]>
Commit | Line | Data |
---|---|---|
7453a54e SL |
1 | // Copyright 2014 The Rust Project Developers. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution and at | |
3 | // http://rust-lang.org/COPYRIGHT. | |
4 | // | |
5 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | |
6 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license | |
7 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your | |
8 | // option. This file may not be copied, modified, or distributed | |
9 | // except according to those terms. | |
10 | ||
11 | //! Translation Item Collection | |
12 | //! =========================== | |
13 | //! | |
14 | //! This module is responsible for discovering all items that will contribute to | |
15 | //! to code generation of the crate. The important part here is that it not only | |
16 | //! needs to find syntax-level items (functions, structs, etc) but also all | |
17 | //! their monomorphized instantiations. Every non-generic, non-const function | |
18 | //! maps to one LLVM artifact. Every generic function can produce | |
19 | //! from zero to N artifacts, depending on the sets of type arguments it | |
20 | //! is instantiated with. | |
21 | //! This also applies to generic items from other crates: A generic definition | |
22 | //! in crate X might produce monomorphizations that are compiled into crate Y. | |
23 | //! We also have to collect these here. | |
24 | //! | |
25 | //! The following kinds of "translation items" are handled here: | |
26 | //! | |
27 | //! - Functions | |
28 | //! - Methods | |
29 | //! - Closures | |
30 | //! - Statics | |
31 | //! - Drop glue | |
32 | //! | |
33 | //! The following things also result in LLVM artifacts, but are not collected | |
34 | //! here, since we instantiate them locally on demand when needed in a given | |
35 | //! codegen unit: | |
36 | //! | |
37 | //! - Constants | |
38 | //! - Vtables | |
39 | //! - Object Shims | |
40 | //! | |
41 | //! | |
42 | //! General Algorithm | |
43 | //! ----------------- | |
44 | //! Let's define some terms first: | |
45 | //! | |
46 | //! - A "translation item" is something that results in a function or global in | |
47 | //! the LLVM IR of a codegen unit. Translation items do not stand on their | |
48 | //! own, they can reference other translation items. For example, if function | |
49 | //! `foo()` calls function `bar()` then the translation item for `foo()` | |
50 | //! references the translation item for function `bar()`. In general, the | |
51 | //! definition for translation item A referencing a translation item B is that | |
52 | //! the LLVM artifact produced for A references the LLVM artifact produced | |
53 | //! for B. | |
54 | //! | |
55 | //! - Translation items and the references between them for a directed graph, | |
56 | //! where the translation items are the nodes and references form the edges. | |
57 | //! Let's call this graph the "translation item graph". | |
58 | //! | |
59 | //! - The translation item graph for a program contains all translation items | |
60 | //! that are needed in order to produce the complete LLVM IR of the program. | |
61 | //! | |
62 | //! The purpose of the algorithm implemented in this module is to build the | |
63 | //! translation item graph for the current crate. It runs in two phases: | |
64 | //! | |
65 | //! 1. Discover the roots of the graph by traversing the HIR of the crate. | |
66 | //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR | |
67 | //! representation of the item corresponding to a given node, until no more | |
68 | //! new nodes are found. | |
69 | //! | |
70 | //! ### Discovering roots | |
71 | //! | |
72 | //! The roots of the translation item graph correspond to the non-generic | |
73 | //! syntactic items in the source code. We find them by walking the HIR of the | |
74 | //! crate, and whenever we hit upon a function, method, or static item, we | |
75 | //! create a translation item consisting of the items DefId and, since we only | |
76 | //! consider non-generic items, an empty type-substitution set. | |
77 | //! | |
78 | //! ### Finding neighbor nodes | |
79 | //! Given a translation item node, we can discover neighbors by inspecting its | |
80 | //! MIR. We walk the MIR and any time we hit upon something that signifies a | |
81 | //! reference to another translation item, we have found a neighbor. Since the | |
82 | //! translation item we are currently at is always monomorphic, we also know the | |
83 | //! concrete type arguments of its neighbors, and so all neighbors again will be | |
84 | //! monomorphic. The specific forms a reference to a neighboring node can take | |
85 | //! in MIR are quite diverse. Here is an overview: | |
86 | //! | |
87 | //! #### Calling Functions/Methods | |
88 | //! The most obvious form of one translation item referencing another is a | |
89 | //! function or method call (represented by a CALL terminator in MIR). But | |
90 | //! calls are not the only thing that might introduce a reference between two | |
91 | //! function translation items, and as we will see below, they are just a | |
92 | //! specialized of the form described next, and consequently will don't get any | |
93 | //! special treatment in the algorithm. | |
94 | //! | |
95 | //! #### Taking a reference to a function or method | |
96 | //! A function does not need to actually be called in order to be a neighbor of | |
97 | //! another function. It suffices to just take a reference in order to introduce | |
98 | //! an edge. Consider the following example: | |
99 | //! | |
100 | //! ```rust | |
101 | //! fn print_val<T: Display>(x: T) { | |
102 | //! println!("{}", x); | |
103 | //! } | |
104 | //! | |
105 | //! fn call_fn(f: &Fn(i32), x: i32) { | |
106 | //! f(x); | |
107 | //! } | |
108 | //! | |
109 | //! fn main() { | |
110 | //! let print_i32 = print_val::<i32>; | |
111 | //! call_fn(&print_i32, 0); | |
112 | //! } | |
113 | //! ``` | |
114 | //! The MIR of none of these functions will contain an explicit call to | |
115 | //! `print_val::<i32>`. Nonetheless, in order to translate this program, we need | |
116 | //! an instance of this function. Thus, whenever we encounter a function or | |
117 | //! method in operand position, we treat it as a neighbor of the current | |
118 | //! translation item. Calls are just a special case of that. | |
119 | //! | |
120 | //! #### Closures | |
121 | //! In a way, closures are a simple case. Since every closure object needs to be | |
122 | //! constructed somewhere, we can reliably discover them by observing | |
123 | //! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also | |
124 | //! true for closures inlined from other crates. | |
125 | //! | |
126 | //! #### Drop glue | |
127 | //! Drop glue translation items are introduced by MIR drop-statements. The | |
128 | //! generated translation item will again have drop-glue item neighbors if the | |
129 | //! type to be dropped contains nested values that also need to be dropped. It | |
130 | //! might also have a function item neighbor for the explicit `Drop::drop` | |
131 | //! implementation of its type. | |
132 | //! | |
133 | //! #### Unsizing Casts | |
134 | //! A subtle way of introducing neighbor edges is by casting to a trait object. | |
135 | //! Since the resulting fat-pointer contains a reference to a vtable, we need to | |
136 | //! instantiate all object-save methods of the trait, as we need to store | |
137 | //! pointers to these functions even if they never get called anywhere. This can | |
138 | //! be seen as a special case of taking a function reference. | |
139 | //! | |
140 | //! #### Boxes | |
141 | //! Since `Box` expression have special compiler support, no explicit calls to | |
142 | //! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the | |
143 | //! compiler will generate them. We have to observe `Rvalue::Box` expressions | |
144 | //! and Box-typed drop-statements for that purpose. | |
145 | //! | |
146 | //! | |
147 | //! Interaction with Cross-Crate Inlining | |
148 | //! ------------------------------------- | |
149 | //! The binary of a crate will not only contain machine code for the items | |
150 | //! defined in the source code of that crate. It will also contain monomorphic | |
151 | //! instantiations of any extern generic functions and of functions marked with | |
152 | //! #[inline]. | |
153 | //! The collection algorithm handles this more or less transparently. If it is | |
154 | //! about to create a translation item for something with an external `DefId`, | |
155 | //! it will take a look if the MIR for that item is available, and if so just | |
156 | //! proceed normally. If the MIR is not available, it assumes that that item is | |
157 | //! just linked to and no node is created; which is exactly what we want, since | |
158 | //! no machine code should be generated in the current crate for such an item. | |
159 | //! | |
160 | //! Eager and Lazy Collection Mode | |
161 | //! ------------------------------ | |
162 | //! Translation item collection can be performed in one of two modes: | |
163 | //! | |
164 | //! - Lazy mode means that items will only be instantiated when actually | |
165 | //! referenced. The goal is to produce the least amount of machine code | |
166 | //! possible. | |
167 | //! | |
168 | //! - Eager mode is meant to be used in conjunction with incremental compilation | |
169 | //! where a stable set of translation items is more important than a minimal | |
170 | //! one. Thus, eager mode will instantiate drop-glue for every drop-able type | |
171 | //! in the crate, even of no drop call for that type exists (yet). It will | |
172 | //! also instantiate default implementations of trait methods, something that | |
173 | //! otherwise is only done on demand. | |
174 | //! | |
175 | //! | |
176 | //! Open Issues | |
177 | //! ----------- | |
178 | //! Some things are not yet fully implemented in the current version of this | |
179 | //! module. | |
180 | //! | |
181 | //! ### Initializers of Constants and Statics | |
182 | //! Since no MIR is constructed yet for initializer expressions of constants and | |
183 | //! statics we cannot inspect these properly. | |
184 | //! | |
185 | //! ### Const Fns | |
186 | //! Ideally, no translation item should be generated for const fns unless there | |
187 | //! is a call to them that cannot be evaluated at compile time. At the moment | |
188 | //! this is not implemented however: a translation item will be produced | |
189 | //! regardless of whether it is actually needed or not. | |
190 | ||
191 | use rustc_front::hir; | |
192 | use rustc_front::intravisit as hir_visit; | |
193 | ||
194 | use rustc::front::map as hir_map; | |
195 | use rustc::middle::def_id::DefId; | |
196 | use rustc::middle::lang_items::{ExchangeFreeFnLangItem, ExchangeMallocFnLangItem}; | |
197 | use rustc::middle::{ty, traits}; | |
198 | use rustc::middle::subst::{self, Substs, Subst}; | |
199 | use rustc::middle::ty::adjustment::CustomCoerceUnsized; | |
200 | use rustc::middle::ty::fold::TypeFoldable; | |
201 | use rustc::mir::repr as mir; | |
202 | use rustc::mir::visit as mir_visit; | |
203 | use rustc::mir::visit::Visitor as MirVisitor; | |
204 | ||
205 | use syntax::ast::{self, NodeId}; | |
206 | use syntax::codemap::DUMMY_SP; | |
207 | use syntax::errors; | |
208 | use syntax::parse::token; | |
209 | ||
210 | use trans::base::custom_coerce_unsize_info; | |
211 | use trans::context::CrateContext; | |
212 | use trans::common::{fulfill_obligation, normalize_and_test_predicates, | |
213 | type_is_sized}; | |
214 | use trans::glue; | |
215 | use trans::meth; | |
216 | use trans::monomorphize; | |
217 | use util::nodemap::{FnvHashSet, FnvHashMap, DefIdMap}; | |
218 | ||
219 | use std::hash::{Hash, Hasher}; | |
220 | use std::rc::Rc; | |
221 | ||
222 | #[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)] | |
223 | pub enum TransItemCollectionMode { | |
224 | Eager, | |
225 | Lazy | |
226 | } | |
227 | ||
228 | #[derive(Eq, Clone, Copy, Debug)] | |
229 | pub enum TransItem<'tcx> { | |
230 | DropGlue(ty::Ty<'tcx>), | |
231 | Fn { | |
232 | def_id: DefId, | |
233 | substs: &'tcx Substs<'tcx> | |
234 | }, | |
235 | Static(NodeId) | |
236 | } | |
237 | ||
238 | impl<'tcx> Hash for TransItem<'tcx> { | |
239 | fn hash<H: Hasher>(&self, s: &mut H) { | |
240 | match *self { | |
241 | TransItem::DropGlue(t) => { | |
242 | 0u8.hash(s); | |
243 | t.hash(s); | |
244 | }, | |
245 | TransItem::Fn { def_id, substs } => { | |
246 | 1u8.hash(s); | |
247 | def_id.hash(s); | |
248 | (substs as *const Substs<'tcx> as usize).hash(s); | |
249 | } | |
250 | TransItem::Static(node_id) => { | |
251 | 3u8.hash(s); | |
252 | node_id.hash(s); | |
253 | } | |
254 | }; | |
255 | } | |
256 | } | |
257 | ||
258 | impl<'tcx> PartialEq for TransItem<'tcx> { | |
259 | fn eq(&self, other: &Self) -> bool { | |
260 | match (*self, *other) { | |
261 | (TransItem::DropGlue(t1), TransItem::DropGlue(t2)) => t1 == t2, | |
262 | (TransItem::Fn { def_id: def_id1, substs: substs1 }, | |
263 | TransItem::Fn { def_id: def_id2, substs: substs2 }) => { | |
264 | def_id1 == def_id2 && substs1 == substs2 | |
265 | }, | |
266 | (TransItem::Static(node_id1), TransItem::Static(node_id2)) => { | |
267 | node_id1 == node_id2 | |
268 | }, | |
269 | _ => false | |
270 | } | |
271 | } | |
272 | } | |
273 | ||
274 | pub fn collect_crate_translation_items<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
275 | mode: TransItemCollectionMode) | |
276 | -> FnvHashSet<TransItem<'tcx>> { | |
277 | // We are not tracking dependencies of this pass as it has to be re-executed | |
278 | // every time no matter what. | |
279 | ccx.tcx().dep_graph.with_ignore(|| { | |
280 | let roots = collect_roots(ccx, mode); | |
281 | ||
282 | debug!("Building translation item graph, beginning at roots"); | |
283 | let mut visited = FnvHashSet(); | |
284 | let mut recursion_depths = DefIdMap(); | |
285 | let mut mir_cache = DefIdMap(); | |
286 | ||
287 | for root in roots { | |
288 | collect_items_rec(ccx, | |
289 | root, | |
290 | &mut visited, | |
291 | &mut recursion_depths, | |
292 | &mut mir_cache); | |
293 | } | |
294 | ||
295 | visited | |
296 | }) | |
297 | } | |
298 | ||
299 | // Find all non-generic items by walking the HIR. These items serve as roots to | |
300 | // start monomorphizing from. | |
301 | fn collect_roots<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
302 | mode: TransItemCollectionMode) | |
303 | -> Vec<TransItem<'tcx>> { | |
304 | debug!("Collecting roots"); | |
305 | let mut roots = Vec::new(); | |
306 | ||
307 | { | |
308 | let mut visitor = RootCollector { | |
309 | ccx: ccx, | |
310 | mode: mode, | |
311 | output: &mut roots, | |
312 | enclosing_item: None, | |
313 | trans_empty_substs: ccx.tcx().mk_substs(Substs::trans_empty()), | |
314 | }; | |
315 | ||
316 | ccx.tcx().map.krate().visit_all_items(&mut visitor); | |
317 | } | |
318 | ||
319 | roots | |
320 | } | |
321 | ||
322 | #[derive(Clone)] | |
323 | enum CachedMir<'mir, 'tcx: 'mir> { | |
324 | Ref(&'mir mir::Mir<'tcx>), | |
325 | Owned(Rc<mir::Mir<'tcx>>) | |
326 | } | |
327 | ||
328 | impl<'mir, 'tcx: 'mir> CachedMir<'mir, 'tcx> { | |
329 | fn get_ref<'a>(&'a self) -> &'a mir::Mir<'tcx> { | |
330 | match *self { | |
331 | CachedMir::Ref(r) => r, | |
332 | CachedMir::Owned(ref rc) => &rc, | |
333 | } | |
334 | } | |
335 | } | |
336 | ||
337 | // Collect all monomorphized translation items reachable from `starting_point` | |
338 | fn collect_items_rec<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>, | |
339 | starting_point: TransItem<'tcx>, | |
340 | visited: &mut FnvHashSet<TransItem<'tcx>>, | |
341 | recursion_depths: &mut DefIdMap<usize>, | |
342 | mir_cache: &mut DefIdMap<CachedMir<'a, 'tcx>>) { | |
343 | if !visited.insert(starting_point.clone()) { | |
344 | // We've been here already, no need to search again. | |
345 | return; | |
346 | } | |
347 | debug!("BEGIN collect_items_rec({})", starting_point.to_string(ccx)); | |
348 | ||
349 | let mut neighbors = Vec::new(); | |
350 | let recursion_depth_reset; | |
351 | ||
352 | match starting_point { | |
353 | TransItem::DropGlue(t) => { | |
354 | find_drop_glue_neighbors(ccx, t, &mut neighbors); | |
355 | recursion_depth_reset = None; | |
356 | } | |
357 | TransItem::Static(_) => { | |
358 | recursion_depth_reset = None; | |
359 | } | |
360 | TransItem::Fn { def_id, substs: ref param_substs } => { | |
361 | // Keep track of the monomorphization recursion depth | |
362 | recursion_depth_reset = Some(check_recursion_limit(ccx, | |
363 | def_id, | |
364 | recursion_depths)); | |
365 | ||
366 | // Scan the MIR in order to find function calls, closures, and | |
367 | // drop-glue | |
368 | let mir = load_mir(ccx, def_id, mir_cache); | |
369 | ||
370 | let mut visitor = MirNeighborCollector { | |
371 | ccx: ccx, | |
372 | mir: mir.get_ref(), | |
373 | output: &mut neighbors, | |
374 | param_substs: param_substs | |
375 | }; | |
376 | ||
377 | visitor.visit_mir(mir.get_ref()); | |
378 | } | |
379 | } | |
380 | ||
381 | for neighbour in neighbors { | |
382 | collect_items_rec(ccx, neighbour, visited, recursion_depths, mir_cache); | |
383 | } | |
384 | ||
385 | if let Some((def_id, depth)) = recursion_depth_reset { | |
386 | recursion_depths.insert(def_id, depth); | |
387 | } | |
388 | ||
389 | debug!("END collect_items_rec({})", starting_point.to_string(ccx)); | |
390 | } | |
391 | ||
392 | fn load_mir<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>, | |
393 | def_id: DefId, | |
394 | mir_cache: &mut DefIdMap<CachedMir<'a, 'tcx>>) | |
395 | -> CachedMir<'a, 'tcx> { | |
396 | let mir_not_found_error_message = || { | |
397 | format!("Could not find MIR for function: {}", | |
398 | ccx.tcx().item_path_str(def_id)) | |
399 | }; | |
400 | ||
401 | if def_id.is_local() { | |
402 | let node_id = ccx.tcx().map.as_local_node_id(def_id).unwrap(); | |
403 | let mir_opt = ccx.mir_map().map.get(&node_id); | |
404 | let mir = errors::expect(ccx.sess().diagnostic(), | |
405 | mir_opt, | |
406 | mir_not_found_error_message); | |
407 | CachedMir::Ref(mir) | |
408 | } else { | |
409 | if let Some(mir) = mir_cache.get(&def_id) { | |
410 | return mir.clone(); | |
411 | } | |
412 | ||
413 | let mir_opt = ccx.sess().cstore.maybe_get_item_mir(ccx.tcx(), def_id); | |
414 | let mir = errors::expect(ccx.sess().diagnostic(), | |
415 | mir_opt, | |
416 | mir_not_found_error_message); | |
417 | let cached = CachedMir::Owned(Rc::new(mir)); | |
418 | mir_cache.insert(def_id, cached.clone()); | |
419 | cached | |
420 | } | |
421 | } | |
422 | ||
423 | fn check_recursion_limit<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>, | |
424 | def_id: DefId, | |
425 | recursion_depths: &mut DefIdMap<usize>) | |
426 | -> (DefId, usize) { | |
427 | let recursion_depth = recursion_depths.get(&def_id) | |
428 | .map(|x| *x) | |
429 | .unwrap_or(0); | |
430 | debug!(" => recursion depth={}", recursion_depth); | |
431 | ||
432 | // Code that needs to instantiate the same function recursively | |
433 | // more than the recursion limit is assumed to be causing an | |
434 | // infinite expansion. | |
435 | if recursion_depth > ccx.sess().recursion_limit.get() { | |
436 | if let Some(node_id) = ccx.tcx().map.as_local_node_id(def_id) { | |
437 | ccx.sess().span_fatal(ccx.tcx().map.span(node_id), | |
438 | "reached the recursion limit during monomorphization"); | |
439 | } else { | |
440 | let error = format!("reached the recursion limit during \ | |
441 | monomorphization of '{}'", | |
442 | ccx.tcx().item_path_str(def_id)); | |
443 | ccx.sess().fatal(&error[..]); | |
444 | } | |
445 | } | |
446 | ||
447 | recursion_depths.insert(def_id, recursion_depth + 1); | |
448 | ||
449 | (def_id, recursion_depth) | |
450 | } | |
451 | ||
452 | struct MirNeighborCollector<'a, 'tcx: 'a> { | |
453 | ccx: &'a CrateContext<'a, 'tcx>, | |
454 | mir: &'a mir::Mir<'tcx>, | |
455 | output: &'a mut Vec<TransItem<'tcx>>, | |
456 | param_substs: &'tcx Substs<'tcx> | |
457 | } | |
458 | ||
459 | impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> { | |
460 | ||
461 | fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>) { | |
462 | debug!("visiting rvalue {:?}", *rvalue); | |
463 | ||
464 | match *rvalue { | |
465 | mir::Rvalue::Aggregate(mir::AggregateKind::Closure(def_id, | |
466 | ref substs), _) => { | |
467 | assert!(can_have_local_instance(self.ccx, def_id)); | |
468 | let trans_item = create_fn_trans_item(self.ccx, | |
469 | def_id, | |
470 | substs.func_substs, | |
471 | self.param_substs); | |
472 | self.output.push(trans_item); | |
473 | } | |
474 | // When doing an cast from a regular pointer to a fat pointer, we | |
475 | // have to instantiate all methods of the trait being cast to, so we | |
476 | // can build the appropriate vtable. | |
477 | mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => { | |
478 | let target_ty = monomorphize::apply_param_substs(self.ccx.tcx(), | |
479 | self.param_substs, | |
480 | &target_ty); | |
481 | let source_ty = self.mir.operand_ty(self.ccx.tcx(), operand); | |
482 | let source_ty = monomorphize::apply_param_substs(self.ccx.tcx(), | |
483 | self.param_substs, | |
484 | &source_ty); | |
485 | let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.ccx, | |
486 | source_ty, | |
487 | target_ty); | |
488 | // This could also be a different Unsize instruction, like | |
489 | // from a fixed sized array to a slice. But we are only | |
490 | // interested in things that produce a vtable. | |
491 | if target_ty.is_trait() && !source_ty.is_trait() { | |
492 | create_trans_items_for_vtable_methods(self.ccx, | |
493 | target_ty, | |
494 | source_ty, | |
495 | self.output); | |
496 | } | |
497 | } | |
498 | mir::Rvalue::Box(_) => { | |
499 | let exchange_malloc_fn_def_id = | |
500 | self.ccx | |
501 | .tcx() | |
502 | .lang_items | |
503 | .require(ExchangeMallocFnLangItem) | |
504 | .unwrap_or_else(|e| self.ccx.sess().fatal(&e)); | |
505 | ||
506 | assert!(can_have_local_instance(self.ccx, exchange_malloc_fn_def_id)); | |
507 | let exchange_malloc_fn_trans_item = | |
508 | create_fn_trans_item(self.ccx, | |
509 | exchange_malloc_fn_def_id, | |
510 | &Substs::trans_empty(), | |
511 | self.param_substs); | |
512 | ||
513 | self.output.push(exchange_malloc_fn_trans_item); | |
514 | } | |
515 | _ => { /* not interesting */ } | |
516 | } | |
517 | ||
518 | self.super_rvalue(rvalue); | |
519 | } | |
520 | ||
521 | fn visit_lvalue(&mut self, | |
522 | lvalue: &mir::Lvalue<'tcx>, | |
523 | context: mir_visit::LvalueContext) { | |
524 | debug!("visiting lvalue {:?}", *lvalue); | |
525 | ||
526 | if let mir_visit::LvalueContext::Drop = context { | |
527 | let ty = self.mir.lvalue_ty(self.ccx.tcx(), lvalue) | |
528 | .to_ty(self.ccx.tcx()); | |
529 | ||
530 | let ty = monomorphize::apply_param_substs(self.ccx.tcx(), | |
531 | self.param_substs, | |
532 | &ty); | |
533 | let ty = self.ccx.tcx().erase_regions(&ty); | |
534 | let ty = glue::get_drop_glue_type(self.ccx, ty); | |
535 | self.output.push(TransItem::DropGlue(ty)); | |
536 | } | |
537 | ||
538 | self.super_lvalue(lvalue, context); | |
539 | } | |
540 | ||
541 | fn visit_operand(&mut self, operand: &mir::Operand<'tcx>) { | |
542 | debug!("visiting operand {:?}", *operand); | |
543 | ||
544 | let callee = match *operand { | |
545 | mir::Operand::Constant(mir::Constant { | |
546 | literal: mir::Literal::Item { | |
547 | def_id, | |
548 | kind, | |
549 | substs | |
550 | }, | |
551 | .. | |
552 | }) if is_function_or_method(kind) => Some((def_id, substs)), | |
553 | _ => None | |
554 | }; | |
555 | ||
556 | if let Some((callee_def_id, callee_substs)) = callee { | |
557 | debug!(" => operand is callable"); | |
558 | ||
559 | // `callee_def_id` might refer to a trait method instead of a | |
560 | // concrete implementation, so we have to find the actual | |
561 | // implementation. For example, the call might look like | |
562 | // | |
563 | // std::cmp::partial_cmp(0i32, 1i32) | |
564 | // | |
565 | // Calling do_static_dispatch() here will map the def_id of | |
566 | // `std::cmp::partial_cmp` to the def_id of `i32::partial_cmp<i32>` | |
567 | let dispatched = do_static_dispatch(self.ccx, | |
568 | callee_def_id, | |
569 | callee_substs, | |
570 | self.param_substs); | |
571 | ||
572 | if let Some((callee_def_id, callee_substs)) = dispatched { | |
573 | // if we have a concrete impl (which we might not have | |
574 | // in the case of something compiler generated like an | |
575 | // object shim or a closure that is handled differently), | |
576 | // we check if the callee is something that will actually | |
577 | // result in a translation item ... | |
578 | if can_result_in_trans_item(self.ccx, callee_def_id) { | |
579 | // ... and create one if it does. | |
580 | let trans_item = create_fn_trans_item(self.ccx, | |
581 | callee_def_id, | |
582 | callee_substs, | |
583 | self.param_substs); | |
584 | self.output.push(trans_item); | |
585 | } | |
586 | } | |
587 | } | |
588 | ||
589 | self.super_operand(operand); | |
590 | ||
591 | fn is_function_or_method(item_kind: mir::ItemKind) -> bool { | |
592 | match item_kind { | |
593 | mir::ItemKind::Constant => false, | |
594 | mir::ItemKind::Function | | |
595 | mir::ItemKind::Method => true | |
596 | } | |
597 | } | |
598 | ||
599 | fn can_result_in_trans_item<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
600 | def_id: DefId) | |
601 | -> bool { | |
602 | if !match ccx.tcx().lookup_item_type(def_id).ty.sty { | |
603 | ty::TyBareFn(Some(def_id), _) => { | |
604 | // Some constructors also have type TyBareFn but they are | |
605 | // always instantiated inline and don't result in | |
606 | // translation item. | |
607 | match ccx.tcx().map.get_if_local(def_id) { | |
608 | Some(hir_map::NodeVariant(_)) | | |
609 | Some(hir_map::NodeStructCtor(_)) => false, | |
610 | Some(_) => true, | |
611 | None => { | |
612 | ccx.sess().cstore.variant_kind(def_id).is_none() | |
613 | } | |
614 | } | |
615 | } | |
616 | ty::TyClosure(..) => true, | |
617 | _ => false | |
618 | } { | |
619 | return false; | |
620 | } | |
621 | ||
622 | can_have_local_instance(ccx, def_id) | |
623 | } | |
624 | } | |
625 | } | |
626 | ||
627 | fn can_have_local_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
628 | def_id: DefId) | |
629 | -> bool { | |
630 | // Take a look if we have the definition available. If not, we | |
631 | // will not emit code for this item in the local crate, and thus | |
632 | // don't create a translation item for it. | |
633 | def_id.is_local() || ccx.sess().cstore.is_item_mir_available(def_id) | |
634 | } | |
635 | ||
636 | fn find_drop_glue_neighbors<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
637 | ty: ty::Ty<'tcx>, | |
638 | output: &mut Vec<TransItem<'tcx>>) | |
639 | { | |
640 | debug!("find_drop_glue_neighbors: {}", type_to_string(ccx, ty)); | |
641 | ||
642 | // Make sure the exchange_free_fn() lang-item gets translated if | |
643 | // there is a boxed value. | |
644 | if let ty::TyBox(_) = ty.sty { | |
645 | let exchange_free_fn_def_id = ccx.tcx() | |
646 | .lang_items | |
647 | .require(ExchangeFreeFnLangItem) | |
648 | .unwrap_or_else(|e| ccx.sess().fatal(&e)); | |
649 | ||
650 | assert!(can_have_local_instance(ccx, exchange_free_fn_def_id)); | |
651 | let exchange_free_fn_trans_item = | |
652 | create_fn_trans_item(ccx, | |
653 | exchange_free_fn_def_id, | |
654 | &Substs::trans_empty(), | |
655 | &Substs::trans_empty()); | |
656 | ||
657 | output.push(exchange_free_fn_trans_item); | |
658 | } | |
659 | ||
660 | // If the type implements Drop, also add a translation item for the | |
661 | // monomorphized Drop::drop() implementation. | |
662 | let destructor_did = match ty.sty { | |
663 | ty::TyStruct(def, _) | | |
664 | ty::TyEnum(def, _) => def.destructor(), | |
665 | _ => None | |
666 | }; | |
667 | ||
668 | if let Some(destructor_did) = destructor_did { | |
669 | use rustc::middle::ty::ToPolyTraitRef; | |
670 | ||
671 | let drop_trait_def_id = ccx.tcx() | |
672 | .lang_items | |
673 | .drop_trait() | |
674 | .unwrap(); | |
675 | ||
676 | let self_type_substs = ccx.tcx().mk_substs( | |
677 | Substs::trans_empty().with_self_ty(ty)); | |
678 | ||
679 | let trait_ref = ty::TraitRef { | |
680 | def_id: drop_trait_def_id, | |
681 | substs: self_type_substs, | |
682 | }.to_poly_trait_ref(); | |
683 | ||
684 | let substs = match fulfill_obligation(ccx, DUMMY_SP, trait_ref) { | |
685 | traits::VtableImpl(data) => data.substs, | |
686 | _ => unreachable!() | |
687 | }; | |
688 | ||
689 | if can_have_local_instance(ccx, destructor_did) { | |
690 | let trans_item = create_fn_trans_item(ccx, | |
691 | destructor_did, | |
692 | ccx.tcx().mk_substs(substs), | |
693 | &Substs::trans_empty()); | |
694 | output.push(trans_item); | |
695 | } | |
696 | } | |
697 | ||
698 | // Finally add the types of nested values | |
699 | match ty.sty { | |
700 | ty::TyBool | | |
701 | ty::TyChar | | |
702 | ty::TyInt(_) | | |
703 | ty::TyUint(_) | | |
704 | ty::TyStr | | |
705 | ty::TyFloat(_) | | |
706 | ty::TyRawPtr(_) | | |
707 | ty::TyRef(..) | | |
708 | ty::TyBareFn(..) | | |
709 | ty::TySlice(_) | | |
710 | ty::TyTrait(_) => { | |
711 | /* nothing to do */ | |
712 | } | |
713 | ty::TyStruct(ref adt_def, substs) | | |
714 | ty::TyEnum(ref adt_def, substs) => { | |
715 | for field in adt_def.all_fields() { | |
716 | let field_type = monomorphize::apply_param_substs(ccx.tcx(), | |
717 | substs, | |
718 | &field.unsubst_ty()); | |
719 | let field_type = glue::get_drop_glue_type(ccx, field_type); | |
720 | ||
721 | if glue::type_needs_drop(ccx.tcx(), field_type) { | |
722 | output.push(TransItem::DropGlue(field_type)); | |
723 | } | |
724 | } | |
725 | } | |
726 | ty::TyClosure(_, ref substs) => { | |
727 | for upvar_ty in &substs.upvar_tys { | |
728 | let upvar_ty = glue::get_drop_glue_type(ccx, upvar_ty); | |
729 | if glue::type_needs_drop(ccx.tcx(), upvar_ty) { | |
730 | output.push(TransItem::DropGlue(upvar_ty)); | |
731 | } | |
732 | } | |
733 | } | |
734 | ty::TyBox(inner_type) | | |
735 | ty::TyArray(inner_type, _) => { | |
736 | let inner_type = glue::get_drop_glue_type(ccx, inner_type); | |
737 | if glue::type_needs_drop(ccx.tcx(), inner_type) { | |
738 | output.push(TransItem::DropGlue(inner_type)); | |
739 | } | |
740 | } | |
741 | ty::TyTuple(ref args) => { | |
742 | for arg in args { | |
743 | let arg = glue::get_drop_glue_type(ccx, arg); | |
744 | if glue::type_needs_drop(ccx.tcx(), arg) { | |
745 | output.push(TransItem::DropGlue(arg)); | |
746 | } | |
747 | } | |
748 | } | |
749 | ty::TyProjection(_) | | |
750 | ty::TyParam(_) | | |
751 | ty::TyInfer(_) | | |
752 | ty::TyError => { | |
753 | ccx.sess().bug("encountered unexpected type"); | |
754 | } | |
755 | } | |
756 | } | |
757 | ||
758 | fn do_static_dispatch<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
759 | fn_def_id: DefId, | |
760 | fn_substs: &'tcx Substs<'tcx>, | |
761 | param_substs: &'tcx Substs<'tcx>) | |
762 | -> Option<(DefId, &'tcx Substs<'tcx>)> { | |
763 | debug!("do_static_dispatch(fn_def_id={}, fn_substs={:?}, param_substs={:?})", | |
764 | def_id_to_string(ccx, fn_def_id, None), | |
765 | fn_substs, | |
766 | param_substs); | |
767 | ||
768 | let is_trait_method = ccx.tcx().trait_of_item(fn_def_id).is_some(); | |
769 | ||
770 | if is_trait_method { | |
771 | match ccx.tcx().impl_or_trait_item(fn_def_id) { | |
772 | ty::MethodTraitItem(ref method) => { | |
773 | match method.container { | |
774 | ty::TraitContainer(trait_def_id) => { | |
775 | debug!(" => trait method, attempting to find impl"); | |
776 | do_static_trait_method_dispatch(ccx, | |
777 | method, | |
778 | trait_def_id, | |
779 | fn_substs, | |
780 | param_substs) | |
781 | } | |
782 | ty::ImplContainer(_) => { | |
783 | // This is already a concrete implementation | |
784 | debug!(" => impl method"); | |
785 | Some((fn_def_id, fn_substs)) | |
786 | } | |
787 | } | |
788 | } | |
789 | _ => unreachable!() | |
790 | } | |
791 | } else { | |
792 | debug!(" => regular function"); | |
793 | // The function is not part of an impl or trait, no dispatching | |
794 | // to be done | |
795 | Some((fn_def_id, fn_substs)) | |
796 | } | |
797 | } | |
798 | ||
799 | // Given a trait-method and substitution information, find out the actual | |
800 | // implementation of the trait method. | |
801 | fn do_static_trait_method_dispatch<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
802 | trait_method: &ty::Method, | |
803 | trait_id: DefId, | |
804 | callee_substs: &'tcx Substs<'tcx>, | |
805 | param_substs: &'tcx Substs<'tcx>) | |
806 | -> Option<(DefId, &'tcx Substs<'tcx>)> { | |
807 | let tcx = ccx.tcx(); | |
808 | debug!("do_static_trait_method_dispatch(trait_method={}, \ | |
809 | trait_id={}, \ | |
810 | callee_substs={:?}, \ | |
811 | param_substs={:?}", | |
812 | def_id_to_string(ccx, trait_method.def_id, None), | |
813 | def_id_to_string(ccx, trait_id, None), | |
814 | callee_substs, | |
815 | param_substs); | |
816 | ||
817 | let rcvr_substs = monomorphize::apply_param_substs(tcx, | |
818 | param_substs, | |
819 | callee_substs); | |
820 | ||
821 | let trait_ref = ty::Binder(rcvr_substs.to_trait_ref(tcx, trait_id)); | |
822 | let vtbl = fulfill_obligation(ccx, DUMMY_SP, trait_ref); | |
823 | ||
824 | // Now that we know which impl is being used, we can dispatch to | |
825 | // the actual function: | |
826 | match vtbl { | |
827 | traits::VtableImpl(traits::VtableImplData { | |
828 | impl_def_id: impl_did, | |
829 | substs: impl_substs, | |
830 | nested: _ }) => | |
831 | { | |
832 | let callee_substs = impl_substs.with_method_from(&rcvr_substs); | |
833 | let impl_method = tcx.get_impl_method(impl_did, | |
834 | callee_substs, | |
835 | trait_method.name); | |
836 | Some((impl_method.method.def_id, tcx.mk_substs(impl_method.substs))) | |
837 | } | |
838 | // If we have a closure or a function pointer, we will also encounter | |
839 | // the concrete closure/function somewhere else (during closure or fn | |
840 | // pointer construction). That's where we track those things. | |
841 | traits::VtableClosure(..) | | |
842 | traits::VtableFnPointer(..) | | |
843 | traits::VtableObject(..) => { | |
844 | None | |
845 | } | |
846 | _ => { | |
847 | tcx.sess.bug(&format!("static call to invalid vtable: {:?}", vtbl)) | |
848 | } | |
849 | } | |
850 | } | |
851 | ||
852 | /// For given pair of source and target type that occur in an unsizing coercion, | |
853 | /// this function finds the pair of types that determines the vtable linking | |
854 | /// them. | |
855 | /// | |
856 | /// For example, the source type might be `&SomeStruct` and the target type\ | |
857 | /// might be `&SomeTrait` in a cast like: | |
858 | /// | |
859 | /// let src: &SomeStruct = ...; | |
860 | /// let target = src as &SomeTrait; | |
861 | /// | |
862 | /// Then the output of this function would be (SomeStruct, SomeTrait) since for | |
863 | /// constructing the `target` fat-pointer we need the vtable for that pair. | |
864 | /// | |
865 | /// Things can get more complicated though because there's also the case where | |
866 | /// the unsized type occurs as a field: | |
867 | /// | |
868 | /// ```rust | |
869 | /// struct ComplexStruct<T: ?Sized> { | |
870 | /// a: u32, | |
871 | /// b: f64, | |
872 | /// c: T | |
873 | /// } | |
874 | /// ``` | |
875 | /// | |
876 | /// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T` | |
877 | /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is | |
878 | /// for the pair of `T` (which is a trait) and the concrete type that `T` was | |
879 | /// originally coerced from: | |
880 | /// | |
881 | /// let src: &ComplexStruct<SomeStruct> = ...; | |
882 | /// let target = src as &ComplexStruct<SomeTrait>; | |
883 | /// | |
884 | /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair | |
885 | /// `(SomeStruct, SomeTrait)`. | |
886 | /// | |
887 | /// Finally, there is also the case of custom unsizing coercions, e.g. for | |
888 | /// smart pointers such as `Rc` and `Arc`. | |
889 | fn find_vtable_types_for_unsizing<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
890 | source_ty: ty::Ty<'tcx>, | |
891 | target_ty: ty::Ty<'tcx>) | |
892 | -> (ty::Ty<'tcx>, ty::Ty<'tcx>) { | |
893 | match (&source_ty.sty, &target_ty.sty) { | |
894 | (&ty::TyBox(a), &ty::TyBox(b)) | | |
895 | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), | |
896 | &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) | | |
897 | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), | |
898 | &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) | | |
899 | (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }), | |
900 | &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => { | |
901 | let (inner_source, inner_target) = (a, b); | |
902 | ||
903 | if !type_is_sized(ccx.tcx(), inner_source) { | |
904 | (inner_source, inner_target) | |
905 | } else { | |
906 | ccx.tcx().struct_lockstep_tails(inner_source, inner_target) | |
907 | } | |
908 | } | |
909 | ||
910 | (&ty::TyStruct(source_adt_def, source_substs), | |
911 | &ty::TyStruct(target_adt_def, target_substs)) => { | |
912 | assert_eq!(source_adt_def, target_adt_def); | |
913 | ||
914 | let kind = custom_coerce_unsize_info(ccx, source_ty, target_ty); | |
915 | ||
916 | let coerce_index = match kind { | |
917 | CustomCoerceUnsized::Struct(i) => i | |
918 | }; | |
919 | ||
920 | let source_fields = &source_adt_def.struct_variant().fields; | |
921 | let target_fields = &target_adt_def.struct_variant().fields; | |
922 | ||
923 | assert!(coerce_index < source_fields.len() && | |
924 | source_fields.len() == target_fields.len()); | |
925 | ||
926 | find_vtable_types_for_unsizing(ccx, | |
927 | source_fields[coerce_index].ty(ccx.tcx(), | |
928 | source_substs), | |
929 | target_fields[coerce_index].ty(ccx.tcx(), | |
930 | target_substs)) | |
931 | } | |
932 | _ => ccx.sess() | |
933 | .bug(&format!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}", | |
934 | source_ty, | |
935 | target_ty)) | |
936 | } | |
937 | } | |
938 | ||
939 | fn create_fn_trans_item<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
940 | def_id: DefId, | |
941 | fn_substs: &Substs<'tcx>, | |
942 | param_substs: &Substs<'tcx>) | |
943 | -> TransItem<'tcx> | |
944 | { | |
945 | debug!("create_fn_trans_item(def_id={}, fn_substs={:?}, param_substs={:?})", | |
946 | def_id_to_string(ccx, def_id, None), | |
947 | fn_substs, | |
948 | param_substs); | |
949 | ||
950 | // We only get here, if fn_def_id either designates a local item or | |
951 | // an inlineable external item. Non-inlineable external items are | |
952 | // ignored because we don't want to generate any code for them. | |
953 | let concrete_substs = monomorphize::apply_param_substs(ccx.tcx(), | |
954 | param_substs, | |
955 | fn_substs); | |
956 | let concrete_substs = ccx.tcx().erase_regions(&concrete_substs); | |
957 | ||
958 | let trans_item = TransItem::Fn { | |
959 | def_id: def_id, | |
960 | substs: ccx.tcx().mk_substs(concrete_substs), | |
961 | }; | |
962 | ||
963 | return trans_item; | |
964 | } | |
965 | ||
966 | /// Creates a `TransItem` for each method that is referenced by the vtable for | |
967 | /// the given trait/impl pair. | |
968 | fn create_trans_items_for_vtable_methods<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
969 | trait_ty: ty::Ty<'tcx>, | |
970 | impl_ty: ty::Ty<'tcx>, | |
971 | output: &mut Vec<TransItem<'tcx>>) { | |
972 | assert!(!trait_ty.needs_subst() && !impl_ty.needs_subst()); | |
973 | ||
974 | if let ty::TyTrait(ref trait_ty) = trait_ty.sty { | |
975 | let poly_trait_ref = trait_ty.principal_trait_ref_with_self_ty(ccx.tcx(), | |
976 | impl_ty); | |
977 | ||
978 | // Walk all methods of the trait, including those of its supertraits | |
979 | for trait_ref in traits::supertraits(ccx.tcx(), poly_trait_ref) { | |
980 | let vtable = fulfill_obligation(ccx, DUMMY_SP, trait_ref); | |
981 | match vtable { | |
982 | traits::VtableImpl( | |
983 | traits::VtableImplData { | |
984 | impl_def_id, | |
985 | substs, | |
986 | nested: _ }) => { | |
987 | let items = meth::get_vtable_methods(ccx, impl_def_id, substs) | |
988 | .into_iter() | |
989 | // filter out None values | |
990 | .filter_map(|opt_impl_method| opt_impl_method) | |
991 | // create translation items | |
992 | .filter_map(|impl_method| { | |
993 | if can_have_local_instance(ccx, impl_method.method.def_id) { | |
994 | let substs = ccx.tcx().mk_substs(impl_method.substs); | |
995 | Some(create_fn_trans_item(ccx, | |
996 | impl_method.method.def_id, | |
997 | substs, | |
998 | &Substs::trans_empty())) | |
999 | } else { | |
1000 | None | |
1001 | } | |
1002 | }) | |
1003 | .collect::<Vec<_>>(); | |
1004 | ||
1005 | output.extend(items.into_iter()); | |
1006 | } | |
1007 | _ => { /* */ } | |
1008 | } | |
1009 | } | |
1010 | } | |
1011 | } | |
1012 | ||
1013 | //=----------------------------------------------------------------------------- | |
1014 | // Root Collection | |
1015 | //=----------------------------------------------------------------------------- | |
1016 | ||
1017 | struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> { | |
1018 | ccx: &'b CrateContext<'a, 'tcx>, | |
1019 | mode: TransItemCollectionMode, | |
1020 | output: &'b mut Vec<TransItem<'tcx>>, | |
1021 | enclosing_item: Option<&'tcx hir::Item>, | |
1022 | trans_empty_substs: &'tcx Substs<'tcx> | |
1023 | } | |
1024 | ||
1025 | impl<'b, 'a, 'v> hir_visit::Visitor<'v> for RootCollector<'b, 'a, 'v> { | |
1026 | fn visit_item(&mut self, item: &'v hir::Item) { | |
1027 | let old_enclosing_item = self.enclosing_item; | |
1028 | self.enclosing_item = Some(item); | |
1029 | ||
1030 | match item.node { | |
1031 | hir::ItemExternCrate(..) | | |
1032 | hir::ItemUse(..) | | |
1033 | hir::ItemForeignMod(..) | | |
1034 | hir::ItemTy(..) | | |
1035 | hir::ItemDefaultImpl(..) | | |
1036 | hir::ItemTrait(..) | | |
1037 | hir::ItemConst(..) | | |
1038 | hir::ItemMod(..) => { | |
1039 | // Nothing to do, just keep recursing... | |
1040 | } | |
1041 | ||
1042 | hir::ItemImpl(..) => { | |
1043 | if self.mode == TransItemCollectionMode::Eager { | |
1044 | create_trans_items_for_default_impls(self.ccx, | |
1045 | item, | |
1046 | self.trans_empty_substs, | |
1047 | self.output); | |
1048 | } | |
1049 | } | |
1050 | ||
1051 | hir::ItemEnum(_, ref generics) | | |
1052 | hir::ItemStruct(_, ref generics) => { | |
1053 | if !generics.is_parameterized() { | |
1054 | let ty = { | |
1055 | let tables = self.ccx.tcx().tables.borrow(); | |
1056 | tables.node_types[&item.id] | |
1057 | }; | |
1058 | ||
1059 | if self.mode == TransItemCollectionMode::Eager { | |
1060 | debug!("RootCollector: ADT drop-glue for {}", | |
1061 | def_id_to_string(self.ccx, | |
1062 | self.ccx.tcx().map.local_def_id(item.id), | |
1063 | None)); | |
1064 | ||
1065 | let ty = glue::get_drop_glue_type(self.ccx, ty); | |
1066 | self.output.push(TransItem::DropGlue(ty)); | |
1067 | } | |
1068 | } | |
1069 | } | |
1070 | hir::ItemStatic(..) => { | |
1071 | debug!("RootCollector: ItemStatic({})", | |
1072 | def_id_to_string(self.ccx, | |
1073 | self.ccx.tcx().map.local_def_id(item.id), | |
1074 | None)); | |
1075 | self.output.push(TransItem::Static(item.id)); | |
1076 | } | |
1077 | hir::ItemFn(_, _, constness, _, ref generics, _) => { | |
1078 | if !generics.is_type_parameterized() && | |
1079 | constness == hir::Constness::NotConst { | |
1080 | let def_id = self.ccx.tcx().map.local_def_id(item.id); | |
1081 | ||
1082 | debug!("RootCollector: ItemFn({})", | |
1083 | def_id_to_string(self.ccx, def_id, None)); | |
1084 | ||
1085 | self.output.push(TransItem::Fn { | |
1086 | def_id: def_id, | |
1087 | substs: self.trans_empty_substs | |
1088 | }); | |
1089 | } | |
1090 | } | |
1091 | } | |
1092 | ||
1093 | hir_visit::walk_item(self, item); | |
1094 | self.enclosing_item = old_enclosing_item; | |
1095 | } | |
1096 | ||
1097 | fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) { | |
1098 | match ii.node { | |
1099 | hir::ImplItemKind::Method(hir::MethodSig { | |
1100 | ref generics, | |
1101 | constness, | |
1102 | .. | |
1103 | }, _) if constness == hir::Constness::NotConst => { | |
1104 | let hir_map = &self.ccx.tcx().map; | |
1105 | let parent_node_id = hir_map.get_parent_node(ii.id); | |
1106 | let is_impl_generic = match hir_map.expect_item(parent_node_id) { | |
1107 | &hir::Item { | |
1108 | node: hir::ItemImpl(_, _, ref generics, _, _, _), | |
1109 | .. | |
1110 | } => { | |
1111 | generics.is_type_parameterized() | |
1112 | } | |
1113 | _ => { | |
1114 | unreachable!() | |
1115 | } | |
1116 | }; | |
1117 | ||
1118 | if !generics.is_type_parameterized() && !is_impl_generic { | |
1119 | let def_id = self.ccx.tcx().map.local_def_id(ii.id); | |
1120 | ||
1121 | debug!("RootCollector: MethodImplItem({})", | |
1122 | def_id_to_string(self.ccx, def_id, None)); | |
1123 | ||
1124 | self.output.push(TransItem::Fn { | |
1125 | def_id: def_id, | |
1126 | substs: self.trans_empty_substs | |
1127 | }); | |
1128 | } | |
1129 | } | |
1130 | _ => { /* Nothing to do here */ } | |
1131 | } | |
1132 | ||
1133 | hir_visit::walk_impl_item(self, ii) | |
1134 | } | |
1135 | } | |
1136 | ||
1137 | fn create_trans_items_for_default_impls<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
1138 | item: &'tcx hir::Item, | |
1139 | trans_empty_substs: &'tcx Substs<'tcx>, | |
1140 | output: &mut Vec<TransItem<'tcx>>) { | |
1141 | match item.node { | |
1142 | hir::ItemImpl(_, | |
1143 | _, | |
1144 | ref generics, | |
1145 | _, | |
1146 | _, | |
1147 | ref items) => { | |
1148 | if generics.is_type_parameterized() { | |
1149 | return | |
1150 | } | |
1151 | ||
1152 | let tcx = ccx.tcx(); | |
1153 | let impl_def_id = tcx.map.local_def_id(item.id); | |
1154 | ||
1155 | debug!("create_trans_items_for_default_impls(item={})", | |
1156 | def_id_to_string(ccx, impl_def_id, None)); | |
1157 | ||
1158 | if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) { | |
1159 | let default_impls = tcx.provided_trait_methods(trait_ref.def_id); | |
1160 | let callee_substs = tcx.mk_substs(tcx.erase_regions(trait_ref.substs)); | |
1161 | let overridden_methods: FnvHashSet<_> = items.iter() | |
1162 | .map(|item| item.name) | |
1163 | .collect(); | |
1164 | for default_impl in default_impls { | |
1165 | if overridden_methods.contains(&default_impl.name) { | |
1166 | continue; | |
1167 | } | |
1168 | ||
1169 | if default_impl.generics.has_type_params(subst::FnSpace) { | |
1170 | continue; | |
1171 | } | |
1172 | ||
1173 | // The substitutions we have are on the impl, so we grab | |
1174 | // the method type from the impl to substitute into. | |
1175 | let mth = tcx.get_impl_method(impl_def_id, | |
1176 | callee_substs.clone(), | |
1177 | default_impl.name); | |
1178 | ||
1179 | assert!(mth.is_provided); | |
1180 | ||
1181 | let predicates = mth.method.predicates.predicates.subst(tcx, &mth.substs); | |
1182 | if !normalize_and_test_predicates(ccx, predicates.into_vec()) { | |
1183 | continue; | |
1184 | } | |
1185 | ||
1186 | if can_have_local_instance(ccx, default_impl.def_id) { | |
1187 | let item = create_fn_trans_item(ccx, | |
1188 | default_impl.def_id, | |
1189 | callee_substs, | |
1190 | trans_empty_substs); | |
1191 | output.push(item); | |
1192 | } | |
1193 | } | |
1194 | } | |
1195 | } | |
1196 | _ => { | |
1197 | unreachable!() | |
1198 | } | |
1199 | } | |
1200 | } | |
1201 | ||
1202 | //=----------------------------------------------------------------------------- | |
1203 | // TransItem String Keys | |
1204 | //=----------------------------------------------------------------------------- | |
1205 | ||
1206 | // The code below allows for producing a unique string key for a trans item. | |
1207 | // These keys are used by the handwritten auto-tests, so they need to be | |
1208 | // predictable and human-readable. | |
1209 | // | |
1210 | // Note: A lot of this could looks very similar to what's already in the | |
1211 | // ppaux module. It would be good to refactor things so we only have one | |
1212 | // parameterizable implementation for printing types. | |
1213 | ||
1214 | /// Same as `unique_type_name()` but with the result pushed onto the given | |
1215 | /// `output` parameter. | |
1216 | pub fn push_unique_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, | |
1217 | t: ty::Ty<'tcx>, | |
1218 | output: &mut String) { | |
1219 | match t.sty { | |
1220 | ty::TyBool => output.push_str("bool"), | |
1221 | ty::TyChar => output.push_str("char"), | |
1222 | ty::TyStr => output.push_str("str"), | |
1223 | ty::TyInt(ast::IntTy::Is) => output.push_str("isize"), | |
1224 | ty::TyInt(ast::IntTy::I8) => output.push_str("i8"), | |
1225 | ty::TyInt(ast::IntTy::I16) => output.push_str("i16"), | |
1226 | ty::TyInt(ast::IntTy::I32) => output.push_str("i32"), | |
1227 | ty::TyInt(ast::IntTy::I64) => output.push_str("i64"), | |
1228 | ty::TyUint(ast::UintTy::Us) => output.push_str("usize"), | |
1229 | ty::TyUint(ast::UintTy::U8) => output.push_str("u8"), | |
1230 | ty::TyUint(ast::UintTy::U16) => output.push_str("u16"), | |
1231 | ty::TyUint(ast::UintTy::U32) => output.push_str("u32"), | |
1232 | ty::TyUint(ast::UintTy::U64) => output.push_str("u64"), | |
1233 | ty::TyFloat(ast::FloatTy::F32) => output.push_str("f32"), | |
1234 | ty::TyFloat(ast::FloatTy::F64) => output.push_str("f64"), | |
1235 | ty::TyStruct(adt_def, substs) | | |
1236 | ty::TyEnum(adt_def, substs) => { | |
1237 | push_item_name(cx, adt_def.did, output); | |
1238 | push_type_params(cx, substs, &[], output); | |
1239 | }, | |
1240 | ty::TyTuple(ref component_types) => { | |
1241 | output.push('('); | |
1242 | for &component_type in component_types { | |
1243 | push_unique_type_name(cx, component_type, output); | |
1244 | output.push_str(", "); | |
1245 | } | |
1246 | if !component_types.is_empty() { | |
1247 | output.pop(); | |
1248 | output.pop(); | |
1249 | } | |
1250 | output.push(')'); | |
1251 | }, | |
1252 | ty::TyBox(inner_type) => { | |
1253 | output.push_str("Box<"); | |
1254 | push_unique_type_name(cx, inner_type, output); | |
1255 | output.push('>'); | |
1256 | }, | |
1257 | ty::TyRawPtr(ty::TypeAndMut { ty: inner_type, mutbl } ) => { | |
1258 | output.push('*'); | |
1259 | match mutbl { | |
1260 | hir::MutImmutable => output.push_str("const "), | |
1261 | hir::MutMutable => output.push_str("mut "), | |
1262 | } | |
1263 | ||
1264 | push_unique_type_name(cx, inner_type, output); | |
1265 | }, | |
1266 | ty::TyRef(_, ty::TypeAndMut { ty: inner_type, mutbl }) => { | |
1267 | output.push('&'); | |
1268 | if mutbl == hir::MutMutable { | |
1269 | output.push_str("mut "); | |
1270 | } | |
1271 | ||
1272 | push_unique_type_name(cx, inner_type, output); | |
1273 | }, | |
1274 | ty::TyArray(inner_type, len) => { | |
1275 | output.push('['); | |
1276 | push_unique_type_name(cx, inner_type, output); | |
1277 | output.push_str(&format!("; {}", len)); | |
1278 | output.push(']'); | |
1279 | }, | |
1280 | ty::TySlice(inner_type) => { | |
1281 | output.push('['); | |
1282 | push_unique_type_name(cx, inner_type, output); | |
1283 | output.push(']'); | |
1284 | }, | |
1285 | ty::TyTrait(ref trait_data) => { | |
1286 | push_item_name(cx, trait_data.principal.skip_binder().def_id, output); | |
1287 | push_type_params(cx, | |
1288 | &trait_data.principal.skip_binder().substs, | |
1289 | &trait_data.bounds.projection_bounds, | |
1290 | output); | |
1291 | }, | |
1292 | ty::TyBareFn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => { | |
1293 | if unsafety == hir::Unsafety::Unsafe { | |
1294 | output.push_str("unsafe "); | |
1295 | } | |
1296 | ||
1297 | if abi != ::syntax::abi::Abi::Rust { | |
1298 | output.push_str("extern \""); | |
1299 | output.push_str(abi.name()); | |
1300 | output.push_str("\" "); | |
1301 | } | |
1302 | ||
1303 | output.push_str("fn("); | |
1304 | ||
1305 | let sig = cx.tcx().erase_late_bound_regions(sig); | |
1306 | if !sig.inputs.is_empty() { | |
1307 | for ¶meter_type in &sig.inputs { | |
1308 | push_unique_type_name(cx, parameter_type, output); | |
1309 | output.push_str(", "); | |
1310 | } | |
1311 | output.pop(); | |
1312 | output.pop(); | |
1313 | } | |
1314 | ||
1315 | if sig.variadic { | |
1316 | if !sig.inputs.is_empty() { | |
1317 | output.push_str(", ..."); | |
1318 | } else { | |
1319 | output.push_str("..."); | |
1320 | } | |
1321 | } | |
1322 | ||
1323 | output.push(')'); | |
1324 | ||
1325 | match sig.output { | |
1326 | ty::FnConverging(result_type) if result_type.is_nil() => {} | |
1327 | ty::FnConverging(result_type) => { | |
1328 | output.push_str(" -> "); | |
1329 | push_unique_type_name(cx, result_type, output); | |
1330 | } | |
1331 | ty::FnDiverging => { | |
1332 | output.push_str(" -> !"); | |
1333 | } | |
1334 | } | |
1335 | }, | |
1336 | ty::TyClosure(def_id, ref closure_substs) => { | |
1337 | push_item_name(cx, def_id, output); | |
1338 | output.push_str("{"); | |
1339 | output.push_str(&format!("{}:{}", def_id.krate, def_id.index.as_usize())); | |
1340 | output.push_str("}"); | |
1341 | push_type_params(cx, closure_substs.func_substs, &[], output); | |
1342 | } | |
1343 | ty::TyError | | |
1344 | ty::TyInfer(_) | | |
1345 | ty::TyProjection(..) | | |
1346 | ty::TyParam(_) => { | |
1347 | cx.sess().bug(&format!("debuginfo: Trying to create type name for \ | |
1348 | unexpected type: {:?}", t)); | |
1349 | } | |
1350 | } | |
1351 | } | |
1352 | ||
1353 | fn push_item_name(ccx: &CrateContext, | |
1354 | def_id: DefId, | |
1355 | output: &mut String) { | |
1356 | if def_id.is_local() { | |
1357 | let node_id = ccx.tcx().map.as_local_node_id(def_id).unwrap(); | |
1358 | let inlined_from = ccx.external_srcs() | |
1359 | .borrow() | |
1360 | .get(&node_id) | |
1361 | .map(|def_id| *def_id); | |
1362 | ||
1363 | if let Some(extern_def_id) = inlined_from { | |
1364 | push_item_name(ccx, extern_def_id, output); | |
1365 | return; | |
1366 | } | |
1367 | ||
1368 | output.push_str(&ccx.link_meta().crate_name); | |
1369 | output.push_str("::"); | |
1370 | } | |
1371 | ||
1372 | for part in ccx.tcx().def_path(def_id) { | |
1373 | output.push_str(&format!("{}[{}]::", | |
1374 | part.data.as_interned_str(), | |
1375 | part.disambiguator)); | |
1376 | } | |
1377 | ||
1378 | output.pop(); | |
1379 | output.pop(); | |
1380 | } | |
1381 | ||
1382 | fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, | |
1383 | substs: &Substs<'tcx>, | |
1384 | projections: &[ty::PolyProjectionPredicate<'tcx>], | |
1385 | output: &mut String) { | |
1386 | if substs.types.is_empty() && projections.is_empty() { | |
1387 | return; | |
1388 | } | |
1389 | ||
1390 | output.push('<'); | |
1391 | ||
1392 | for &type_parameter in &substs.types { | |
1393 | push_unique_type_name(cx, type_parameter, output); | |
1394 | output.push_str(", "); | |
1395 | } | |
1396 | ||
1397 | for projection in projections { | |
1398 | let projection = projection.skip_binder(); | |
1399 | let name = token::get_ident_interner().get(projection.projection_ty.item_name); | |
1400 | output.push_str(&name[..]); | |
1401 | output.push_str("="); | |
1402 | push_unique_type_name(cx, projection.ty, output); | |
1403 | output.push_str(", "); | |
1404 | } | |
1405 | ||
1406 | output.pop(); | |
1407 | output.pop(); | |
1408 | ||
1409 | output.push('>'); | |
1410 | } | |
1411 | ||
1412 | fn push_def_id_as_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
1413 | def_id: DefId, | |
1414 | substs: Option<&Substs<'tcx>>, | |
1415 | output: &mut String) { | |
1416 | push_item_name(ccx, def_id, output); | |
1417 | ||
1418 | if let Some(substs) = substs { | |
1419 | push_type_params(ccx, substs, &[], output); | |
1420 | } | |
1421 | } | |
1422 | ||
1423 | fn def_id_to_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
1424 | def_id: DefId, | |
1425 | substs: Option<&Substs<'tcx>>) | |
1426 | -> String { | |
1427 | let mut output = String::new(); | |
1428 | push_def_id_as_string(ccx, def_id, substs, &mut output); | |
1429 | output | |
1430 | } | |
1431 | ||
1432 | fn type_to_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
1433 | ty: ty::Ty<'tcx>) | |
1434 | -> String { | |
1435 | let mut output = String::new(); | |
1436 | push_unique_type_name(ccx, ty, &mut output); | |
1437 | output | |
1438 | } | |
1439 | ||
1440 | impl<'tcx> TransItem<'tcx> { | |
1441 | ||
1442 | pub fn to_string<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> String { | |
1443 | let hir_map = &ccx.tcx().map; | |
1444 | ||
1445 | return match *self { | |
1446 | TransItem::DropGlue(t) => { | |
1447 | let mut s = String::with_capacity(32); | |
1448 | s.push_str("drop-glue "); | |
1449 | push_unique_type_name(ccx, t, &mut s); | |
1450 | s | |
1451 | } | |
1452 | TransItem::Fn { def_id, ref substs } => { | |
1453 | to_string_internal(ccx, "fn ", def_id, Some(substs)) | |
1454 | }, | |
1455 | TransItem::Static(node_id) => { | |
1456 | let def_id = hir_map.local_def_id(node_id); | |
1457 | to_string_internal(ccx, "static ", def_id, None) | |
1458 | }, | |
1459 | }; | |
1460 | ||
1461 | fn to_string_internal<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, | |
1462 | prefix: &str, | |
1463 | def_id: DefId, | |
1464 | substs: Option<&Substs<'tcx>>) | |
1465 | -> String { | |
1466 | let mut result = String::with_capacity(32); | |
1467 | result.push_str(prefix); | |
1468 | push_def_id_as_string(ccx, def_id, substs, &mut result); | |
1469 | result | |
1470 | } | |
1471 | } | |
1472 | ||
1473 | fn to_raw_string(&self) -> String { | |
1474 | match *self { | |
1475 | TransItem::DropGlue(t) => { | |
1476 | format!("DropGlue({})", t as *const _ as usize) | |
1477 | } | |
1478 | TransItem::Fn { def_id, substs } => { | |
1479 | format!("Fn({:?}, {})", | |
1480 | def_id, | |
1481 | substs as *const _ as usize) | |
1482 | } | |
1483 | TransItem::Static(id) => { | |
1484 | format!("Static({:?})", id) | |
1485 | } | |
1486 | } | |
1487 | } | |
1488 | } | |
1489 | ||
1490 | #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] | |
1491 | pub enum TransItemState { | |
1492 | PredictedAndGenerated, | |
1493 | PredictedButNotGenerated, | |
1494 | NotPredictedButGenerated, | |
1495 | } | |
1496 | ||
1497 | pub fn collecting_debug_information(ccx: &CrateContext) -> bool { | |
1498 | return cfg!(debug_assertions) && | |
1499 | ccx.sess().opts.debugging_opts.print_trans_items.is_some(); | |
1500 | } | |
1501 | ||
1502 | pub fn print_collection_results<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>) { | |
1503 | use std::hash::{Hash, SipHasher, Hasher}; | |
1504 | ||
1505 | if !collecting_debug_information(ccx) { | |
1506 | return; | |
1507 | } | |
1508 | ||
1509 | fn hash<T: Hash>(t: &T) -> u64 { | |
1510 | let mut s = SipHasher::new(); | |
1511 | t.hash(&mut s); | |
1512 | s.finish() | |
1513 | } | |
1514 | ||
1515 | let trans_items = ccx.translation_items().borrow(); | |
1516 | ||
1517 | { | |
1518 | // Check for duplicate item keys | |
1519 | let mut item_keys = FnvHashMap(); | |
1520 | ||
1521 | for (item, item_state) in trans_items.iter() { | |
1522 | let k = item.to_string(&ccx); | |
1523 | ||
1524 | if item_keys.contains_key(&k) { | |
1525 | let prev: (TransItem, TransItemState) = item_keys[&k]; | |
1526 | debug!("DUPLICATE KEY: {}", k); | |
1527 | debug!(" (1) {:?}, {:?}, hash: {}, raw: {}", | |
1528 | prev.0, | |
1529 | prev.1, | |
1530 | hash(&prev.0), | |
1531 | prev.0.to_raw_string()); | |
1532 | ||
1533 | debug!(" (2) {:?}, {:?}, hash: {}, raw: {}", | |
1534 | *item, | |
1535 | *item_state, | |
1536 | hash(item), | |
1537 | item.to_raw_string()); | |
1538 | } else { | |
1539 | item_keys.insert(k, (*item, *item_state)); | |
1540 | } | |
1541 | } | |
1542 | } | |
1543 | ||
1544 | let mut predicted_but_not_generated = FnvHashSet(); | |
1545 | let mut not_predicted_but_generated = FnvHashSet(); | |
1546 | let mut predicted = FnvHashSet(); | |
1547 | let mut generated = FnvHashSet(); | |
1548 | ||
1549 | for (item, item_state) in trans_items.iter() { | |
1550 | let item_key = item.to_string(&ccx); | |
1551 | ||
1552 | match *item_state { | |
1553 | TransItemState::PredictedAndGenerated => { | |
1554 | predicted.insert(item_key.clone()); | |
1555 | generated.insert(item_key); | |
1556 | } | |
1557 | TransItemState::PredictedButNotGenerated => { | |
1558 | predicted_but_not_generated.insert(item_key.clone()); | |
1559 | predicted.insert(item_key); | |
1560 | } | |
1561 | TransItemState::NotPredictedButGenerated => { | |
1562 | not_predicted_but_generated.insert(item_key.clone()); | |
1563 | generated.insert(item_key); | |
1564 | } | |
1565 | } | |
1566 | } | |
1567 | ||
1568 | debug!("Total number of translation items predicted: {}", predicted.len()); | |
1569 | debug!("Total number of translation items generated: {}", generated.len()); | |
1570 | debug!("Total number of translation items predicted but not generated: {}", | |
1571 | predicted_but_not_generated.len()); | |
1572 | debug!("Total number of translation items not predicted but generated: {}", | |
1573 | not_predicted_but_generated.len()); | |
1574 | ||
1575 | if generated.len() > 0 { | |
1576 | debug!("Failed to predict {}% of translation items", | |
1577 | (100 * not_predicted_but_generated.len()) / generated.len()); | |
1578 | } | |
1579 | if generated.len() > 0 { | |
1580 | debug!("Predict {}% too many translation items", | |
1581 | (100 * predicted_but_not_generated.len()) / generated.len()); | |
1582 | } | |
1583 | ||
1584 | debug!(""); | |
1585 | debug!("Not predicted but generated:"); | |
1586 | debug!("============================"); | |
1587 | for item in not_predicted_but_generated { | |
1588 | debug!(" - {}", item); | |
1589 | } | |
1590 | ||
1591 | debug!(""); | |
1592 | debug!("Predicted but not generated:"); | |
1593 | debug!("============================"); | |
1594 | for item in predicted_but_not_generated { | |
1595 | debug!(" - {}", item); | |
1596 | } | |
1597 | } |