]> git.proxmox.com Git - rustc.git/blame - src/librustc_trans/common.rs
New upstream version 1.19.0+dfsg1
[rustc.git] / src / librustc_trans / common.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11#![allow(non_camel_case_types, non_snake_case)]
12
13//! Code that is useful in various trans modules.
14
1a4d82fc 15use llvm;
32a655c1 16use llvm::{ValueRef, ContextRef, TypeKind};
7453a54e 17use llvm::{True, False, Bool, OperandBundleDef};
54a0048b 18use rustc::hir::def_id::DefId;
476ff2be 19use rustc::hir::map::DefPathData;
7cac9316 20use rustc::middle::lang_items::LangItem;
54a0048b 21use base;
54a0048b 22use builder::Builder;
54a0048b 23use consts;
54a0048b
SL
24use declare;
25use machine;
54a0048b
SL
26use monomorphize;
27use type_::Type;
28use value::Value;
29use rustc::ty::{self, Ty, TyCtxt};
cc61c64b 30use rustc::ty::layout::{Layout, LayoutTyper};
8bb4bdeb 31use rustc::ty::subst::{Subst, Substs};
54a0048b 32use rustc::hir;
1a4d82fc 33
1a4d82fc 34use libc::{c_uint, c_char};
476ff2be 35use std::iter;
54a0048b 36
cc61c64b 37use syntax::attr;
32a655c1
SL
38use syntax::symbol::InternedString;
39use syntax_pos::Span;
1a4d82fc 40
32a655c1 41pub use context::{CrateContext, SharedCrateContext};
1a4d82fc 42
32a655c1
SL
43pub fn type_is_fat_ptr<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
44 if let Layout::FatPointer { .. } = *ccx.layout_of(ty) {
45 true
46 } else {
47 false
1a4d82fc
JJ
48 }
49}
50
1a4d82fc 51pub fn type_is_immediate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
32a655c1
SL
52 let layout = ccx.layout_of(ty);
53 match *layout {
54 Layout::CEnum { .. } |
55 Layout::Scalar { .. } |
56 Layout::Vector { .. } => true,
57
58 Layout::FatPointer { .. } => false,
59
60 Layout::Array { .. } |
61 Layout::Univariant { .. } |
62 Layout::General { .. } |
63 Layout::UntaggedUnion { .. } |
64 Layout::RawNullablePointer { .. } |
65 Layout::StructWrappedNullablePointer { .. } => {
cc61c64b 66 !layout.is_unsized() && layout.size(ccx).bytes() == 0
1a4d82fc 67 }
1a4d82fc
JJ
68 }
69}
70
3157f602
XL
71/// Returns Some([a, b]) if the type has a pair of fields with types a and b.
72pub fn type_pair_fields<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>)
73 -> Option<[Ty<'tcx>; 2]> {
74 match ty.sty {
9e0c209e 75 ty::TyAdt(adt, substs) => {
3157f602
XL
76 assert_eq!(adt.variants.len(), 1);
77 let fields = &adt.variants[0].fields;
78 if fields.len() != 2 {
79 return None;
80 }
81 Some([monomorphize::field_ty(ccx.tcx(), substs, &fields[0]),
82 monomorphize::field_ty(ccx.tcx(), substs, &fields[1])])
83 }
476ff2be
SL
84 ty::TyClosure(def_id, substs) => {
85 let mut tys = substs.upvar_tys(def_id, ccx.tcx());
86 tys.next().and_then(|first_ty| tys.next().and_then(|second_ty| {
87 if tys.next().is_some() {
88 None
89 } else {
90 Some([first_ty, second_ty])
91 }
92 }))
93 }
8bb4bdeb 94 ty::TyTuple(tys, _) => {
3157f602
XL
95 if tys.len() != 2 {
96 return None;
97 }
98 Some([tys[0], tys[1]])
99 }
100 _ => None
101 }
102}
103
104/// Returns true if the type is represented as a pair of immediates.
105pub fn type_is_imm_pair<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>)
106 -> bool {
9e0c209e 107 match *ccx.layout_of(ty) {
3157f602
XL
108 Layout::FatPointer { .. } => true,
109 Layout::Univariant { ref variant, .. } => {
110 // There must be only 2 fields.
c30ab7b3 111 if variant.offsets.len() != 2 {
3157f602
XL
112 return false;
113 }
114
115 match type_pair_fields(ccx, ty) {
116 Some([a, b]) => {
117 type_is_immediate(ccx, a) && type_is_immediate(ccx, b)
118 }
119 None => false
120 }
121 }
122 _ => false
123 }
124}
125
1a4d82fc
JJ
126/// Identify types which have size zero at runtime.
127pub fn type_is_zero_size<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
cc61c64b
XL
128 let layout = ccx.layout_of(ty);
129 !layout.is_unsized() && layout.size(ccx).bytes() == 0
1a4d82fc
JJ
130}
131
1a4d82fc
JJ
132/*
133* A note on nomenclature of linking: "extern", "foreign", and "upcall".
134*
135* An "extern" is an LLVM symbol we wind up emitting an undefined external
136* reference to. This means "we don't have the thing in this compilation unit,
137* please make sure you link it in at runtime". This could be a reference to
138* C code found in a C library, or rust code found in a rust crate.
139*
140* Most "externs" are implicitly declared (automatically) as a result of a
141* user declaring an extern _module_ dependency; this causes the rust driver
142* to locate an extern crate, scan its compilation metadata, and emit extern
143* declarations for any symbols used by the declaring crate.
144*
145* A "foreign" is an extern that references C (or other non-rust ABI) code.
146* There is no metadata to scan for extern references so in these cases either
147* a header-digester like bindgen, or manual function prototypes, have to
148* serve as declarators. So these are usually given explicitly as prototype
149* declarations, in rust code, with ABI attributes on them noting which ABI to
150* link via.
151*
152* An "upcall" is a foreign call generated by the compiler (not corresponding
153* to any user-written call in the code) into the runtime library, to perform
154* some helper task such as bringing a task to life, allocating memory, etc.
155*
156*/
157
7453a54e
SL
158/// A structure representing an active landing pad for the duration of a basic
159/// block.
160///
161/// Each `Block` may contain an instance of this, indicating whether the block
162/// is part of a landing pad or not. This is used to make decision about whether
163/// to emit `invoke` instructions (e.g. in a landing pad we don't continue to
164/// use `invoke`) and also about various function call metadata.
165///
166/// For GNU exceptions (`landingpad` + `resume` instructions) this structure is
167/// just a bunch of `None` instances (not too interesting), but for MSVC
168/// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data.
169/// When inside of a landing pad, each function call in LLVM IR needs to be
170/// annotated with which landing pad it's a part of. This is accomplished via
171/// the `OperandBundleDef` value created for MSVC landing pads.
32a655c1
SL
172pub struct Funclet {
173 cleanuppad: ValueRef,
174 operand: OperandBundleDef,
7453a54e
SL
175}
176
32a655c1
SL
177impl Funclet {
178 pub fn new(cleanuppad: ValueRef) -> Funclet {
179 Funclet {
180 cleanuppad: cleanuppad,
181 operand: OperandBundleDef::new("funclet", &[cleanuppad]),
7453a54e
SL
182 }
183 }
184
32a655c1 185 pub fn cleanuppad(&self) -> ValueRef {
3157f602
XL
186 self.cleanuppad
187 }
7453a54e 188
32a655c1
SL
189 pub fn bundle(&self) -> &OperandBundleDef {
190 &self.operand
7453a54e 191 }
1a4d82fc
JJ
192}
193
1a4d82fc
JJ
194pub fn val_ty(v: ValueRef) -> Type {
195 unsafe {
196 Type::from_ref(llvm::LLVMTypeOf(v))
197 }
198}
199
200// LLVM constant constructors.
201pub fn C_null(t: Type) -> ValueRef {
202 unsafe {
203 llvm::LLVMConstNull(t.to_ref())
204 }
205}
206
207pub fn C_undef(t: Type) -> ValueRef {
208 unsafe {
209 llvm::LLVMGetUndef(t.to_ref())
210 }
211}
212
213pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef {
214 unsafe {
215 llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool)
216 }
217}
218
8bb4bdeb
XL
219pub fn C_big_integral(t: Type, u: u128) -> ValueRef {
220 unsafe {
221 let words = [u as u64, u.wrapping_shr(64) as u64];
222 llvm::LLVMConstIntOfArbitraryPrecision(t.to_ref(), 2, words.as_ptr())
32a655c1
SL
223 }
224}
225
92a42be0
SL
226pub fn C_floating_f64(f: f64, t: Type) -> ValueRef {
227 unsafe {
228 llvm::LLVMConstReal(t.to_ref(), f)
229 }
230}
231
1a4d82fc
JJ
232pub fn C_nil(ccx: &CrateContext) -> ValueRef {
233 C_struct(ccx, &[], false)
234}
235
236pub fn C_bool(ccx: &CrateContext, val: bool) -> ValueRef {
237 C_integral(Type::i1(ccx), val as u64, false)
238}
239
240pub fn C_i32(ccx: &CrateContext, i: i32) -> ValueRef {
241 C_integral(Type::i32(ccx), i as u64, true)
242}
243
c34b1796
AL
244pub fn C_u32(ccx: &CrateContext, i: u32) -> ValueRef {
245 C_integral(Type::i32(ccx), i as u64, false)
246}
247
1a4d82fc
JJ
248pub fn C_u64(ccx: &CrateContext, i: u64) -> ValueRef {
249 C_integral(Type::i64(ccx), i, false)
250}
251
1a4d82fc
JJ
252pub fn C_uint<I: AsU64>(ccx: &CrateContext, i: I) -> ValueRef {
253 let v = i.as_u64();
254
e9174d1e
SL
255 let bit_size = machine::llbitsize_of_real(ccx, ccx.int_type());
256
257 if bit_size < 64 {
258 // make sure it doesn't overflow
259 assert!(v < (1<<bit_size));
1a4d82fc
JJ
260 }
261
262 C_integral(ccx.int_type(), v, false)
263}
264
265pub trait AsI64 { fn as_i64(self) -> i64; }
266pub trait AsU64 { fn as_u64(self) -> u64; }
267
268// FIXME: remove the intptr conversions, because they
269// are host-architecture-dependent
270impl AsI64 for i64 { fn as_i64(self) -> i64 { self as i64 }}
271impl AsI64 for i32 { fn as_i64(self) -> i64 { self as i64 }}
c34b1796 272impl AsI64 for isize { fn as_i64(self) -> i64 { self as i64 }}
1a4d82fc
JJ
273
274impl AsU64 for u64 { fn as_u64(self) -> u64 { self as u64 }}
275impl AsU64 for u32 { fn as_u64(self) -> u64 { self as u64 }}
c34b1796 276impl AsU64 for usize { fn as_u64(self) -> u64 { self as u64 }}
1a4d82fc 277
e9174d1e 278pub fn C_u8(ccx: &CrateContext, i: u8) -> ValueRef {
1a4d82fc
JJ
279 C_integral(Type::i8(ccx), i as u64, false)
280}
281
282
283// This is a 'c-like' raw string, which differs from
284// our boxed-and-length-annotated strings.
285pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> ValueRef {
286 unsafe {
7453a54e
SL
287 if let Some(&llval) = cx.const_cstr_cache().borrow().get(&s) {
288 return llval;
1a4d82fc
JJ
289 }
290
291 let sc = llvm::LLVMConstStringInContext(cx.llcx(),
85aaf69f
SL
292 s.as_ptr() as *const c_char,
293 s.len() as c_uint,
1a4d82fc 294 !null_terminated as Bool);
c30ab7b3 295 let sym = cx.generate_local_symbol_name("str");
9346a6ac 296 let g = declare::define_global(cx, &sym[..], val_ty(sc)).unwrap_or_else(||{
54a0048b 297 bug!("symbol `{}` is already defined", sym);
9346a6ac 298 });
1a4d82fc
JJ
299 llvm::LLVMSetInitializer(g, sc);
300 llvm::LLVMSetGlobalConstant(g, True);
9e0c209e 301 llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage);
1a4d82fc
JJ
302
303 cx.const_cstr_cache().borrow_mut().insert(s, g);
304 g
305 }
306}
307
308// NB: Do not use `do_spill_noroot` to make this into a constant string, or
309// you will be kicked off fast isel. See issue #4352 for an example of this.
310pub fn C_str_slice(cx: &CrateContext, s: InternedString) -> ValueRef {
85aaf69f 311 let len = s.len();
1a4d82fc 312 let cs = consts::ptrcast(C_cstr(cx, s, false), Type::i8p(cx));
476ff2be 313 C_named_struct(cx.str_slice_type(), &[cs, C_uint(cx, len)])
1a4d82fc
JJ
314}
315
1a4d82fc
JJ
316pub fn C_struct(cx: &CrateContext, elts: &[ValueRef], packed: bool) -> ValueRef {
317 C_struct_in_context(cx.llcx(), elts, packed)
318}
319
320pub fn C_struct_in_context(llcx: ContextRef, elts: &[ValueRef], packed: bool) -> ValueRef {
321 unsafe {
322 llvm::LLVMConstStructInContext(llcx,
323 elts.as_ptr(), elts.len() as c_uint,
324 packed as Bool)
325 }
326}
327
328pub fn C_named_struct(t: Type, elts: &[ValueRef]) -> ValueRef {
329 unsafe {
330 llvm::LLVMConstNamedStruct(t.to_ref(), elts.as_ptr(), elts.len() as c_uint)
331 }
332}
333
334pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef {
335 unsafe {
336 return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint);
337 }
338}
339
85aaf69f
SL
340pub fn C_vector(elts: &[ValueRef]) -> ValueRef {
341 unsafe {
342 return llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint);
343 }
344}
345
1a4d82fc
JJ
346pub fn C_bytes(cx: &CrateContext, bytes: &[u8]) -> ValueRef {
347 C_bytes_in_context(cx.llcx(), bytes)
348}
349
350pub fn C_bytes_in_context(llcx: ContextRef, bytes: &[u8]) -> ValueRef {
351 unsafe {
352 let ptr = bytes.as_ptr() as *const c_char;
353 return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True);
354 }
355}
356
54a0048b 357pub fn const_get_elt(v: ValueRef, us: &[c_uint])
1a4d82fc
JJ
358 -> ValueRef {
359 unsafe {
360 let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
361
54a0048b
SL
362 debug!("const_get_elt(v={:?}, us={:?}, r={:?})",
363 Value(v), us, Value(r));
1a4d82fc 364
54a0048b 365 r
1a4d82fc
JJ
366 }
367}
368
1a4d82fc
JJ
369pub fn const_to_uint(v: ValueRef) -> u64 {
370 unsafe {
371 llvm::LLVMConstIntGetZExtValue(v)
372 }
373}
374
c34b1796
AL
375fn is_const_integral(v: ValueRef) -> bool {
376 unsafe {
377 !llvm::LLVMIsAConstantInt(v).is_null()
378 }
379}
380
32a655c1 381#[inline]
32a655c1
SL
382fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 {
383 ((hi as u128) << 64) | (lo as u128)
c34b1796
AL
384}
385
32a655c1 386pub fn const_to_opt_u128(v: ValueRef, sign_ext: bool) -> Option<u128> {
c34b1796
AL
387 unsafe {
388 if is_const_integral(v) {
32a655c1
SL
389 let (mut lo, mut hi) = (0u64, 0u64);
390 let success = llvm::LLVMRustConstInt128Get(v, sign_ext,
391 &mut hi as *mut u64, &mut lo as *mut u64);
392 if success {
393 Some(hi_lo_to_u128(lo, hi))
394 } else {
395 None
396 }
c34b1796
AL
397 } else {
398 None
399 }
400 }
401}
402
1a4d82fc
JJ
403pub fn is_undef(val: ValueRef) -> bool {
404 unsafe {
405 llvm::LLVMIsUndef(val) != False
406 }
407}
408
409#[allow(dead_code)] // potentially useful
410pub fn is_null(val: ValueRef) -> bool {
411 unsafe {
412 llvm::LLVMIsNull(val) != False
413 }
414}
415
3157f602 416pub fn langcall(tcx: TyCtxt,
1a4d82fc
JJ
417 span: Option<Span>,
418 msg: &str,
419 li: LangItem)
e9174d1e 420 -> DefId {
3157f602 421 match tcx.lang_items.require(li) {
1a4d82fc
JJ
422 Ok(id) => id,
423 Err(s) => {
424 let msg = format!("{} {}", msg, s);
425 match span {
3157f602
XL
426 Some(span) => tcx.sess.span_fatal(span, &msg[..]),
427 None => tcx.sess.fatal(&msg[..]),
1a4d82fc
JJ
428 }
429 }
430 }
431}
e9174d1e 432
92a42be0
SL
433// To avoid UB from LLVM, these two functions mask RHS with an
434// appropriate mask unconditionally (i.e. the fallback behavior for
435// all shifts). For 32- and 64-bit types, this matches the semantics
436// of Java. (See related discussion on #1877 and #10183.)
437
32a655c1
SL
438pub fn build_unchecked_lshift<'a, 'tcx>(
439 bcx: &Builder<'a, 'tcx>,
440 lhs: ValueRef,
441 rhs: ValueRef
442) -> ValueRef {
92a42be0
SL
443 let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShl, lhs, rhs);
444 // #1877, #10183: Ensure that input is always valid
32a655c1
SL
445 let rhs = shift_mask_rhs(bcx, rhs);
446 bcx.shl(lhs, rhs)
92a42be0
SL
447}
448
32a655c1
SL
449pub fn build_unchecked_rshift<'a, 'tcx>(
450 bcx: &Builder<'a, 'tcx>, lhs_t: Ty<'tcx>, lhs: ValueRef, rhs: ValueRef
451) -> ValueRef {
92a42be0
SL
452 let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShr, lhs, rhs);
453 // #1877, #10183: Ensure that input is always valid
32a655c1 454 let rhs = shift_mask_rhs(bcx, rhs);
92a42be0
SL
455 let is_signed = lhs_t.is_signed();
456 if is_signed {
32a655c1 457 bcx.ashr(lhs, rhs)
92a42be0 458 } else {
32a655c1 459 bcx.lshr(lhs, rhs)
92a42be0
SL
460 }
461}
462
32a655c1 463fn shift_mask_rhs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>, rhs: ValueRef) -> ValueRef {
92a42be0 464 let rhs_llty = val_ty(rhs);
32a655c1 465 bcx.and(rhs, shift_mask_val(bcx, rhs_llty, rhs_llty, false))
92a42be0
SL
466}
467
32a655c1
SL
468pub fn shift_mask_val<'a, 'tcx>(
469 bcx: &Builder<'a, 'tcx>,
470 llty: Type,
471 mask_llty: Type,
472 invert: bool
473) -> ValueRef {
92a42be0
SL
474 let kind = llty.kind();
475 match kind {
476 TypeKind::Integer => {
477 // i8/u8 can shift by at most 7, i16/u16 by at most 15, etc.
478 let val = llty.int_width() - 1;
479 if invert {
480 C_integral(mask_llty, !val, true)
481 } else {
482 C_integral(mask_llty, val, false)
483 }
484 },
485 TypeKind::Vector => {
486 let mask = shift_mask_val(bcx, llty.element_type(), mask_llty.element_type(), invert);
32a655c1 487 bcx.vector_splat(mask_llty.vector_length(), mask)
92a42be0 488 },
54a0048b 489 _ => bug!("shift_mask_val: expected Integer or Vector, found {:?}", kind),
92a42be0
SL
490 }
491}
476ff2be 492
8bb4bdeb
XL
493pub fn ty_fn_sig<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
494 ty: Ty<'tcx>)
495 -> ty::PolyFnSig<'tcx>
476ff2be
SL
496{
497 match ty.sty {
8bb4bdeb 498 ty::TyFnDef(_, _, sig) => sig,
476ff2be 499 // Shims currently have type TyFnPtr. Not sure this should remain.
8bb4bdeb 500 ty::TyFnPtr(sig) => sig,
476ff2be
SL
501 ty::TyClosure(def_id, substs) => {
502 let tcx = ccx.tcx();
8bb4bdeb 503 let sig = tcx.closure_type(def_id).subst(tcx, substs.substs);
476ff2be
SL
504
505 let env_region = ty::ReLateBound(ty::DebruijnIndex::new(1), ty::BrEnv);
506 let env_ty = match tcx.closure_kind(def_id) {
507 ty::ClosureKind::Fn => tcx.mk_imm_ref(tcx.mk_region(env_region), ty),
508 ty::ClosureKind::FnMut => tcx.mk_mut_ref(tcx.mk_region(env_region), ty),
509 ty::ClosureKind::FnOnce => ty,
510 };
511
8bb4bdeb 512 sig.map_bound(|sig| tcx.mk_fn_sig(
476ff2be
SL
513 iter::once(env_ty).chain(sig.inputs().iter().cloned()),
514 sig.output(),
8bb4bdeb
XL
515 sig.variadic,
516 sig.unsafety,
517 sig.abi
518 ))
476ff2be
SL
519 }
520 _ => bug!("unexpected type {:?} to ty_fn_sig", ty)
521 }
522}
523
cc61c64b
XL
524pub fn requests_inline<'a, 'tcx>(
525 tcx: TyCtxt<'a, 'tcx, 'tcx>,
526 instance: &ty::Instance<'tcx>
527) -> bool {
528 if is_inline_instance(tcx, instance) {
529 return true
530 }
7cac9316
XL
531 if let ty::InstanceDef::DropGlue(..) = instance.def {
532 // Drop glue wants to be instantiated at every translation
533 // unit, but without an #[inline] hint. We should make this
534 // available to normal end-users.
535 return true
536 }
cc61c64b
XL
537 attr::requests_inline(&instance.def.attrs(tcx)[..])
538}
539
540pub fn is_inline_instance<'a, 'tcx>(
541 tcx: TyCtxt<'a, 'tcx, 'tcx>,
542 instance: &ty::Instance<'tcx>
543) -> bool {
544 let def_id = match instance.def {
545 ty::InstanceDef::Item(def_id) => def_id,
546 ty::InstanceDef::DropGlue(_, Some(_)) => return false,
547 _ => return true
548 };
549 match tcx.def_key(def_id).disambiguated_data.data {
550 DefPathData::StructCtor |
551 DefPathData::EnumVariant(..) |
552 DefPathData::ClosureExpr => true,
553 _ => false
554 }
476ff2be 555}
8bb4bdeb
XL
556
557/// Given a DefId and some Substs, produces the monomorphic item type.
558pub fn def_ty<'a, 'tcx>(shared: &SharedCrateContext<'a, 'tcx>,
559 def_id: DefId,
560 substs: &'tcx Substs<'tcx>)
561 -> Ty<'tcx>
562{
7cac9316 563 let ty = shared.tcx().type_of(def_id);
cc61c64b
XL
564 shared.tcx().trans_apply_param_substs(substs, &ty)
565}
566
567/// Return the substituted type of an instance.
568pub fn instance_ty<'a, 'tcx>(shared: &SharedCrateContext<'a, 'tcx>,
569 instance: &ty::Instance<'tcx>)
570 -> Ty<'tcx>
571{
572 let ty = instance.def.def_ty(shared.tcx());
573 shared.tcx().trans_apply_param_substs(instance.substs, &ty)
8bb4bdeb 574}