31//! - Drop glue
32//!
33//! The following things also result in LLVM artifacts, but are not collected
34//! here, since we instantiate them locally on demand when needed in a given
35//! codegen unit:
36//!
37//! - Constants
38//! - Vtables
39//! - Object Shims
40//!
41//!
42//! General Algorithm
43//! -----------------
44//! Let's define some terms first:
45//!
46//! - A "translation item" is something that results in a function or global in
47//! the LLVM IR of a codegen unit. Translation items do not stand on their
48//! own, they can reference other translation items. For example, if function
49//! `foo()` calls function `bar()` then the translation item for `foo()`
50//! references the translation item for function `bar()`. In general, the
51//! definition for translation item A referencing a translation item B is that
52//! the LLVM artifact produced for A references the LLVM artifact produced
53//! for B.
54//!
32a655c1 55//! - Translation items and the references between them form a directed graph,
7453a54e
SL
56//! where the translation items are the nodes and references form the edges.
57//! Let's call this graph the "translation item graph".
58//!
59//! - The translation item graph for a program contains all translation items
60//! that are needed in order to produce the complete LLVM IR of the program.
61//!
62//! The purpose of the algorithm implemented in this module is to build the
63//! translation item graph for the current crate. It runs in two phases:
64//!
65//! 1. Discover the roots of the graph by traversing the HIR of the crate.
66//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
67//! representation of the item corresponding to a given node, until no more
68//! new nodes are found.
69//!
70//! ### Discovering roots
71//!
72//! The roots of the translation item graph correspond to the non-generic
73//! syntactic items in the source code. We find them by walking the HIR of the
74//! crate, and whenever we hit upon a function, method, or static item, we
75//! create a translation item consisting of the items DefId and, since we only
76//! consider non-generic items, an empty type-substitution set.
77//!
78//! ### Finding neighbor nodes
79//! Given a translation item node, we can discover neighbors by inspecting its
80//! MIR. We walk the MIR and any time we hit upon something that signifies a
81//! reference to another translation item, we have found a neighbor. Since the
82//! translation item we are currently at is always monomorphic, we also know the
83//! concrete type arguments of its neighbors, and so all neighbors again will be
84//! monomorphic. The specific forms a reference to a neighboring node can take
85//! in MIR are quite diverse. Here is an overview:
86//!
87//! #### Calling Functions/Methods
88//! The most obvious form of one translation item referencing another is a
89//! function or method call (represented by a CALL terminator in MIR). But
90//! calls are not the only thing that might introduce a reference between two
91//! function translation items, and as we will see below, they are just a
92//! specialized of the form described next, and consequently will don't get any
93//! special treatment in the algorithm.
94//!
95//! #### Taking a reference to a function or method
96//! A function does not need to actually be called in order to be a neighbor of
97//! another function. It suffices to just take a reference in order to introduce
98//! an edge. Consider the following example:
99//!
100//! ```rust
101//! fn print_val<T: Display>(x: T) {
102//! println!("{}", x);
103//! }
104//!
105//! fn call_fn(f: &Fn(i32), x: i32) {
106//! f(x);
107//! }
108//!
109//! fn main() {
110//! let print_i32 = print_val::<i32>;
111//! call_fn(&print_i32, 0);
112//! }
113//! ```
114//! The MIR of none of these functions will contain an explicit call to
115//! `print_val::<i32>`. Nonetheless, in order to translate this program, we need
116//! an instance of this function. Thus, whenever we encounter a function or
117//! method in operand position, we treat it as a neighbor of the current
118//! translation item. Calls are just a special case of that.
119//!
120//! #### Closures
121//! In a way, closures are a simple case. Since every closure object needs to be
122//! constructed somewhere, we can reliably discover them by observing
123//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
124//! true for closures inlined from other crates.
125//!
126//! #### Drop glue
127//! Drop glue translation items are introduced by MIR drop-statements. The
128//! generated translation item will again have drop-glue item neighbors if the
129//! type to be dropped contains nested values that also need to be dropped. It
130//! might also have a function item neighbor for the explicit `Drop::drop`
131//! implementation of its type.
132//!
133//! #### Unsizing Casts
134//! A subtle way of introducing neighbor edges is by casting to a trait object.
135//! Since the resulting fat-pointer contains a reference to a vtable, we need to
136//! instantiate all object-save methods of the trait, as we need to store
137//! pointers to these functions even if they never get called anywhere. This can
138//! be seen as a special case of taking a function reference.
139//!
140//! #### Boxes
141//! Since `Box` expression have special compiler support, no explicit calls to
142//! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
143//! compiler will generate them. We have to observe `Rvalue::Box` expressions
144//! and Box-typed drop-statements for that purpose.
145//!
146//!
147//! Interaction with Cross-Crate Inlining
148//! -------------------------------------
149//! The binary of a crate will not only contain machine code for the items
150//! defined in the source code of that crate. It will also contain monomorphic
151//! instantiations of any extern generic functions and of functions marked with
152//! #[inline].
153//! The collection algorithm handles this more or less transparently. If it is
154//! about to create a translation item for something with an external `DefId`,
155//! it will take a look if the MIR for that item is available, and if so just
9e0c209e 156//! proceed normally. If the MIR is not available, it assumes that the item is
7453a54e
SL
157//! just linked to and no node is created; which is exactly what we want, since
158//! no machine code should be generated in the current crate for such an item.
159//!
160//! Eager and Lazy Collection Mode
161//! ------------------------------
162//! Translation item collection can be performed in one of two modes:
163//!
164//! - Lazy mode means that items will only be instantiated when actually
165//! referenced. The goal is to produce the least amount of machine code
166//! possible.
167//!
168//! - Eager mode is meant to be used in conjunction with incremental compilation
169//! where a stable set of translation items is more important than a minimal
170//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
171//! in the crate, even of no drop call for that type exists (yet). It will
172//! also instantiate default implementations of trait methods, something that
173//! otherwise is only done on demand.
174//!
175//!
176//! Open Issues
177//! -----------
178//! Some things are not yet fully implemented in the current version of this
179//! module.
180//!
181//! ### Initializers of Constants and Statics
182//! Since no MIR is constructed yet for initializer expressions of constants and
183//! statics we cannot inspect these properly.
184//!
185//! ### Const Fns
186//! Ideally, no translation item should be generated for const fns unless there
187//! is a call to them that cannot be evaluated at compile time. At the moment
188//! this is not implemented however: a translation item will be produced
189//! regardless of whether it is actually needed or not.
190
54a0048b 191use rustc::hir;
476ff2be 192use rustc::hir::itemlikevisit::ItemLikeVisitor;
7453a54e 193
54a0048b
SL
194use rustc::hir::map as hir_map;
195use rustc::hir::def_id::DefId;
32a655c1 196use rustc::middle::lang_items::{BoxFreeFnLangItem, ExchangeMallocFnLangItem};
54a0048b 197use rustc::traits;
32a655c1 198use rustc::ty::subst::{Kind, Substs, Subst};
a7813a04 199use rustc::ty::{self, TypeFoldable, TyCtxt};
54a0048b 200use rustc::ty::adjustment::CustomCoerceUnsized;
c30ab7b3 201use rustc::mir::{self, Location};
7453a54e
SL
202use rustc::mir::visit as mir_visit;
203use rustc::mir::visit::Visitor as MirVisitor;
204
a7813a04 205use syntax::abi::Abi;
3157f602 206use syntax_pos::DUMMY_SP;
54a0048b 207use base::custom_coerce_unsize_info;
32a655c1 208use callee::needs_fn_once_adapter_shim;
a7813a04 209use context::SharedCrateContext;
8bb4bdeb 210use common::{def_ty, fulfill_obligation};
a7813a04 211use glue::{self, DropGlueKind};
54a0048b 212use monomorphize::{self, Instance};
476ff2be 213use util::nodemap::{FxHashSet, FxHashMap, DefIdMap};
7453a54e 214
32a655c1
SL
215use trans_item::{TransItem, DefPathBasedNames, InstantiationMode};
216
217use std::iter;
7453a54e
SL
218
219#[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
220pub enum TransItemCollectionMode {
221 Eager,
222 Lazy
223}
224
a7813a04
XL
225/// Maps every translation item to all translation items it references in its
226/// body.
227pub struct InliningMap<'tcx> {
228 // Maps a source translation item to a range of target translation items
229 // that are potentially inlined by LLVM into the source.
230 // The two numbers in the tuple are the start (inclusive) and
231 // end index (exclusive) within the `targets` vecs.
476ff2be 232 index: FxHashMap<TransItem<'tcx>, (usize, usize)>,
a7813a04 233 targets: Vec<TransItem<'tcx>>,
7453a54e
SL
234}
235
a7813a04
XL
236impl<'tcx> InliningMap<'tcx> {
237
238 fn new() -> InliningMap<'tcx> {
239 InliningMap {
476ff2be 240 index: FxHashMap(),
a7813a04
XL
241 targets: Vec::new(),
242 }
243 }
244
245 fn record_inlining_canditates<I>(&mut self,
246 source: TransItem<'tcx>,
247 targets: I)
248 where I: Iterator<Item=TransItem<'tcx>>
249 {
250 assert!(!self.index.contains_key(&source));
251
252 let start_index = self.targets.len();
253 self.targets.extend(targets);
254 let end_index = self.targets.len();
255 self.index.insert(source, (start_index, end_index));
256 }
257
258 // Internally iterate over all items referenced by `source` which will be
259 // made available for inlining.
260 pub fn with_inlining_candidates<F>(&self, source: TransItem<'tcx>, mut f: F)
261 where F: FnMut(TransItem<'tcx>) {
262 if let Some(&(start_index, end_index)) = self.index.get(&source)
263 {
264 for candidate in &self.targets[start_index .. end_index] {
265 f(*candidate)
7453a54e 266 }
a7813a04 267 }
7453a54e
SL
268 }
269}
270
a7813a04 271pub fn collect_crate_translation_items<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e 272 mode: TransItemCollectionMode)
476ff2be 273 -> (FxHashSet<TransItem<'tcx>>,
a7813a04 274 InliningMap<'tcx>) {
7453a54e
SL
275 // We are not tracking dependencies of this pass as it has to be re-executed
276 // every time no matter what.
a7813a04
XL
277 scx.tcx().dep_graph.with_ignore(|| {
278 let roots = collect_roots(scx, mode);
7453a54e
SL
279
280 debug!("Building translation item graph, beginning at roots");
476ff2be 281 let mut visited = FxHashSet();
7453a54e 282 let mut recursion_depths = DefIdMap();
a7813a04 283 let mut inlining_map = InliningMap::new();
7453a54e
SL
284
285 for root in roots {
a7813a04
XL
286 collect_items_rec(scx,
287 root,
288 &mut visited,
289 &mut recursion_depths,
290 &mut inlining_map);
7453a54e
SL
291 }
292
a7813a04 293 (visited, inlining_map)
7453a54e
SL
294 })
295}
296
297// Find all non-generic items by walking the HIR. These items serve as roots to
298// start monomorphizing from.
a7813a04 299fn collect_roots<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e
SL
300 mode: TransItemCollectionMode)
301 -> Vec<TransItem<'tcx>> {
302 debug!("Collecting roots");
303 let mut roots = Vec::new();
304
305 {
306 let mut visitor = RootCollector {
a7813a04 307 scx: scx,
7453a54e
SL
308 mode: mode,
309 output: &mut roots,
7453a54e
SL
310 };
311
32a655c1 312 scx.tcx().hir.krate().visit_all_item_likes(&mut visitor);
7453a54e
SL
313 }
314
315 roots
316}
317
7453a54e 318// Collect all monomorphized translation items reachable from `starting_point`
a7813a04 319fn collect_items_rec<'a, 'tcx: 'a>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e 320 starting_point: TransItem<'tcx>,
476ff2be 321 visited: &mut FxHashSet<TransItem<'tcx>>,
a7813a04
XL
322 recursion_depths: &mut DefIdMap<usize>,
323 inlining_map: &mut InliningMap<'tcx>) {
7453a54e
SL
324 if !visited.insert(starting_point.clone()) {
325 // We've been here already, no need to search again.
326 return;
327 }
a7813a04 328 debug!("BEGIN collect_items_rec({})", starting_point.to_string(scx.tcx()));
7453a54e
SL
329
330 let mut neighbors = Vec::new();
331 let recursion_depth_reset;
332
333 match starting_point {
334 TransItem::DropGlue(t) => {
a7813a04 335 find_drop_glue_neighbors(scx, t, &mut neighbors);
7453a54e
SL
336 recursion_depth_reset = None;
337 }
a7813a04 338 TransItem::Static(node_id) => {
32a655c1
SL
339 let def_id = scx.tcx().hir.local_def_id(node_id);
340
341 // Sanity check whether this ended up being collected accidentally
342 debug_assert!(should_trans_locally(scx.tcx(), def_id));
343
8bb4bdeb 344 let ty = def_ty(scx, def_id, Substs::empty());
32a655c1 345 let ty = glue::get_drop_glue_type(scx, ty);
a7813a04
XL
346 neighbors.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
347
7453a54e 348 recursion_depth_reset = None;
a7813a04 349
32a655c1 350 collect_neighbours(scx, Instance::mono(scx, def_id), &mut neighbors);
7453a54e 351 }
54a0048b 352 TransItem::Fn(instance) => {
32a655c1
SL
353 // Sanity check whether this ended up being collected accidentally
354 debug_assert!(should_trans_locally(scx.tcx(), instance.def));
355
7453a54e 356 // Keep track of the monomorphization recursion depth
a7813a04 357 recursion_depth_reset = Some(check_recursion_limit(scx.tcx(),
54a0048b 358 instance,
7453a54e 359 recursion_depths));
476ff2be 360 check_type_length_limit(scx.tcx(), instance);
7453a54e 361
32a655c1 362 collect_neighbours(scx, instance, &mut neighbors);
7453a54e
SL
363 }
364 }
365
a7813a04
XL
366 record_inlining_canditates(scx.tcx(), starting_point, &neighbors[..], inlining_map);
367
7453a54e 368 for neighbour in neighbors {
a7813a04 369 collect_items_rec(scx, neighbour, visited, recursion_depths, inlining_map);
7453a54e
SL
370 }
371
372 if let Some((def_id, depth)) = recursion_depth_reset {
373 recursion_depths.insert(def_id, depth);
374 }
375
a7813a04 376 debug!("END collect_items_rec({})", starting_point.to_string(scx.tcx()));
7453a54e
SL
377}
378
a7813a04
XL
379fn record_inlining_canditates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
380 caller: TransItem<'tcx>,
381 callees: &[TransItem<'tcx>],
382 inlining_map: &mut InliningMap<'tcx>) {
383 let is_inlining_candidate = |trans_item: &TransItem<'tcx>| {
32a655c1 384 trans_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
a7813a04
XL
385 };
386
387 let inlining_candidates = callees.into_iter()
388 .map(|x| *x)
389 .filter(is_inlining_candidate);
390
391 inlining_map.record_inlining_canditates(caller, inlining_candidates);
392}
393
394fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
395 instance: Instance<'tcx>,
396 recursion_depths: &mut DefIdMap<usize>)
397 -> (DefId, usize) {
54a0048b 398 let recursion_depth = recursion_depths.get(&instance.def)
7453a54e
SL
399 .map(|x| *x)
400 .unwrap_or(0);
401 debug!(" => recursion depth={}", recursion_depth);
402
403 // Code that needs to instantiate the same function recursively
404 // more than the recursion limit is assumed to be causing an
405 // infinite expansion.
a7813a04 406 if recursion_depth > tcx.sess.recursion_limit.get() {
54a0048b
SL
407 let error = format!("reached the recursion limit while instantiating `{}`",
408 instance);
32a655c1
SL
409 if let Some(node_id) = tcx.hir.as_local_node_id(instance.def) {
410 tcx.sess.span_fatal(tcx.hir.span(node_id), &error);
7453a54e 411 } else {
a7813a04 412 tcx.sess.fatal(&error);
7453a54e
SL
413 }
414 }
415
54a0048b 416 recursion_depths.insert(instance.def, recursion_depth + 1);
7453a54e 417
54a0048b 418 (instance.def, recursion_depth)
7453a54e
SL
419}
420
476ff2be
SL
421fn check_type_length_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
422 instance: Instance<'tcx>)
423{
424 let type_length = instance.substs.types().flat_map(|ty| ty.walk()).count();
425 debug!(" => type length={}", type_length);
426
427 // Rust code can easily create exponentially-long types using only a
428 // polynomial recursion depth. Even with the default recursion
429 // depth, you can easily get cases that take >2^60 steps to run,
430 // which means that rustc basically hangs.
431 //
432 // Bail out in these cases to avoid that bad user experience.
433 let type_length_limit = tcx.sess.type_length_limit.get();
434 if type_length > type_length_limit {
435 // The instance name is already known to be too long for rustc. Use
436 // `{:.64}` to avoid blasting the user's terminal with thousands of
437 // lines of type-name.
438 let instance_name = instance.to_string();
439 let msg = format!("reached the type-length limit while instantiating `{:.64}...`",
440 instance_name);
32a655c1
SL
441 let mut diag = if let Some(node_id) = tcx.hir.as_local_node_id(instance.def) {
442 tcx.sess.struct_span_fatal(tcx.hir.span(node_id), &msg)
476ff2be
SL
443 } else {
444 tcx.sess.struct_fatal(&msg)
445 };
446
447 diag.note(&format!(
448 "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
449 type_length_limit*2));
450 diag.emit();
451 tcx.sess.abort_if_errors();
452 }
453}
454
7453a54e 455struct MirNeighborCollector<'a, 'tcx: 'a> {
a7813a04 456 scx: &'a SharedCrateContext<'a, 'tcx>,
7453a54e
SL
457 mir: &'a mir::Mir<'tcx>,
458 output: &'a mut Vec<TransItem<'tcx>>,
459 param_substs: &'tcx Substs<'tcx>
460}
461
462impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
463
9e0c209e 464 fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
7453a54e
SL
465 debug!("visiting rvalue {:?}", *rvalue);
466
467 match *rvalue {
7453a54e
SL
468 // When doing an cast from a regular pointer to a fat pointer, we
469 // have to instantiate all methods of the trait being cast to, so we
470 // can build the appropriate vtable.
471 mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => {
9e0c209e 472 let target_ty = monomorphize::apply_param_substs(self.scx,
7453a54e
SL
473 self.param_substs,
474 &target_ty);
5bcae85e 475 let source_ty = operand.ty(self.mir, self.scx.tcx());
9e0c209e 476 let source_ty = monomorphize::apply_param_substs(self.scx,
7453a54e
SL
477 self.param_substs,
478 &source_ty);
a7813a04 479 let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.scx,
7453a54e
SL
480 source_ty,
481 target_ty);
482 // This could also be a different Unsize instruction, like
483 // from a fixed sized array to a slice. But we are only
484 // interested in things that produce a vtable.
485 if target_ty.is_trait() && !source_ty.is_trait() {
a7813a04 486 create_trans_items_for_vtable_methods(self.scx,
7453a54e
SL
487 target_ty,
488 source_ty,
489 self.output);
490 }
491 }
8bb4bdeb
XL
492 mir::Rvalue::Cast(mir::CastKind::ClosureFnPointer, ref operand, _) => {
493 let source_ty = operand.ty(self.mir, self.scx.tcx());
494 match source_ty.sty {
495 ty::TyClosure(def_id, substs) => {
496 let closure_trans_item =
497 create_fn_trans_item(self.scx,
498 def_id,
499 substs.substs,
500 self.param_substs);
501 self.output.push(closure_trans_item);
502 }
503 _ => bug!(),
504 }
505 }
9e0c209e 506 mir::Rvalue::Box(..) => {
7453a54e 507 let exchange_malloc_fn_def_id =
a7813a04 508 self.scx
7453a54e
SL
509 .tcx()
510 .lang_items
511 .require(ExchangeMallocFnLangItem)
a7813a04 512 .unwrap_or_else(|e| self.scx.sess().fatal(&e));
7453a54e 513
32a655c1
SL
514 if should_trans_locally(self.scx.tcx(), exchange_malloc_fn_def_id) {
515 let empty_substs = self.scx.empty_substs_for_def_id(exchange_malloc_fn_def_id);
516 let exchange_malloc_fn_trans_item =
517 create_fn_trans_item(self.scx,
518 exchange_malloc_fn_def_id,
519 empty_substs,
520 self.param_substs);
7453a54e 521
32a655c1
SL
522 self.output.push(exchange_malloc_fn_trans_item);
523 }
7453a54e
SL
524 }
525 _ => { /* not interesting */ }
526 }
527
9e0c209e 528 self.super_rvalue(rvalue, location);
7453a54e
SL
529 }
530
531 fn visit_lvalue(&mut self,
532 lvalue: &mir::Lvalue<'tcx>,
9e0c209e
SL
533 context: mir_visit::LvalueContext<'tcx>,
534 location: Location) {
7453a54e
SL
535 debug!("visiting lvalue {:?}", *lvalue);
536
537 if let mir_visit::LvalueContext::Drop = context {
5bcae85e
SL
538 let ty = lvalue.ty(self.mir, self.scx.tcx())
539 .to_ty(self.scx.tcx());
7453a54e 540
9e0c209e 541 let ty = monomorphize::apply_param_substs(self.scx,
7453a54e
SL
542 self.param_substs,
543 &ty);
3157f602 544 assert!(ty.is_normalized_for_trans());
32a655c1 545 let ty = glue::get_drop_glue_type(self.scx, ty);
a7813a04 546 self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
7453a54e
SL
547 }
548
9e0c209e 549 self.super_lvalue(lvalue, context, location);
7453a54e
SL
550 }
551
9e0c209e 552 fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
7453a54e
SL
553 debug!("visiting operand {:?}", *operand);
554
555 let callee = match *operand {
5bcae85e
SL
556 mir::Operand::Constant(ref constant) => {
557 if let ty::TyFnDef(def_id, substs, _) = constant.ty.sty {
558 // This is something that can act as a callee, proceed
559 Some((def_id, substs))
560 } else {
561 // This is not a callee, but we still have to look for
562 // references to `const` items
563 if let mir::Literal::Item { def_id, substs } = constant.literal {
9e0c209e 564 let substs = monomorphize::apply_param_substs(self.scx,
5bcae85e
SL
565 self.param_substs,
566 &substs);
567
32a655c1
SL
568 let instance = Instance::new(def_id, substs).resolve_const(self.scx);
569 collect_neighbours(self.scx, instance, self.output);
5bcae85e
SL
570 }
571
572 None
573 }
574 }
7453a54e
SL
575 _ => None
576 };
577
578 if let Some((callee_def_id, callee_substs)) = callee {
579 debug!(" => operand is callable");
580
581 // `callee_def_id` might refer to a trait method instead of a
582 // concrete implementation, so we have to find the actual
583 // implementation. For example, the call might look like
584 //
585 // std::cmp::partial_cmp(0i32, 1i32)
586 //
587 // Calling do_static_dispatch() here will map the def_id of
588 // `std::cmp::partial_cmp` to the def_id of `i32::partial_cmp<i32>`
a7813a04 589 let dispatched = do_static_dispatch(self.scx,
7453a54e
SL
590 callee_def_id,
591 callee_substs,
592 self.param_substs);
593
32a655c1
SL
594 if let StaticDispatchResult::Dispatched {
595 def_id: callee_def_id,
596 substs: callee_substs,
597 fn_once_adjustment,
598 } = dispatched {
7453a54e
SL
599 // if we have a concrete impl (which we might not have
600 // in the case of something compiler generated like an
601 // object shim or a closure that is handled differently),
602 // we check if the callee is something that will actually
603 // result in a translation item ...
a7813a04 604 if can_result_in_trans_item(self.scx.tcx(), callee_def_id) {
7453a54e 605 // ... and create one if it does.
9e0c209e 606 let trans_item = create_fn_trans_item(self.scx,
7453a54e
SL
607 callee_def_id,
608 callee_substs,
609 self.param_substs);
610 self.output.push(trans_item);
32a655c1
SL
611
612 // This call will instantiate an FnOnce adapter, which drops
613 // the closure environment. Therefore we need to make sure
614 // that we collect the drop-glue for the environment type.
615 if let Some(env_ty) = fn_once_adjustment {
616 let env_ty = glue::get_drop_glue_type(self.scx, env_ty);
617 if self.scx.type_needs_drop(env_ty) {
618 let dg = DropGlueKind::Ty(env_ty);
619 self.output.push(TransItem::DropGlue(dg));
620 }
621 }
7453a54e
SL
622 }
623 }
624 }
625
9e0c209e 626 self.super_operand(operand, location);
7453a54e 627
a7813a04 628 fn can_result_in_trans_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
7453a54e
SL
629 def_id: DefId)
630 -> bool {
476ff2be 631 match tcx.item_type(def_id).sty {
32a655c1 632 ty::TyFnDef(def_id, _, _) => {
54a0048b 633 // Some constructors also have type TyFnDef but they are
32a655c1 634 // always instantiated inline and don't result in a
54a0048b 635 // translation item. Same for FFI functions.
32a655c1 636 if let Some(hir_map::NodeForeignItem(_)) = tcx.hir.get_if_local(def_id) {
9e0c209e
SL
637 return false;
638 }
7453a54e 639 }
9e0c209e
SL
640 ty::TyClosure(..) => {}
641 _ => return false
7453a54e
SL
642 }
643
32a655c1 644 should_trans_locally(tcx, def_id)
a7813a04
XL
645 }
646 }
647
648 // This takes care of the "drop_in_place" intrinsic for which we otherwise
649 // we would not register drop-glues.
650 fn visit_terminator_kind(&mut self,
651 block: mir::BasicBlock,
9e0c209e
SL
652 kind: &mir::TerminatorKind<'tcx>,
653 location: Location) {
a7813a04
XL
654 let tcx = self.scx.tcx();
655 match *kind {
656 mir::TerminatorKind::Call {
657 func: mir::Operand::Constant(ref constant),
658 ref args,
659 ..
660 } => {
661 match constant.ty.sty {
662 ty::TyFnDef(def_id, _, bare_fn_ty)
663 if is_drop_in_place_intrinsic(tcx, def_id, bare_fn_ty) => {
5bcae85e 664 let operand_ty = args[0].ty(self.mir, tcx);
a7813a04 665 if let ty::TyRawPtr(mt) = operand_ty.sty {
9e0c209e 666 let operand_ty = monomorphize::apply_param_substs(self.scx,
a7813a04
XL
667 self.param_substs,
668 &mt.ty);
32a655c1 669 let ty = glue::get_drop_glue_type(self.scx, operand_ty);
5bcae85e 670 self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
a7813a04
XL
671 } else {
672 bug!("Has the drop_in_place() intrinsic's signature changed?")
673 }
674 }
675 _ => { /* Nothing to do. */ }
676 }
677 }
678 _ => { /* Nothing to do. */ }
679 }
680
9e0c209e 681 self.super_terminator_kind(block, kind, location);
a7813a04
XL
682
683 fn is_drop_in_place_intrinsic<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
684 def_id: DefId,
8bb4bdeb 685 bare_fn_ty: ty::PolyFnSig<'tcx>)
a7813a04 686 -> bool {
8bb4bdeb
XL
687 (bare_fn_ty.abi() == Abi::RustIntrinsic ||
688 bare_fn_ty.abi() == Abi::PlatformIntrinsic) &&
476ff2be 689 tcx.item_name(def_id) == "drop_in_place"
7453a54e
SL
690 }
691 }
692}
693
32a655c1
SL
694// Returns true if we should translate an instance in the local crate.
695// Returns false if we can just link to the upstream crate and therefore don't
696// need a translation item.
697fn should_trans_locally<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
698 def_id: DefId)
699 -> bool {
8bb4bdeb
XL
700 if let ty::TyFnDef(_, _, sig) = tcx.item_type(def_id).sty {
701 if let Some(adt_def) = sig.output().skip_binder().ty_adt_def() {
32a655c1
SL
702 if adt_def.variants.iter().any(|v| def_id == v.did) {
703 // HACK: ADT constructors are translated in-place and
704 // do not have a trans-item.
705 return false;
706 }
707 }
708 }
709
710 if def_id.is_local() {
711 true
712 } else {
713 if tcx.sess.cstore.is_exported_symbol(def_id) ||
714 tcx.sess.cstore.is_foreign_item(def_id) {
715 // We can link to the item in question, no instance needed in this
716 // crate
717 false
718 } else {
719 if !tcx.sess.cstore.is_item_mir_available(def_id) {
720 bug!("Cannot create local trans-item for {:?}", def_id)
721 }
722 true
723 }
724 }
7453a54e
SL
725}
726
a7813a04
XL
727fn find_drop_glue_neighbors<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
728 dg: DropGlueKind<'tcx>,
729 output: &mut Vec<TransItem<'tcx>>) {
730 let ty = match dg {
731 DropGlueKind::Ty(ty) => ty,
732 DropGlueKind::TyContents(_) => {
733 // We already collected the neighbors of this item via the
734 // DropGlueKind::Ty variant.
735 return
736 }
737 };
738
739 debug!("find_drop_glue_neighbors: {}", type_to_string(scx.tcx(), ty));
7453a54e 740
32a655c1
SL
741 // Make sure the BoxFreeFn lang-item gets translated if there is a boxed value.
742 if ty.is_box() {
743 let def_id = scx.tcx().require_lang_item(BoxFreeFnLangItem);
744 if should_trans_locally(scx.tcx(), def_id) {
745 let box_free_fn_trans_item =
746 create_fn_trans_item(scx,
747 def_id,
748 scx.tcx().mk_substs(iter::once(Kind::from(ty.boxed_ty()))),
749 scx.tcx().intern_substs(&[]));
750 output.push(box_free_fn_trans_item);
751 }
7453a54e
SL
752 }
753
754 // If the type implements Drop, also add a translation item for the
755 // monomorphized Drop::drop() implementation.
8bb4bdeb
XL
756 let destructor = match ty.sty {
757 ty::TyAdt(def, _) => def.destructor(scx.tcx()),
7453a54e
SL
758 _ => None
759 };
760
8bb4bdeb 761 if let (Some(destructor), false) = (destructor, ty.is_box()) {
54a0048b 762 use rustc::ty::ToPolyTraitRef;
7453a54e 763
a7813a04 764 let drop_trait_def_id = scx.tcx()
7453a54e
SL
765 .lang_items
766 .drop_trait()
767 .unwrap();
768
c30ab7b3 769 let self_type_substs = scx.tcx().mk_substs_trait(ty, &[]);
7453a54e
SL
770
771 let trait_ref = ty::TraitRef {
772 def_id: drop_trait_def_id,
773 substs: self_type_substs,
774 }.to_poly_trait_ref();
775
a7813a04 776 let substs = match fulfill_obligation(scx, DUMMY_SP, trait_ref) {
7453a54e 777 traits::VtableImpl(data) => data.substs,
54a0048b 778 _ => bug!()
7453a54e
SL
779 };
780
8bb4bdeb 781 if should_trans_locally(scx.tcx(), destructor.did) {
9e0c209e 782 let trans_item = create_fn_trans_item(scx,
8bb4bdeb 783 destructor.did,
54a0048b 784 substs,
c30ab7b3 785 scx.tcx().intern_substs(&[]));
7453a54e
SL
786 output.push(trans_item);
787 }
a7813a04
XL
788
789 // This type has a Drop implementation, we'll need the contents-only
790 // version of the glue too.
791 output.push(TransItem::DropGlue(DropGlueKind::TyContents(ty)));
7453a54e
SL
792 }
793
794 // Finally add the types of nested values
795 match ty.sty {
54a0048b
SL
796 ty::TyBool |
797 ty::TyChar |
798 ty::TyInt(_) |
799 ty::TyUint(_) |
800 ty::TyStr |
801 ty::TyFloat(_) |
802 ty::TyRawPtr(_) |
803 ty::TyRef(..) |
804 ty::TyFnDef(..) |
805 ty::TyFnPtr(_) |
5bcae85e 806 ty::TyNever |
476ff2be 807 ty::TyDynamic(..) => {
7453a54e
SL
808 /* nothing to do */
809 }
32a655c1
SL
810 ty::TyAdt(def, _) if def.is_box() => {
811 let inner_type = glue::get_drop_glue_type(scx, ty.boxed_ty());
812 if scx.type_needs_drop(inner_type) {
813 output.push(TransItem::DropGlue(DropGlueKind::Ty(inner_type)));
814 }
815 }
816 ty::TyAdt(def, substs) => {
817 for field in def.all_fields() {
8bb4bdeb 818 let field_type = def_ty(scx, field.did, substs);
32a655c1 819 let field_type = glue::get_drop_glue_type(scx, field_type);
7453a54e 820
32a655c1 821 if scx.type_needs_drop(field_type) {
a7813a04 822 output.push(TransItem::DropGlue(DropGlueKind::Ty(field_type)));
7453a54e
SL
823 }
824 }
825 }
476ff2be
SL
826 ty::TyClosure(def_id, substs) => {
827 for upvar_ty in substs.upvar_tys(def_id, scx.tcx()) {
32a655c1
SL
828 let upvar_ty = glue::get_drop_glue_type(scx, upvar_ty);
829 if scx.type_needs_drop(upvar_ty) {
a7813a04 830 output.push(TransItem::DropGlue(DropGlueKind::Ty(upvar_ty)));
7453a54e
SL
831 }
832 }
833 }
a7813a04 834 ty::TySlice(inner_type) |
7453a54e 835 ty::TyArray(inner_type, _) => {
32a655c1
SL
836 let inner_type = glue::get_drop_glue_type(scx, inner_type);
837 if scx.type_needs_drop(inner_type) {
a7813a04 838 output.push(TransItem::DropGlue(DropGlueKind::Ty(inner_type)));
7453a54e
SL
839 }
840 }
8bb4bdeb 841 ty::TyTuple(args, _) => {
7453a54e 842 for arg in args {
32a655c1
SL
843 let arg = glue::get_drop_glue_type(scx, arg);
844 if scx.type_needs_drop(arg) {
a7813a04 845 output.push(TransItem::DropGlue(DropGlueKind::Ty(arg)));
7453a54e
SL
846 }
847 }
848 }
849 ty::TyProjection(_) |
850 ty::TyParam(_) |
851 ty::TyInfer(_) |
5bcae85e 852 ty::TyAnon(..) |
7453a54e 853 ty::TyError => {
54a0048b 854 bug!("encountered unexpected type");
7453a54e
SL
855 }
856 }
857}
858
a7813a04 859fn do_static_dispatch<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e
SL
860 fn_def_id: DefId,
861 fn_substs: &'tcx Substs<'tcx>,
862 param_substs: &'tcx Substs<'tcx>)
32a655c1 863 -> StaticDispatchResult<'tcx> {
7453a54e 864 debug!("do_static_dispatch(fn_def_id={}, fn_substs={:?}, param_substs={:?})",
a7813a04 865 def_id_to_string(scx.tcx(), fn_def_id),
7453a54e
SL
866 fn_substs,
867 param_substs);
868
9e0c209e 869 if let Some(trait_def_id) = scx.tcx().trait_of_item(fn_def_id) {
476ff2be
SL
870 debug!(" => trait method, attempting to find impl");
871 do_static_trait_method_dispatch(scx,
872 &scx.tcx().associated_item(fn_def_id),
873 trait_def_id,
874 fn_substs,
875 param_substs)
7453a54e
SL
876 } else {
877 debug!(" => regular function");
878 // The function is not part of an impl or trait, no dispatching
879 // to be done
32a655c1
SL
880 StaticDispatchResult::Dispatched {
881 def_id: fn_def_id,
882 substs: fn_substs,
883 fn_once_adjustment: None,
884 }
7453a54e
SL
885 }
886}
887
32a655c1
SL
888enum StaticDispatchResult<'tcx> {
889 // The call could be resolved statically as going to the method with
890 // `def_id` and `substs`.
891 Dispatched {
892 def_id: DefId,
893 substs: &'tcx Substs<'tcx>,
894
895 // If this is a call to a closure that needs an FnOnce adjustment,
896 // this contains the new self type of the call (= type of the closure
897 // environment)
898 fn_once_adjustment: Option<ty::Ty<'tcx>>,
899 },
900 // This goes to somewhere that we don't know at compile-time
901 Unknown
902}
903
7453a54e
SL
904// Given a trait-method and substitution information, find out the actual
905// implementation of the trait method.
a7813a04 906fn do_static_trait_method_dispatch<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
476ff2be 907 trait_method: &ty::AssociatedItem,
7453a54e
SL
908 trait_id: DefId,
909 callee_substs: &'tcx Substs<'tcx>,
910 param_substs: &'tcx Substs<'tcx>)
32a655c1 911 -> StaticDispatchResult<'tcx> {
a7813a04 912 let tcx = scx.tcx();
7453a54e
SL
913 debug!("do_static_trait_method_dispatch(trait_method={}, \
914 trait_id={}, \
915 callee_substs={:?}, \
916 param_substs={:?}",
a7813a04
XL
917 def_id_to_string(scx.tcx(), trait_method.def_id),
918 def_id_to_string(scx.tcx(), trait_id),
7453a54e
SL
919 callee_substs,
920 param_substs);
921
9e0c209e 922 let rcvr_substs = monomorphize::apply_param_substs(scx,
7453a54e 923 param_substs,
a7813a04 924 &callee_substs);
9e0c209e
SL
925 let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_substs);
926 let vtbl = fulfill_obligation(scx, DUMMY_SP, ty::Binder(trait_ref));
7453a54e
SL
927
928 // Now that we know which impl is being used, we can dispatch to
929 // the actual function:
930 match vtbl {
9e0c209e 931 traits::VtableImpl(impl_data) => {
32a655c1
SL
932 let (def_id, substs) = traits::find_method(tcx,
933 trait_method.name,
934 rcvr_substs,
935 &impl_data);
936 StaticDispatchResult::Dispatched {
937 def_id: def_id,
938 substs: substs,
939 fn_once_adjustment: None,
940 }
7453a54e 941 }
476ff2be 942 traits::VtableClosure(closure_data) => {
32a655c1
SL
943 let closure_def_id = closure_data.closure_def_id;
944 let trait_closure_kind = tcx.lang_items.fn_trait_kind(trait_id).unwrap();
945 let actual_closure_kind = tcx.closure_kind(closure_def_id);
946
947 let needs_fn_once_adapter_shim =
948 match needs_fn_once_adapter_shim(actual_closure_kind,
949 trait_closure_kind) {
950 Ok(true) => true,
951 _ => false,
952 };
953
954 let fn_once_adjustment = if needs_fn_once_adapter_shim {
955 Some(tcx.mk_closure_from_closure_substs(closure_def_id,
956 closure_data.substs))
957 } else {
958 None
959 };
960
961 StaticDispatchResult::Dispatched {
962 def_id: closure_def_id,
963 substs: closure_data.substs.substs,
964 fn_once_adjustment: fn_once_adjustment,
965 }
476ff2be 966 }
32a655c1
SL
967 traits::VtableFnPointer(ref data) => {
968 // If we know the destination of this fn-pointer, we'll have to make
969 // sure that this destination actually gets instantiated.
970 if let ty::TyFnDef(def_id, substs, _) = data.fn_ty.sty {
971 // The destination of the pointer might be something that needs
972 // further dispatching, such as a trait method, so we do that.
973 do_static_dispatch(scx, def_id, substs, param_substs)
974 } else {
975 StaticDispatchResult::Unknown
976 }
977 }
978 // Trait object shims are always instantiated in-place, and as they are
979 // just an ABI-adjusting indirect call they do not have any dependencies.
7453a54e 980 traits::VtableObject(..) => {
32a655c1 981 StaticDispatchResult::Unknown
7453a54e
SL
982 }
983 _ => {
54a0048b 984 bug!("static call to invalid vtable: {:?}", vtbl)
7453a54e
SL
985 }
986 }
987}
988
989/// For given pair of source and target type that occur in an unsizing coercion,
990/// this function finds the pair of types that determines the vtable linking
991/// them.
992///
993/// For example, the source type might be `&SomeStruct` and the target type\
994/// might be `&SomeTrait` in a cast like:
995///
996/// let src: &SomeStruct = ...;
997/// let target = src as &SomeTrait;
998///
999/// Then the output of this function would be (SomeStruct, SomeTrait) since for
1000/// constructing the `target` fat-pointer we need the vtable for that pair.
1001///
1002/// Things can get more complicated though because there's also the case where
1003/// the unsized type occurs as a field:
1004///
1005/// ```rust
1006/// struct ComplexStruct<T: ?Sized> {
1007/// a: u32,
1008/// b: f64,
1009/// c: T
1010/// }
1011/// ```
1012///
1013/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
1014/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
1015/// for the pair of `T` (which is a trait) and the concrete type that `T` was
1016/// originally coerced from:
1017///
1018/// let src: &ComplexStruct<SomeStruct> = ...;
1019/// let target = src as &ComplexStruct<SomeTrait>;
1020///
1021/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
1022/// `(SomeStruct, SomeTrait)`.
1023///
1024/// Finally, there is also the case of custom unsizing coercions, e.g. for
1025/// smart pointers such as `Rc` and `Arc`.
a7813a04 1026fn find_vtable_types_for_unsizing<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e
SL
1027 source_ty: ty::Ty<'tcx>,
1028 target_ty: ty::Ty<'tcx>)
1029 -> (ty::Ty<'tcx>, ty::Ty<'tcx>) {
32a655c1
SL
1030 let ptr_vtable = |inner_source: ty::Ty<'tcx>, inner_target: ty::Ty<'tcx>| {
1031 if !scx.type_is_sized(inner_source) {
1032 (inner_source, inner_target)
1033 } else {
1034 scx.tcx().struct_lockstep_tails(inner_source, inner_target)
1035 }
1036 };
7453a54e 1037 match (&source_ty.sty, &target_ty.sty) {
7453a54e
SL
1038 (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
1039 &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
1040 (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
1041 &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
1042 (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
1043 &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
32a655c1
SL
1044 ptr_vtable(a, b)
1045 }
1046 (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
1047 ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
7453a54e
SL
1048 }
1049
9e0c209e
SL
1050 (&ty::TyAdt(source_adt_def, source_substs),
1051 &ty::TyAdt(target_adt_def, target_substs)) => {
7453a54e
SL
1052 assert_eq!(source_adt_def, target_adt_def);
1053
a7813a04 1054 let kind = custom_coerce_unsize_info(scx, source_ty, target_ty);
7453a54e
SL
1055
1056 let coerce_index = match kind {
1057 CustomCoerceUnsized::Struct(i) => i
1058 };
1059
1060 let source_fields = &source_adt_def.struct_variant().fields;
1061 let target_fields = &target_adt_def.struct_variant().fields;
1062
1063 assert!(coerce_index < source_fields.len() &&
1064 source_fields.len() == target_fields.len());
1065
a7813a04
XL
1066 find_vtable_types_for_unsizing(scx,
1067 source_fields[coerce_index].ty(scx.tcx(),
7453a54e 1068 source_substs),
a7813a04 1069 target_fields[coerce_index].ty(scx.tcx(),
7453a54e
SL
1070 target_substs))
1071 }
54a0048b
SL
1072 _ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
1073 source_ty,
1074 target_ty)
7453a54e
SL
1075 }
1076}
1077
9e0c209e 1078fn create_fn_trans_item<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e 1079 def_id: DefId,
a7813a04
XL
1080 fn_substs: &'tcx Substs<'tcx>,
1081 param_substs: &'tcx Substs<'tcx>)
1082 -> TransItem<'tcx> {
9e0c209e
SL
1083 let tcx = scx.tcx();
1084
7453a54e 1085 debug!("create_fn_trans_item(def_id={}, fn_substs={:?}, param_substs={:?})",
a7813a04 1086 def_id_to_string(tcx, def_id),
7453a54e
SL
1087 fn_substs,
1088 param_substs);
1089
1090 // We only get here, if fn_def_id either designates a local item or
1091 // an inlineable external item. Non-inlineable external items are
1092 // ignored because we don't want to generate any code for them.
9e0c209e 1093 let concrete_substs = monomorphize::apply_param_substs(scx,
7453a54e 1094 param_substs,
a7813a04 1095 &fn_substs);
1bb2cb6e
SL
1096 assert!(concrete_substs.is_normalized_for_trans(),
1097 "concrete_substs not normalized for trans: {:?}",
1098 concrete_substs);
3157f602 1099 TransItem::Fn(Instance::new(def_id, concrete_substs))
7453a54e
SL
1100}
1101
1102/// Creates a `TransItem` for each method that is referenced by the vtable for
1103/// the given trait/impl pair.
a7813a04 1104fn create_trans_items_for_vtable_methods<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e
SL
1105 trait_ty: ty::Ty<'tcx>,
1106 impl_ty: ty::Ty<'tcx>,
1107 output: &mut Vec<TransItem<'tcx>>) {
8bb4bdeb
XL
1108 assert!(!trait_ty.needs_subst() && !trait_ty.has_escaping_regions() &&
1109 !impl_ty.needs_subst() && !impl_ty.has_escaping_regions());
7453a54e 1110
476ff2be
SL
1111 if let ty::TyDynamic(ref trait_ty, ..) = trait_ty.sty {
1112 if let Some(principal) = trait_ty.principal() {
1113 let poly_trait_ref = principal.with_self_ty(scx.tcx(), impl_ty);
1114 let param_substs = scx.tcx().intern_substs(&[]);
1115
8bb4bdeb
XL
1116 assert!(!poly_trait_ref.has_escaping_regions());
1117
476ff2be
SL
1118 // Walk all methods of the trait, including those of its supertraits
1119 let methods = traits::get_vtable_methods(scx.tcx(), poly_trait_ref);
1120 let methods = methods.filter_map(|method| method)
32a655c1
SL
1121 .filter_map(|(def_id, substs)| {
1122 if let StaticDispatchResult::Dispatched {
1123 def_id,
1124 substs,
1125 // We already add the drop-glue for the closure env
1126 // unconditionally below.
1127 fn_once_adjustment: _ ,
1128 } = do_static_dispatch(scx, def_id, substs, param_substs) {
1129 Some((def_id, substs))
1130 } else {
1131 None
1132 }
1133 })
1134 .filter(|&(def_id, _)| should_trans_locally(scx.tcx(), def_id))
476ff2be
SL
1135 .map(|(def_id, substs)| create_fn_trans_item(scx, def_id, substs, param_substs));
1136 output.extend(methods);
1137 }
9e0c209e 1138 // Also add the destructor
32a655c1 1139 let dg_type = glue::get_drop_glue_type(scx, impl_ty);
9e0c209e 1140 output.push(TransItem::DropGlue(DropGlueKind::Ty(dg_type)));
7453a54e
SL
1141 }
1142}
1143
1144//=-----------------------------------------------------------------------------
1145// Root Collection
1146//=-----------------------------------------------------------------------------
1147
1148struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> {
a7813a04 1149 scx: &'b SharedCrateContext<'a, 'tcx>,
7453a54e
SL
1150 mode: TransItemCollectionMode,
1151 output: &'b mut Vec<TransItem<'tcx>>,
7453a54e
SL
1152}
1153
476ff2be 1154impl<'b, 'a, 'v> ItemLikeVisitor<'v> for RootCollector<'b, 'a, 'v> {
7453a54e 1155 fn visit_item(&mut self, item: &'v hir::Item) {
7453a54e
SL
1156 match item.node {
1157 hir::ItemExternCrate(..) |
1158 hir::ItemUse(..) |
1159 hir::ItemForeignMod(..) |
1160 hir::ItemTy(..) |
1161 hir::ItemDefaultImpl(..) |
1162 hir::ItemTrait(..) |
7453a54e
SL
1163 hir::ItemMod(..) => {
1164 // Nothing to do, just keep recursing...
1165 }
1166
1167 hir::ItemImpl(..) => {
1168 if self.mode == TransItemCollectionMode::Eager {
9e0c209e 1169 create_trans_items_for_default_impls(self.scx,
7453a54e 1170 item,
7453a54e
SL
1171 self.output);
1172 }
1173 }
1174
9e0c209e
SL
1175 hir::ItemEnum(_, ref generics) |
1176 hir::ItemStruct(_, ref generics) |
1177 hir::ItemUnion(_, ref generics) => {
7453a54e 1178 if !generics.is_parameterized() {
7453a54e 1179 if self.mode == TransItemCollectionMode::Eager {
32a655c1 1180 let def_id = self.scx.tcx().hir.local_def_id(item.id);
7453a54e 1181 debug!("RootCollector: ADT drop-glue for {}",
476ff2be 1182 def_id_to_string(self.scx.tcx(), def_id));
7453a54e 1183
8bb4bdeb 1184 let ty = def_ty(self.scx, def_id, Substs::empty());
32a655c1 1185 let ty = glue::get_drop_glue_type(self.scx, ty);
a7813a04 1186 self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty)));
7453a54e
SL
1187 }
1188 }
1189 }
1190 hir::ItemStatic(..) => {
1191 debug!("RootCollector: ItemStatic({})",
a7813a04 1192 def_id_to_string(self.scx.tcx(),
32a655c1 1193 self.scx.tcx().hir.local_def_id(item.id)));
7453a54e
SL
1194 self.output.push(TransItem::Static(item.id));
1195 }
5bcae85e
SL
1196 hir::ItemConst(..) => {
1197 // const items only generate translation items if they are
1198 // actually used somewhere. Just declaring them is insufficient.
1199 }
9e0c209e 1200 hir::ItemFn(.., ref generics, _) => {
5bcae85e 1201 if !generics.is_type_parameterized() {
32a655c1 1202 let def_id = self.scx.tcx().hir.local_def_id(item.id);
7453a54e
SL
1203
1204 debug!("RootCollector: ItemFn({})",
a7813a04 1205 def_id_to_string(self.scx.tcx(), def_id));
7453a54e 1206
a7813a04 1207 let instance = Instance::mono(self.scx, def_id);
54a0048b 1208 self.output.push(TransItem::Fn(instance));
7453a54e
SL
1209 }
1210 }
1211 }
7453a54e
SL
1212 }
1213
32a655c1
SL
1214 fn visit_trait_item(&mut self, _: &'v hir::TraitItem) {
1215 // Even if there's a default body with no explicit generics,
1216 // it's still generic over some `Self: Trait`, so not a root.
1217 }
1218
7453a54e
SL
1219 fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
1220 match ii.node {
1221 hir::ImplItemKind::Method(hir::MethodSig {
1222 ref generics,
7453a54e 1223 ..
5bcae85e 1224 }, _) => {
32a655c1 1225 let hir_map = &self.scx.tcx().hir;
7453a54e
SL
1226 let parent_node_id = hir_map.get_parent_node(ii.id);
1227 let is_impl_generic = match hir_map.expect_item(parent_node_id) {
1228 &hir::Item {
9e0c209e 1229 node: hir::ItemImpl(_, _, ref generics, ..),
7453a54e
SL
1230 ..
1231 } => {
1232 generics.is_type_parameterized()
1233 }
1234 _ => {
54a0048b 1235 bug!()
7453a54e
SL
1236 }
1237 };
1238
1239 if !generics.is_type_parameterized() && !is_impl_generic {
32a655c1 1240 let def_id = self.scx.tcx().hir.local_def_id(ii.id);
7453a54e
SL
1241
1242 debug!("RootCollector: MethodImplItem({})",
a7813a04 1243 def_id_to_string(self.scx.tcx(), def_id));
7453a54e 1244
a7813a04 1245 let instance = Instance::mono(self.scx, def_id);
54a0048b 1246 self.output.push(TransItem::Fn(instance));
7453a54e
SL
1247 }
1248 }
1249 _ => { /* Nothing to do here */ }
1250 }
7453a54e
SL
1251 }
1252}
1253
9e0c209e 1254fn create_trans_items_for_default_impls<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
7453a54e 1255 item: &'tcx hir::Item,
7453a54e 1256 output: &mut Vec<TransItem<'tcx>>) {
9e0c209e 1257 let tcx = scx.tcx();
7453a54e
SL
1258 match item.node {
1259 hir::ItemImpl(_,
1260 _,
1261 ref generics,
9e0c209e 1262 ..,
476ff2be 1263 ref impl_item_refs) => {
7453a54e
SL
1264 if generics.is_type_parameterized() {
1265 return
1266 }
1267
32a655c1 1268 let impl_def_id = tcx.hir.local_def_id(item.id);
7453a54e
SL
1269
1270 debug!("create_trans_items_for_default_impls(item={})",
a7813a04 1271 def_id_to_string(tcx, impl_def_id));
7453a54e
SL
1272
1273 if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) {
a7813a04 1274 let callee_substs = tcx.erase_regions(&trait_ref.substs);
476ff2be
SL
1275 let overridden_methods: FxHashSet<_> =
1276 impl_item_refs.iter()
1277 .map(|iiref| iiref.name)
1278 .collect();
9e0c209e
SL
1279 for method in tcx.provided_trait_methods(trait_ref.def_id) {
1280 if overridden_methods.contains(&method.name) {
7453a54e
SL
1281 continue;
1282 }
1283
476ff2be 1284 if !tcx.item_generics(method.def_id).types.is_empty() {
7453a54e
SL
1285 continue;
1286 }
1287
1288 // The substitutions we have are on the impl, so we grab
1289 // the method type from the impl to substitute into.
9e0c209e
SL
1290 let impl_substs = Substs::for_item(tcx, impl_def_id,
1291 |_, _| tcx.mk_region(ty::ReErased),
1292 |_, _| tcx.types.err);
1293 let impl_data = traits::VtableImplData {
1294 impl_def_id: impl_def_id,
1295 substs: impl_substs,
1296 nested: vec![]
1297 };
1298 let (def_id, substs) = traits::find_method(tcx,
1299 method.name,
1300 callee_substs,
1301 &impl_data);
1302
476ff2be 1303 let predicates = tcx.item_predicates(def_id).predicates
9e0c209e
SL
1304 .subst(tcx, substs);
1305 if !traits::normalize_and_test_predicates(tcx, predicates) {
7453a54e
SL
1306 continue;
1307 }
1308
32a655c1 1309 if should_trans_locally(tcx, method.def_id) {
9e0c209e
SL
1310 let item = create_fn_trans_item(scx,
1311 method.def_id,
7453a54e 1312 callee_substs,
9e0c209e 1313 tcx.erase_regions(&substs));
7453a54e
SL
1314 output.push(item);
1315 }
1316 }
1317 }
1318 }
1319 _ => {
54a0048b 1320 bug!()
7453a54e
SL
1321 }
1322 }
1323}
1324
32a655c1
SL
1325/// Scan the MIR in order to find function calls, closures, and drop-glue
1326fn collect_neighbours<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
1327 instance: Instance<'tcx>,
1328 output: &mut Vec<TransItem<'tcx>>)
5bcae85e 1329{
32a655c1 1330 let mir = scx.tcx().item_mir(instance.def);
5bcae85e 1331
32a655c1 1332 let mut visitor = MirNeighborCollector {
5bcae85e
SL
1333 scx: scx,
1334 mir: &mir,
1335 output: output,
32a655c1 1336 param_substs: instance.substs
5bcae85e 1337 };
7453a54e 1338
5bcae85e
SL
1339 visitor.visit_mir(&mir);
1340 for promoted in &mir.promoted {
32a655c1 1341 visitor.mir = promoted;
5bcae85e 1342 visitor.visit_mir(promoted);
7453a54e
SL
1343 }
1344}
476ff2be
SL
1345
1346fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1347 def_id: DefId)
1348 -> String {
1349 let mut output = String::new();
1350 let printer = DefPathBasedNames::new(tcx, false, false);
1351 printer.push_def_path(def_id, &mut output);
1352 output
1353}
1354
1355fn type_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1356 ty: ty::Ty<'tcx>)
1357 -> String {
1358 let mut output = String::new();
1359 let printer = DefPathBasedNames::new(tcx, false, false);
1360 printer.push_type_name(ty, &mut output);
1361 output
1362}