]> git.proxmox.com Git - rustc.git/blame - src/librustc_typeck/check/regionck.rs
New upstream version 1.16.0+dfsg1
[rustc.git] / src / librustc_typeck / check / regionck.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! The region check is a final pass that runs over the AST after we have
12//! inferred the type constraints but before we have actually finalized
13//! the types. Its purpose is to embed a variety of region constraints.
14//! Inserting these constraints as a separate pass is good because (1) it
15//! localizes the code that has to do with region inference and (2) often
16//! we cannot know what constraints are needed until the basic types have
17//! been inferred.
18//!
19//! ### Interaction with the borrow checker
20//!
21//! In general, the job of the borrowck module (which runs later) is to
22//! check that all soundness criteria are met, given a particular set of
23//! regions. The job of *this* module is to anticipate the needs of the
24//! borrow checker and infer regions that will satisfy its requirements.
25//! It is generally true that the inference doesn't need to be sound,
26//! meaning that if there is a bug and we inferred bad regions, the borrow
27//! checker should catch it. This is not entirely true though; for
28//! example, the borrow checker doesn't check subtyping, and it doesn't
29//! check that region pointers are always live when they are used. It
30//! might be worthwhile to fix this so that borrowck serves as a kind of
31//! verification step -- that would add confidence in the overall
32//! correctness of the compiler, at the cost of duplicating some type
33//! checks and effort.
34//!
35//! ### Inferring the duration of borrows, automatic and otherwise
36//!
37//! Whenever we introduce a borrowed pointer, for example as the result of
38//! a borrow expression `let x = &data`, the lifetime of the pointer `x`
39//! is always specified as a region inference variable. `regionck` has the
40//! job of adding constraints such that this inference variable is as
41//! narrow as possible while still accommodating all uses (that is, every
42//! dereference of the resulting pointer must be within the lifetime).
43//!
44//! #### Reborrows
45//!
46//! Generally speaking, `regionck` does NOT try to ensure that the data
47//! `data` will outlive the pointer `x`. That is the job of borrowck. The
48//! one exception is when "re-borrowing" the contents of another borrowed
49//! pointer. For example, imagine you have a borrowed pointer `b` with
50//! lifetime L1 and you have an expression `&*b`. The result of this
51//! expression will be another borrowed pointer with lifetime L2 (which is
52//! an inference variable). The borrow checker is going to enforce the
53//! constraint that L2 < L1, because otherwise you are re-borrowing data
54//! for a lifetime larger than the original loan. However, without the
55//! routines in this module, the region inferencer would not know of this
56//! dependency and thus it might infer the lifetime of L2 to be greater
57//! than L1 (issue #3148).
58//!
59//! There are a number of troublesome scenarios in the tests
60//! `region-dependent-*.rs`, but here is one example:
61//!
92a42be0 62//! struct Foo { i: i32 }
1a4d82fc 63//! struct Bar { foo: Foo }
9cc50fc6 64//! fn get_i<'a>(x: &'a Bar) -> &'a i32 {
1a4d82fc
JJ
65//! let foo = &x.foo; // Lifetime L1
66//! &foo.i // Lifetime L2
67//! }
68//!
69//! Note that this comes up either with `&` expressions, `ref`
70//! bindings, and `autorefs`, which are the three ways to introduce
71//! a borrow.
72//!
73//! The key point here is that when you are borrowing a value that
74//! is "guaranteed" by a borrowed pointer, you must link the
75//! lifetime of that borrowed pointer (L1, here) to the lifetime of
76//! the borrow itself (L2). What do I mean by "guaranteed" by a
77//! borrowed pointer? I mean any data that is reached by first
78//! dereferencing a borrowed pointer and then either traversing
62682a34 79//! interior offsets or boxes. We say that the guarantor
b039eaaf 80//! of such data is the region of the borrowed pointer that was
1a4d82fc
JJ
81//! traversed. This is essentially the same as the ownership
82//! relation, except that a borrowed pointer never owns its
83//! contents.
84
85aaf69f 85use check::dropck;
1a4d82fc 86use check::FnCtxt;
bd371182 87use middle::free_region::FreeRegionMap;
1a4d82fc 88use middle::mem_categorization as mc;
92a42be0 89use middle::mem_categorization::Categorization;
9cc50fc6 90use middle::region::{self, CodeExtent};
54a0048b
SL
91use rustc::ty::subst::Substs;
92use rustc::traits;
a7813a04 93use rustc::ty::{self, Ty, MethodCall, TypeFoldable};
476ff2be 94use rustc::infer::{self, GenericKind, SubregionOrigin, VerifyBound};
54a0048b
SL
95use rustc::ty::adjustment;
96use rustc::ty::wf::ImpliedBound;
1a4d82fc 97
85aaf69f 98use std::mem;
a7813a04 99use std::ops::Deref;
e9174d1e 100use syntax::ast;
3157f602 101use syntax_pos::Span;
476ff2be 102use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap};
54a0048b 103use rustc::hir::{self, PatKind};
1a4d82fc 104
1a4d82fc
JJ
105use self::SubjectNode::Subject;
106
107// a variation on try that just returns unit
108macro_rules! ignore_err {
109 ($e:expr) => (match $e { Ok(e) => e, Err(_) => return () })
110}
111
112///////////////////////////////////////////////////////////////////////////
113// PUBLIC ENTRY POINTS
114
a7813a04 115impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
32a655c1
SL
116 pub fn regionck_expr(&self, body: &'gcx hir::Body) {
117 let id = body.value.id;
118 let mut rcx = RegionCtxt::new(self, RepeatingScope(id), id, Subject(id));
a7813a04
XL
119 if self.err_count_since_creation() == 0 {
120 // regionck assumes typeck succeeded
32a655c1
SL
121 rcx.visit_body(body);
122 rcx.visit_region_obligations(id);
a7813a04
XL
123 }
124 rcx.resolve_regions_and_report_errors();
1a4d82fc 125 }
1a4d82fc 126
a7813a04
XL
127 /// Region checking during the WF phase for items. `wf_tys` are the
128 /// types from which we should derive implied bounds, if any.
129 pub fn regionck_item(&self,
130 item_id: ast::NodeId,
131 span: Span,
132 wf_tys: &[Ty<'tcx>]) {
133 debug!("regionck_item(item.id={:?}, wf_tys={:?}", item_id, wf_tys);
134 let mut rcx = RegionCtxt::new(self, RepeatingScope(item_id), item_id, Subject(item_id));
135 rcx.free_region_map.relate_free_regions_from_predicates(
136 &self.parameter_environment.caller_bounds);
137 rcx.relate_free_regions(wf_tys, item_id, span);
138 rcx.visit_region_obligations(item_id);
139 rcx.resolve_regions_and_report_errors();
1a4d82fc
JJ
140 }
141
a7813a04
XL
142 pub fn regionck_fn(&self,
143 fn_id: ast::NodeId,
32a655c1 144 body: &'gcx hir::Body) {
a7813a04 145 debug!("regionck_fn(id={})", fn_id);
32a655c1 146 let node_id = body.value.id;
476ff2be 147 let mut rcx = RegionCtxt::new(self, RepeatingScope(node_id), node_id, Subject(fn_id));
a7813a04
XL
148
149 if self.err_count_since_creation() == 0 {
150 // regionck assumes typeck succeeded
32a655c1 151 rcx.visit_fn_body(fn_id, body, self.tcx.hir.span(fn_id));
a7813a04
XL
152 }
153
154 rcx.free_region_map.relate_free_regions_from_predicates(
155 &self.parameter_environment.caller_bounds);
bd371182 156
a7813a04 157 rcx.resolve_regions_and_report_errors();
bd371182 158
a7813a04
XL
159 // For the top-level fn, store the free-region-map. We don't store
160 // any map for closures; they just share the same map as the
161 // function that created them.
162 self.tcx.store_free_region_map(fn_id, rcx.free_region_map);
163 }
1a4d82fc
JJ
164}
165
1a4d82fc
JJ
166///////////////////////////////////////////////////////////////////////////
167// INTERNALS
168
a7813a04
XL
169pub struct RegionCtxt<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
170 pub fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
1a4d82fc 171
9e0c209e 172 region_bound_pairs: Vec<(&'tcx ty::Region, GenericKind<'tcx>)>,
1a4d82fc 173
bd371182
AL
174 free_region_map: FreeRegionMap,
175
85aaf69f
SL
176 // id of innermost fn body id
177 body_id: ast::NodeId,
178
9cc50fc6
SL
179 // call_site scope of innermost fn
180 call_site_scope: Option<CodeExtent>,
181
1a4d82fc
JJ
182 // id of innermost fn or loop
183 repeating_scope: ast::NodeId,
184
185 // id of AST node being analyzed (the subject of the analysis).
186 subject: SubjectNode,
85aaf69f 187
1a4d82fc
JJ
188}
189
a7813a04
XL
190impl<'a, 'gcx, 'tcx> Deref for RegionCtxt<'a, 'gcx, 'tcx> {
191 type Target = FnCtxt<'a, 'gcx, 'tcx>;
192 fn deref(&self) -> &Self::Target {
193 &self.fcx
194 }
195}
196
c34b1796 197pub struct RepeatingScope(ast::NodeId);
1a4d82fc
JJ
198pub enum SubjectNode { Subject(ast::NodeId), None }
199
a7813a04
XL
200impl<'a, 'gcx, 'tcx> RegionCtxt<'a, 'gcx, 'tcx> {
201 pub fn new(fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
1a4d82fc 202 initial_repeating_scope: RepeatingScope,
85aaf69f 203 initial_body_id: ast::NodeId,
a7813a04 204 subject: SubjectNode) -> RegionCtxt<'a, 'gcx, 'tcx> {
85aaf69f 205 let RepeatingScope(initial_repeating_scope) = initial_repeating_scope;
a7813a04
XL
206 RegionCtxt {
207 fcx: fcx,
208 repeating_scope: initial_repeating_scope,
209 body_id: initial_body_id,
210 call_site_scope: None,
211 subject: subject,
212 region_bound_pairs: Vec::new(),
213 free_region_map: FreeRegionMap::new(),
85aaf69f 214 }
1a4d82fc
JJ
215 }
216
9cc50fc6
SL
217 fn set_call_site_scope(&mut self, call_site_scope: Option<CodeExtent>) -> Option<CodeExtent> {
218 mem::replace(&mut self.call_site_scope, call_site_scope)
219 }
220
85aaf69f
SL
221 fn set_body_id(&mut self, body_id: ast::NodeId) -> ast::NodeId {
222 mem::replace(&mut self.body_id, body_id)
223 }
224
225 fn set_repeating_scope(&mut self, scope: ast::NodeId) -> ast::NodeId {
226 mem::replace(&mut self.repeating_scope, scope)
1a4d82fc
JJ
227 }
228
229 /// Try to resolve the type for the given node, returning t_err if an error results. Note that
230 /// we never care about the details of the error, the same error will be detected and reported
231 /// in the writeback phase.
232 ///
233 /// Note one important point: we do not attempt to resolve *region variables* here. This is
234 /// because regionck is essentially adding constraints to those region variables and so may yet
235 /// influence how they are resolved.
236 ///
237 /// Consider this silly example:
238 ///
239 /// ```
92a42be0
SL
240 /// fn borrow(x: &i32) -> &i32 {x}
241 /// fn foo(x: @i32) -> i32 { // block: B
1a4d82fc
JJ
242 /// let b = borrow(x); // region: <R0>
243 /// *b
244 /// }
245 /// ```
246 ///
c34b1796 247 /// Here, the region of `b` will be `<R0>`. `<R0>` is constrained to be some subregion of the
1a4d82fc
JJ
248 /// block B and some superregion of the call. If we forced it now, we'd choose the smaller
249 /// region (the call). But that would make the *b illegal. Since we don't resolve, the type
92a42be0 250 /// of b will be `&<R0>.i32` and then `*b` will require that `<R0>` be bigger than the let and
1a4d82fc
JJ
251 /// the `*b` expression, so we will effectively resolve `<R0>` to be the block B.
252 pub fn resolve_type(&self, unresolved_ty: Ty<'tcx>) -> Ty<'tcx> {
a7813a04 253 self.resolve_type_vars_if_possible(&unresolved_ty)
1a4d82fc
JJ
254 }
255
256 /// Try to resolve the type for the given node.
257 fn resolve_node_type(&self, id: ast::NodeId) -> Ty<'tcx> {
a7813a04 258 let t = self.node_ty(id);
1a4d82fc
JJ
259 self.resolve_type(t)
260 }
261
1a4d82fc 262 /// Try to resolve the type for the given node.
e9174d1e 263 pub fn resolve_expr_type_adjusted(&mut self, expr: &hir::Expr) -> Ty<'tcx> {
c30ab7b3
SL
264 let ty = self.tables.borrow().expr_ty_adjusted(expr);
265 self.resolve_type(ty)
1a4d82fc
JJ
266 }
267
268 fn visit_fn_body(&mut self,
9cc50fc6 269 id: ast::NodeId, // the id of the fn itself
32a655c1 270 body: &'gcx hir::Body,
85aaf69f 271 span: Span)
1a4d82fc
JJ
272 {
273 // When we enter a function, we can derive
85aaf69f 274 debug!("visit_fn_body(id={})", id);
1a4d82fc 275
32a655c1
SL
276 let body_id = body.id();
277
a7813a04 278 let call_site = self.tcx.region_maps.lookup_code_extent(
32a655c1 279 region::CodeExtentData::CallSiteScope { fn_id: id, body_id: body_id.node_id });
9cc50fc6
SL
280 let old_call_site_scope = self.set_call_site_scope(Some(call_site));
281
92a42be0 282 let fn_sig = {
a7813a04 283 let fn_sig_map = &self.tables.borrow().liberated_fn_sigs;
92a42be0
SL
284 match fn_sig_map.get(&id) {
285 Some(f) => f.clone(),
286 None => {
54a0048b 287 bug!("No fn-sig entry for id={}", id);
92a42be0 288 }
1a4d82fc
JJ
289 }
290 };
291
bd371182
AL
292 let old_region_bounds_pairs_len = self.region_bound_pairs.len();
293
92a42be0
SL
294 // Collect the types from which we create inferred bounds.
295 // For the return type, if diverging, substitute `bool` just
296 // because it will have no effect.
297 //
9cc50fc6 298 // FIXME(#27579) return types should not be implied bounds
92a42be0 299 let fn_sig_tys: Vec<_> =
476ff2be
SL
300 fn_sig.inputs().iter().cloned().chain(Some(fn_sig.output())).collect();
301
32a655c1
SL
302 let old_body_id = self.set_body_id(body_id.node_id);
303 self.relate_free_regions(&fn_sig_tys[..], body_id.node_id, span);
304 self.link_fn_args(self.tcx.region_maps.node_extent(body_id.node_id), &body.arguments);
305 self.visit_body(body);
306 self.visit_region_obligations(body_id.node_id);
bd371182 307
9cc50fc6 308 let call_site_scope = self.call_site_scope.unwrap();
32a655c1
SL
309 debug!("visit_fn_body body.id {:?} call_site_scope: {:?}",
310 body.id(), call_site_scope);
9e0c209e 311 let call_site_region = self.tcx.mk_region(ty::ReScope(call_site_scope));
a7813a04 312 self.type_of_node_must_outlive(infer::CallReturn(span),
32a655c1 313 body_id.node_id,
9e0c209e 314 call_site_region);
9cc50fc6 315
bd371182
AL
316 self.region_bound_pairs.truncate(old_region_bounds_pairs_len);
317
85aaf69f 318 self.set_body_id(old_body_id);
9cc50fc6 319 self.set_call_site_scope(old_call_site_scope);
1a4d82fc
JJ
320 }
321
322 fn visit_region_obligations(&mut self, node_id: ast::NodeId)
323 {
324 debug!("visit_region_obligations: node_id={}", node_id);
85aaf69f
SL
325
326 // region checking can introduce new pending obligations
327 // which, when processed, might generate new region
328 // obligations. So make sure we process those.
a7813a04 329 self.select_all_obligations_or_error();
85aaf69f
SL
330
331 // Make a copy of the region obligations vec because we'll need
332 // to be able to borrow the fulfillment-cx below when projecting.
333 let region_obligations =
a7813a04 334 self.fulfillment_cx
c1a9b12d
SL
335 .borrow()
336 .region_obligations(node_id)
337 .to_vec();
85aaf69f
SL
338
339 for r_o in &region_obligations {
e9174d1e
SL
340 debug!("visit_region_obligations: r_o={:?} cause={:?}",
341 r_o, r_o.cause);
1a4d82fc 342 let sup_type = self.resolve_type(r_o.sup_type);
c30ab7b3 343 let origin = self.code_to_origin(&r_o.cause, sup_type);
a7813a04 344 self.type_must_outlive(origin, sup_type, r_o.sub_region);
1a4d82fc 345 }
85aaf69f
SL
346
347 // Processing the region obligations should not cause the list to grow further:
348 assert_eq!(region_obligations.len(),
a7813a04 349 self.fulfillment_cx.borrow().region_obligations(node_id).len());
e9174d1e
SL
350 }
351
352 fn code_to_origin(&self,
c30ab7b3
SL
353 cause: &traits::ObligationCause<'tcx>,
354 sup_type: Ty<'tcx>)
e9174d1e 355 -> SubregionOrigin<'tcx> {
c30ab7b3
SL
356 SubregionOrigin::from_obligation_cause(cause,
357 || infer::RelateParamBound(cause.span, sup_type))
e9174d1e
SL
358 }
359
1a4d82fc
JJ
360 /// This method populates the region map's `free_region_map`. It walks over the transformed
361 /// argument and return types for each function just before we check the body of that function,
362 /// looking for types where you have a borrowed pointer to other borrowed data (e.g., `&'a &'b
c34b1796 363 /// [usize]`. We do not allow references to outlive the things they point at, so we can assume
1a4d82fc
JJ
364 /// that `'a <= 'b`. This holds for both the argument and return types, basically because, on
365 /// the caller side, the caller is responsible for checking that the type of every expression
366 /// (including the actual values for the arguments, as well as the return type of the fn call)
367 /// is well-formed.
368 ///
369 /// Tests: `src/test/compile-fail/regions-free-region-ordering-*.rs`
370 fn relate_free_regions(&mut self,
371 fn_sig_tys: &[Ty<'tcx>],
85aaf69f
SL
372 body_id: ast::NodeId,
373 span: Span) {
1a4d82fc 374 debug!("relate_free_regions >>");
1a4d82fc 375
85aaf69f 376 for &ty in fn_sig_tys {
1a4d82fc 377 let ty = self.resolve_type(ty);
62682a34 378 debug!("relate_free_regions(t={:?})", ty);
a7813a04 379 let implied_bounds = ty::wf::implied_bounds(self, body_id, ty, span);
bd371182
AL
380
381 // Record any relations between free regions that we observe into the free-region-map.
e9174d1e 382 self.free_region_map.relate_free_regions_from_implied_bounds(&implied_bounds);
bd371182
AL
383
384 // But also record other relationships, such as `T:'x`,
385 // that don't go into the free-region-map but which we use
386 // here.
e9174d1e 387 for implication in implied_bounds {
62682a34 388 debug!("implication: {:?}", implication);
85aaf69f 389 match implication {
9e0c209e
SL
390 ImpliedBound::RegionSubRegion(&ty::ReFree(free_a),
391 &ty::ReVar(vid_b)) => {
a7813a04 392 self.add_given(free_a, vid_b);
1a4d82fc 393 }
e9174d1e
SL
394 ImpliedBound::RegionSubParam(r_a, param_b) => {
395 self.region_bound_pairs.push((r_a, GenericKind::Param(param_b)));
c34b1796 396 }
e9174d1e
SL
397 ImpliedBound::RegionSubProjection(r_a, projection_b) => {
398 self.region_bound_pairs.push((r_a, GenericKind::Projection(projection_b)));
399 }
400 ImpliedBound::RegionSubRegion(..) => {
1a4d82fc
JJ
401 // In principle, we could record (and take
402 // advantage of) every relationship here, but
403 // we are also free not to -- it simply means
404 // strictly less that we can successfully type
405 // check. (It may also be that we should
406 // revise our inference system to be more
407 // general and to make use of *every*
408 // relationship that arises here, but
409 // presently we do not.)
410 }
1a4d82fc
JJ
411 }
412 }
413 }
414
415 debug!("<< relate_free_regions");
416 }
417
418 fn resolve_regions_and_report_errors(&self) {
419 let subject_node_id = match self.subject {
420 Subject(s) => s,
421 SubjectNode::None => {
54a0048b
SL
422 bug!("cannot resolve_regions_and_report_errors \
423 without subject node");
1a4d82fc
JJ
424 }
425 };
426
a7813a04
XL
427 self.fcx.resolve_regions_and_report_errors(&self.free_region_map,
428 subject_node_id);
429 }
430
431 fn constrain_bindings_in_pat(&mut self, pat: &hir::Pat) {
432 let tcx = self.tcx;
433 debug!("regionck::visit_pat(pat={:?})", pat);
476ff2be 434 pat.each_binding(|_, id, span, _| {
a7813a04
XL
435 // If we have a variable that contains region'd data, that
436 // data will be accessible from anywhere that the variable is
437 // accessed. We must be wary of loops like this:
438 //
439 // // from src/test/compile-fail/borrowck-lend-flow.rs
440 // let mut v = box 3, w = box 4;
441 // let mut x = &mut w;
442 // loop {
443 // **x += 1; // (2)
444 // borrow(v); //~ ERROR cannot borrow
445 // x = &mut v; // (1)
446 // }
447 //
448 // Typically, we try to determine the region of a borrow from
449 // those points where it is dereferenced. In this case, one
450 // might imagine that the lifetime of `x` need only be the
451 // body of the loop. But of course this is incorrect because
452 // the pointer that is created at point (1) is consumed at
453 // point (2), meaning that it must be live across the loop
454 // iteration. The easiest way to guarantee this is to require
455 // that the lifetime of any regions that appear in a
456 // variable's type enclose at least the variable's scope.
457
458 let var_scope = tcx.region_maps.var_scope(id);
9e0c209e 459 let var_region = self.tcx.mk_region(ty::ReScope(var_scope));
a7813a04
XL
460
461 let origin = infer::BindingTypeIsNotValidAtDecl(span);
9e0c209e 462 self.type_of_node_must_outlive(origin, id, var_region);
a7813a04
XL
463
464 let typ = self.resolve_node_type(id);
465 dropck::check_safety_of_destructor_if_necessary(self, typ, span, var_scope);
466 })
1a4d82fc
JJ
467 }
468}
469
476ff2be 470impl<'a, 'gcx, 'tcx> Visitor<'gcx> for RegionCtxt<'a, 'gcx, 'tcx> {
1a4d82fc
JJ
471 // (..) FIXME(#3238) should use visit_pat, not visit_arm/visit_local,
472 // However, right now we run into an issue whereby some free
473 // regions are not properly related if they appear within the
474 // types of arguments that must be inferred. This could be
475 // addressed by deferring the construction of the region
476 // hierarchy, and in particular the relationships between free
477 // regions, until regionck, as described in #3238.
478
476ff2be 479 fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'gcx> {
32a655c1 480 NestedVisitorMap::None
476ff2be
SL
481 }
482
32a655c1
SL
483 fn visit_fn(&mut self, _fk: intravisit::FnKind<'gcx>, _: &'gcx hir::FnDecl,
484 b: hir::BodyId, span: Span, id: ast::NodeId) {
485 let body = self.tcx.hir.body(b);
486 self.visit_fn_body(id, body, span)
1a4d82fc
JJ
487 }
488
1a4d82fc
JJ
489 //visit_pat: visit_pat, // (..) see above
490
476ff2be 491 fn visit_arm(&mut self, arm: &'gcx hir::Arm) {
a7813a04
XL
492 // see above
493 for p in &arm.pats {
494 self.constrain_bindings_in_pat(p);
495 }
496 intravisit::walk_arm(self, arm);
1a4d82fc
JJ
497 }
498
476ff2be 499 fn visit_local(&mut self, l: &'gcx hir::Local) {
a7813a04
XL
500 // see above
501 self.constrain_bindings_in_pat(&l.pat);
502 self.link_local(l);
503 intravisit::walk_local(self, l);
504 }
1a4d82fc 505
476ff2be 506 fn visit_expr(&mut self, expr: &'gcx hir::Expr) {
a7813a04
XL
507 debug!("regionck::visit_expr(e={:?}, repeating_scope={})",
508 expr, self.repeating_scope);
509
510 // No matter what, the type of each expression must outlive the
511 // scope of that expression. This also guarantees basic WF.
512 let expr_ty = self.resolve_node_type(expr.id);
513 // the region corresponding to this expression
9e0c209e 514 let expr_region = self.tcx.node_scope_region(expr.id);
a7813a04
XL
515 self.type_must_outlive(infer::ExprTypeIsNotInScope(expr_ty, expr.span),
516 expr_ty, expr_region);
517
518 let method_call = MethodCall::expr(expr.id);
519 let opt_method_callee = self.tables.borrow().method_map.get(&method_call).cloned();
520 let has_method_map = opt_method_callee.is_some();
521
522 // If we are calling a method (either explicitly or via an
523 // overloaded operator), check that all of the types provided as
524 // arguments for its type parameters are well-formed, and all the regions
525 // provided as arguments outlive the call.
526 if let Some(callee) = opt_method_callee {
527 let origin = match expr.node {
528 hir::ExprMethodCall(..) =>
529 infer::ParameterOrigin::MethodCall,
530 hir::ExprUnary(op, _) if op == hir::UnDeref =>
531 infer::ParameterOrigin::OverloadedDeref,
532 _ =>
533 infer::ParameterOrigin::OverloadedOperator
534 };
1a4d82fc 535
a7813a04
XL
536 self.substs_wf_in_scope(origin, &callee.substs, expr.span, expr_region);
537 self.type_must_outlive(infer::ExprTypeIsNotInScope(callee.ty, expr.span),
538 callee.ty, expr_region);
539 }
1a4d82fc 540
a7813a04
XL
541 // Check any autoderefs or autorefs that appear.
542 let adjustment = self.tables.borrow().adjustments.get(&expr.id).map(|a| a.clone());
543 if let Some(adjustment) = adjustment {
544 debug!("adjustment={:?}", adjustment);
c30ab7b3
SL
545 match adjustment.kind {
546 adjustment::Adjust::DerefRef { autoderefs, ref autoref, .. } => {
a7813a04
XL
547 let expr_ty = self.resolve_node_type(expr.id);
548 self.constrain_autoderefs(expr, autoderefs, expr_ty);
549 if let Some(ref autoref) = *autoref {
550 self.link_autoref(expr, autoderefs, autoref);
551
552 // Require that the resulting region encompasses
553 // the current node.
554 //
555 // FIXME(#6268) remove to support nested method calls
556 self.type_of_node_must_outlive(infer::AutoBorrow(expr.span),
557 expr.id, expr_region);
558 }
559 }
560 /*
9e0c209e 561 adjustment::AutoObject(_, ref bounds, ..) => {
a7813a04
XL
562 // Determine if we are casting `expr` to a trait
563 // instance. If so, we have to be sure that the type
564 // of the source obeys the new region bound.
565 let source_ty = self.resolve_node_type(expr.id);
566 self.type_must_outlive(infer::RelateObjectBound(expr.span),
567 source_ty, bounds.region_bound);
1a4d82fc 568 }
a7813a04
XL
569 */
570 _ => {}
1a4d82fc 571 }
a7813a04
XL
572
573 // If necessary, constrain destructors in the unadjusted form of this
574 // expression.
575 let cmt_result = {
576 let mc = mc::MemCategorizationContext::new(self);
577 mc.cat_expr_unadjusted(expr)
578 };
579 match cmt_result {
580 Ok(head_cmt) => {
581 self.check_safety_of_rvalue_destructor_if_necessary(head_cmt,
582 expr.span);
583 }
584 Err(..) => {
585 self.tcx.sess.delay_span_bug(expr.span, "cat_expr_unadjusted Errd");
586 }
1a4d82fc 587 }
1a4d82fc 588 }
85aaf69f 589
a7813a04
XL
590 // If necessary, constrain destructors in this expression. This will be
591 // the adjusted form if there is an adjustment.
85aaf69f 592 let cmt_result = {
a7813a04
XL
593 let mc = mc::MemCategorizationContext::new(self);
594 mc.cat_expr(expr)
85aaf69f
SL
595 };
596 match cmt_result {
597 Ok(head_cmt) => {
a7813a04 598 self.check_safety_of_rvalue_destructor_if_necessary(head_cmt, expr.span);
85aaf69f
SL
599 }
600 Err(..) => {
a7813a04 601 self.tcx.sess.delay_span_bug(expr.span, "cat_expr Errd");
85aaf69f
SL
602 }
603 }
85aaf69f 604
a7813a04
XL
605 debug!("regionck::visit_expr(e={:?}, repeating_scope={}) - visiting subexprs",
606 expr, self.repeating_scope);
607 match expr.node {
476ff2be 608 hir::ExprPath(_) => {
a7813a04
XL
609 self.fcx.opt_node_ty_substs(expr.id, |item_substs| {
610 let origin = infer::ParameterOrigin::Path;
611 self.substs_wf_in_scope(origin, &item_substs.substs, expr.span, expr_region);
612 });
1a4d82fc
JJ
613 }
614
a7813a04
XL
615 hir::ExprCall(ref callee, ref args) => {
616 if has_method_map {
617 self.constrain_call(expr, Some(&callee),
476ff2be 618 args.iter().map(|e| &*e), false);
a7813a04
XL
619 } else {
620 self.constrain_callee(callee.id, expr, &callee);
621 self.constrain_call(expr, None,
476ff2be 622 args.iter().map(|e| &*e), false);
a7813a04 623 }
1a4d82fc 624
a7813a04
XL
625 intravisit::walk_expr(self, expr);
626 }
1a4d82fc 627
9e0c209e 628 hir::ExprMethodCall(.., ref args) => {
a7813a04 629 self.constrain_call(expr, Some(&args[0]),
476ff2be 630 args[1..].iter().map(|e| &*e), false);
1a4d82fc 631
a7813a04 632 intravisit::walk_expr(self, expr);
1a4d82fc
JJ
633 }
634
a7813a04
XL
635 hir::ExprAssignOp(_, ref lhs, ref rhs) => {
636 if has_method_map {
637 self.constrain_call(expr, Some(&lhs),
638 Some(&**rhs).into_iter(), false);
639 }
1a4d82fc 640
a7813a04
XL
641 intravisit::walk_expr(self, expr);
642 }
1a4d82fc 643
a7813a04
XL
644 hir::ExprIndex(ref lhs, ref rhs) if has_method_map => {
645 self.constrain_call(expr, Some(&lhs),
646 Some(&**rhs).into_iter(), true);
1a4d82fc 647
a7813a04
XL
648 intravisit::walk_expr(self, expr);
649 },
1a4d82fc 650
a7813a04
XL
651 hir::ExprBinary(op, ref lhs, ref rhs) if has_method_map => {
652 let implicitly_ref_args = !op.node.is_by_value();
1a4d82fc 653
a7813a04
XL
654 // As `expr_method_call`, but the call is via an
655 // overloaded op. Note that we (sadly) currently use an
656 // implicit "by ref" sort of passing style here. This
657 // should be converted to an adjustment!
658 self.constrain_call(expr, Some(&lhs),
659 Some(&**rhs).into_iter(), implicitly_ref_args);
1a4d82fc 660
a7813a04 661 intravisit::walk_expr(self, expr);
85aaf69f 662 }
85aaf69f 663
a7813a04
XL
664 hir::ExprBinary(_, ref lhs, ref rhs) => {
665 // If you do `x OP y`, then the types of `x` and `y` must
666 // outlive the operation you are performing.
667 let lhs_ty = self.resolve_expr_type_adjusted(&lhs);
668 let rhs_ty = self.resolve_expr_type_adjusted(&rhs);
669 for &ty in &[lhs_ty, rhs_ty] {
670 self.type_must_outlive(infer::Operand(expr.span),
671 ty, expr_region);
672 }
673 intravisit::walk_expr(self, expr);
674 }
1a4d82fc 675
a7813a04
XL
676 hir::ExprUnary(op, ref lhs) if has_method_map => {
677 let implicitly_ref_args = !op.is_by_value();
1a4d82fc 678
a7813a04
XL
679 // As above.
680 self.constrain_call(expr, Some(&lhs),
681 None::<hir::Expr>.iter(), implicitly_ref_args);
1a4d82fc 682
a7813a04 683 intravisit::walk_expr(self, expr);
1a4d82fc
JJ
684 }
685
a7813a04
XL
686 hir::ExprUnary(hir::UnDeref, ref base) => {
687 // For *a, the lifetime of a must enclose the deref
688 let method_call = MethodCall::expr(expr.id);
689 let base_ty = match self.tables.borrow().method_map.get(&method_call) {
690 Some(method) => {
691 self.constrain_call(expr, Some(&base),
692 None::<hir::Expr>.iter(), true);
693 // late-bound regions in overloaded method calls are instantiated
694 let fn_ret = self.tcx.no_late_bound_regions(&method.ty.fn_ret());
5bcae85e 695 fn_ret.unwrap()
a7813a04
XL
696 }
697 None => self.resolve_node_type(base.id)
698 };
699 if let ty::TyRef(r_ptr, _) = base_ty.sty {
9e0c209e 700 self.mk_subregion_due_to_dereference(expr.span, expr_region, r_ptr);
a7813a04 701 }
1a4d82fc 702
a7813a04
XL
703 intravisit::walk_expr(self, expr);
704 }
1a4d82fc 705
a7813a04
XL
706 hir::ExprIndex(ref vec_expr, _) => {
707 // For a[b], the lifetime of a must enclose the deref
708 let vec_type = self.resolve_expr_type_adjusted(&vec_expr);
709 self.constrain_index(expr, vec_type);
1a4d82fc 710
a7813a04
XL
711 intravisit::walk_expr(self, expr);
712 }
1a4d82fc 713
a7813a04
XL
714 hir::ExprCast(ref source, _) => {
715 // Determine if we are casting `source` to a trait
716 // instance. If so, we have to be sure that the type of
717 // the source obeys the trait's region bound.
718 self.constrain_cast(expr, &source);
719 intravisit::walk_expr(self, expr);
720 }
1a4d82fc 721
a7813a04
XL
722 hir::ExprAddrOf(m, ref base) => {
723 self.link_addr_of(expr, m, &base);
724
725 // Require that when you write a `&expr` expression, the
726 // resulting pointer has a lifetime that encompasses the
727 // `&expr` expression itself. Note that we constraining
728 // the type of the node expr.id here *before applying
729 // adjustments*.
730 //
731 // FIXME(#6268) nested method calls requires that this rule change
732 let ty0 = self.resolve_node_type(expr.id);
733 self.type_must_outlive(infer::AddrOf(expr.span), ty0, expr_region);
734 intravisit::walk_expr(self, expr);
735 }
1a4d82fc 736
a7813a04
XL
737 hir::ExprMatch(ref discr, ref arms, _) => {
738 self.link_match(&discr, &arms[..]);
1a4d82fc 739
a7813a04
XL
740 intravisit::walk_expr(self, expr);
741 }
1a4d82fc 742
476ff2be
SL
743 hir::ExprClosure(.., body_id, _) => {
744 self.check_expr_fn_block(expr, body_id);
a7813a04 745 }
1a4d82fc 746
476ff2be 747 hir::ExprLoop(ref body, _, _) => {
a7813a04
XL
748 let repeating_scope = self.set_repeating_scope(body.id);
749 intravisit::walk_expr(self, expr);
750 self.set_repeating_scope(repeating_scope);
751 }
1a4d82fc 752
a7813a04
XL
753 hir::ExprWhile(ref cond, ref body, _) => {
754 let repeating_scope = self.set_repeating_scope(cond.id);
755 self.visit_expr(&cond);
1a4d82fc 756
a7813a04
XL
757 self.set_repeating_scope(body.id);
758 self.visit_block(&body);
1a4d82fc 759
a7813a04
XL
760 self.set_repeating_scope(repeating_scope);
761 }
1a4d82fc 762
a7813a04
XL
763 hir::ExprRet(Some(ref ret_expr)) => {
764 let call_site_scope = self.call_site_scope;
765 debug!("visit_expr ExprRet ret_expr.id {} call_site_scope: {:?}",
766 ret_expr.id, call_site_scope);
9e0c209e 767 let call_site_region = self.tcx.mk_region(ty::ReScope(call_site_scope.unwrap()));
a7813a04
XL
768 self.type_of_node_must_outlive(infer::CallReturn(ret_expr.span),
769 ret_expr.id,
9e0c209e 770 call_site_region);
a7813a04
XL
771 intravisit::walk_expr(self, expr);
772 }
9cc50fc6 773
a7813a04
XL
774 _ => {
775 intravisit::walk_expr(self, expr);
776 }
1a4d82fc
JJ
777 }
778 }
779}
780
a7813a04
XL
781impl<'a, 'gcx, 'tcx> RegionCtxt<'a, 'gcx, 'tcx> {
782 fn constrain_cast(&mut self,
783 cast_expr: &hir::Expr,
784 source_expr: &hir::Expr)
785 {
786 debug!("constrain_cast(cast_expr={:?}, source_expr={:?})",
787 cast_expr,
788 source_expr);
1a4d82fc 789
a7813a04
XL
790 let source_ty = self.resolve_node_type(source_expr.id);
791 let target_ty = self.resolve_node_type(cast_expr.id);
1a4d82fc 792
a7813a04
XL
793 self.walk_cast(cast_expr, source_ty, target_ty);
794 }
1a4d82fc 795
a7813a04
XL
796 fn walk_cast(&mut self,
797 cast_expr: &hir::Expr,
798 from_ty: Ty<'tcx>,
799 to_ty: Ty<'tcx>) {
62682a34
SL
800 debug!("walk_cast(from_ty={:?}, to_ty={:?})",
801 from_ty,
802 to_ty);
1a4d82fc 803 match (&from_ty.sty, &to_ty.sty) {
62682a34
SL
804 /*From:*/ (&ty::TyRef(from_r, ref from_mt),
805 /*To: */ &ty::TyRef(to_r, ref to_mt)) => {
1a4d82fc 806 // Target cannot outlive source, naturally.
9e0c209e 807 self.sub_regions(infer::Reborrow(cast_expr.span), to_r, from_r);
a7813a04 808 self.walk_cast(cast_expr, from_mt.ty, to_mt.ty);
1a4d82fc
JJ
809 }
810
811 /*From:*/ (_,
476ff2be 812 /*To: */ &ty::TyDynamic(.., r)) => {
1a4d82fc
JJ
813 // When T is existentially quantified as a trait
814 // `Foo+'to`, it must outlive the region bound `'to`.
476ff2be 815 self.type_must_outlive(infer::RelateObjectBound(cast_expr.span), from_ty, r);
1a4d82fc
JJ
816 }
817
32a655c1
SL
818 /*From:*/ (&ty::TyAdt(from_def, _),
819 /*To: */ &ty::TyAdt(to_def, _)) if from_def.is_box() && to_def.is_box() => {
820 self.walk_cast(cast_expr, from_ty.boxed_ty(), to_ty.boxed_ty());
1a4d82fc
JJ
821 }
822
823 _ => { }
824 }
825 }
1a4d82fc 826
a7813a04 827 fn check_expr_fn_block(&mut self,
476ff2be 828 expr: &'gcx hir::Expr,
32a655c1
SL
829 body_id: hir::BodyId) {
830 let repeating_scope = self.set_repeating_scope(body_id.node_id);
a7813a04
XL
831 intravisit::walk_expr(self, expr);
832 self.set_repeating_scope(repeating_scope);
833 }
1a4d82fc 834
a7813a04
XL
835 fn constrain_callee(&mut self,
836 callee_id: ast::NodeId,
837 _call_expr: &hir::Expr,
838 _callee_expr: &hir::Expr) {
839 let callee_ty = self.resolve_node_type(callee_id);
840 match callee_ty.sty {
841 ty::TyFnDef(..) | ty::TyFnPtr(_) => { }
842 _ => {
843 // this should not happen, but it does if the program is
844 // erroneous
845 //
846 // bug!(
847 // callee_expr.span,
848 // "Calling non-function: {}",
849 // callee_ty);
850 }
1a4d82fc
JJ
851 }
852 }
1a4d82fc 853
a7813a04
XL
854 fn constrain_call<'b, I: Iterator<Item=&'b hir::Expr>>(&mut self,
855 call_expr: &hir::Expr,
856 receiver: Option<&hir::Expr>,
857 arg_exprs: I,
858 implicitly_ref_args: bool) {
859 //! Invoked on every call site (i.e., normal calls, method calls,
860 //! and overloaded operators). Constrains the regions which appear
861 //! in the type of the function. Also constrains the regions that
862 //! appear in the arguments appropriately.
863
864 debug!("constrain_call(call_expr={:?}, \
865 receiver={:?}, \
866 implicitly_ref_args={})",
867 call_expr,
868 receiver,
869 implicitly_ref_args);
870
871 // `callee_region` is the scope representing the time in which the
872 // call occurs.
873 //
874 // FIXME(#6268) to support nested method calls, should be callee_id
875 let callee_scope = self.tcx.region_maps.node_extent(call_expr.id);
9e0c209e 876 let callee_region = self.tcx.mk_region(ty::ReScope(callee_scope));
a7813a04
XL
877
878 debug!("callee_region={:?}", callee_region);
879
880 for arg_expr in arg_exprs {
881 debug!("Argument: {:?}", arg_expr);
882
883 // ensure that any regions appearing in the argument type are
884 // valid for at least the lifetime of the function:
885 self.type_of_node_must_outlive(infer::CallArg(arg_expr.span),
886 arg_expr.id, callee_region);
887
888 // unfortunately, there are two means of taking implicit
889 // references, and we need to propagate constraints as a
890 // result. modes are going away and the "DerefArgs" code
891 // should be ported to use adjustments
892 if implicitly_ref_args {
893 self.link_by_ref(arg_expr, callee_scope);
894 }
1a4d82fc 895 }
1a4d82fc 896
a7813a04
XL
897 // as loop above, but for receiver
898 if let Some(r) = receiver {
899 debug!("receiver: {:?}", r);
900 self.type_of_node_must_outlive(infer::CallRcvr(r.span),
901 r.id, callee_region);
902 if implicitly_ref_args {
903 self.link_by_ref(&r, callee_scope);
904 }
1a4d82fc
JJ
905 }
906 }
1a4d82fc 907
a7813a04
XL
908 /// Invoked on any auto-dereference that occurs. Checks that if this is a region pointer being
909 /// dereferenced, the lifetime of the pointer includes the deref expr.
910 fn constrain_autoderefs(&mut self,
911 deref_expr: &hir::Expr,
912 derefs: usize,
913 mut derefd_ty: Ty<'tcx>)
914 {
915 debug!("constrain_autoderefs(deref_expr={:?}, derefs={}, derefd_ty={:?})",
916 deref_expr,
917 derefs,
918 derefd_ty);
1a4d82fc 919
9e0c209e 920 let r_deref_expr = self.tcx.node_scope_region(deref_expr.id);
a7813a04
XL
921 for i in 0..derefs {
922 let method_call = MethodCall::autoderef(deref_expr.id, i as u32);
923 debug!("constrain_autoderefs: method_call={:?} (of {:?} total)", method_call, derefs);
1a4d82fc 924
a7813a04
XL
925 let method = self.tables.borrow().method_map.get(&method_call).map(|m| m.clone());
926
927 derefd_ty = match method {
928 Some(method) => {
929 debug!("constrain_autoderefs: #{} is overloaded, method={:?}",
930 i, method);
931
932 let origin = infer::ParameterOrigin::OverloadedDeref;
933 self.substs_wf_in_scope(origin, method.substs, deref_expr.span, r_deref_expr);
934
c30ab7b3 935 // Treat overloaded autoderefs as if an AutoBorrow adjustment
a7813a04
XL
936 // was applied on the base type, as that is always the case.
937 let fn_sig = method.ty.fn_sig();
938 let fn_sig = // late-bound regions should have been instantiated
939 self.tcx.no_late_bound_regions(fn_sig).unwrap();
476ff2be 940 let self_ty = fn_sig.inputs()[0];
a7813a04
XL
941 let (m, r) = match self_ty.sty {
942 ty::TyRef(r, ref m) => (m.mutbl, r),
943 _ => {
944 span_bug!(
945 deref_expr.span,
946 "bad overloaded deref type {:?}",
947 method.ty)
948 }
949 };
950
951 debug!("constrain_autoderefs: receiver r={:?} m={:?}",
952 r, m);
953
954 {
955 let mc = mc::MemCategorizationContext::new(self);
956 let self_cmt = ignore_err!(mc.cat_expr_autoderefd(deref_expr, i));
957 debug!("constrain_autoderefs: self_cmt={:?}",
958 self_cmt);
959 self.link_region(deref_expr.span, r,
960 ty::BorrowKind::from_mutbl(m), self_cmt);
961 }
1a4d82fc 962
a7813a04
XL
963 // Specialized version of constrain_call.
964 self.type_must_outlive(infer::CallRcvr(deref_expr.span),
965 self_ty, r_deref_expr);
5bcae85e 966 self.type_must_outlive(infer::CallReturn(deref_expr.span),
476ff2be
SL
967 fn_sig.output(), r_deref_expr);
968 fn_sig.output()
1a4d82fc 969 }
a7813a04
XL
970 None => derefd_ty
971 };
1a4d82fc 972
a7813a04
XL
973 if let ty::TyRef(r_ptr, _) = derefd_ty.sty {
974 self.mk_subregion_due_to_dereference(deref_expr.span,
9e0c209e 975 r_deref_expr, r_ptr);
a7813a04 976 }
1a4d82fc 977
a7813a04
XL
978 match derefd_ty.builtin_deref(true, ty::NoPreference) {
979 Some(mt) => derefd_ty = mt.ty,
980 /* if this type can't be dereferenced, then there's already an error
981 in the session saying so. Just bail out for now */
982 None => break
983 }
1a4d82fc
JJ
984 }
985 }
1a4d82fc 986
a7813a04
XL
987 pub fn mk_subregion_due_to_dereference(&mut self,
988 deref_span: Span,
9e0c209e
SL
989 minimum_lifetime: &'tcx ty::Region,
990 maximum_lifetime: &'tcx ty::Region) {
a7813a04
XL
991 self.sub_regions(infer::DerefPointer(deref_span),
992 minimum_lifetime, maximum_lifetime)
993 }
1a4d82fc 994
a7813a04
XL
995 fn check_safety_of_rvalue_destructor_if_necessary(&mut self,
996 cmt: mc::cmt<'tcx>,
997 span: Span) {
998 match cmt.cat {
32a655c1 999 Categorization::Rvalue(region, _) => {
9e0c209e 1000 match *region {
a7813a04
XL
1001 ty::ReScope(rvalue_scope) => {
1002 let typ = self.resolve_type(cmt.ty);
1003 dropck::check_safety_of_destructor_if_necessary(self,
1004 typ,
1005 span,
1006 rvalue_scope);
1007 }
1008 ty::ReStatic => {}
9e0c209e 1009 _ => {
a7813a04
XL
1010 span_bug!(span,
1011 "unexpected rvalue region in rvalue \
1012 destructor safety checking: `{:?}`",
1013 region);
1014 }
85aaf69f
SL
1015 }
1016 }
a7813a04 1017 _ => {}
85aaf69f 1018 }
85aaf69f 1019 }
1a4d82fc 1020
a7813a04
XL
1021 /// Invoked on any index expression that occurs. Checks that if this is a slice
1022 /// being indexed, the lifetime of the pointer includes the deref expr.
1023 fn constrain_index(&mut self,
1024 index_expr: &hir::Expr,
1025 indexed_ty: Ty<'tcx>)
1026 {
1027 debug!("constrain_index(index_expr=?, indexed_ty={}",
1028 self.ty_to_string(indexed_ty));
1029
1030 let r_index_expr = ty::ReScope(self.tcx.region_maps.node_extent(index_expr.id));
1031 if let ty::TyRef(r_ptr, mt) = indexed_ty.sty {
1032 match mt.ty.sty {
1033 ty::TySlice(_) | ty::TyStr => {
1034 self.sub_regions(infer::IndexSlice(index_expr.span),
9e0c209e 1035 self.tcx.mk_region(r_index_expr), r_ptr);
a7813a04
XL
1036 }
1037 _ => {}
1a4d82fc 1038 }
1a4d82fc
JJ
1039 }
1040 }
1a4d82fc 1041
a7813a04
XL
1042 /// Guarantees that any lifetimes which appear in the type of the node `id` (after applying
1043 /// adjustments) are valid for at least `minimum_lifetime`
1044 fn type_of_node_must_outlive(&mut self,
1045 origin: infer::SubregionOrigin<'tcx>,
1046 id: ast::NodeId,
9e0c209e 1047 minimum_lifetime: &'tcx ty::Region)
a7813a04 1048 {
a7813a04
XL
1049 // Try to resolve the type. If we encounter an error, then typeck
1050 // is going to fail anyway, so just stop here and let typeck
1051 // report errors later on in the writeback phase.
1052 let ty0 = self.resolve_node_type(id);
c30ab7b3
SL
1053 let ty = self.tables.borrow().adjustments.get(&id).map_or(ty0, |adj| adj.target);
1054 let ty = self.resolve_type(ty);
a7813a04
XL
1055 debug!("constrain_regions_in_type_of_node(\
1056 ty={}, ty0={}, id={}, minimum_lifetime={:?})",
1057 ty, ty0,
1058 id, minimum_lifetime);
1059 self.type_must_outlive(origin, ty, minimum_lifetime);
1060 }
1a4d82fc 1061
a7813a04
XL
1062 /// Computes the guarantor for an expression `&base` and then ensures that the lifetime of the
1063 /// resulting pointer is linked to the lifetime of its guarantor (if any).
1064 fn link_addr_of(&mut self, expr: &hir::Expr,
1065 mutability: hir::Mutability, base: &hir::Expr) {
1066 debug!("link_addr_of(expr={:?}, base={:?})", expr, base);
1a4d82fc 1067
a7813a04
XL
1068 let cmt = {
1069 let mc = mc::MemCategorizationContext::new(self);
1070 ignore_err!(mc.cat_expr(base))
1071 };
1a4d82fc 1072
a7813a04 1073 debug!("link_addr_of: cmt={:?}", cmt);
1a4d82fc 1074
a7813a04
XL
1075 self.link_region_from_node_type(expr.span, expr.id, mutability, cmt);
1076 }
1a4d82fc 1077
a7813a04
XL
1078 /// Computes the guarantors for any ref bindings in a `let` and
1079 /// then ensures that the lifetime of the resulting pointer is
1080 /// linked to the lifetime of the initialization expression.
1081 fn link_local(&self, local: &hir::Local) {
1082 debug!("regionck::for_local()");
1083 let init_expr = match local.init {
1084 None => { return; }
1085 Some(ref expr) => &**expr,
1086 };
1087 let mc = mc::MemCategorizationContext::new(self);
1088 let discr_cmt = ignore_err!(mc.cat_expr(init_expr));
1089 self.link_pattern(mc, discr_cmt, &local.pat);
1090 }
1a4d82fc 1091
a7813a04
XL
1092 /// Computes the guarantors for any ref bindings in a match and
1093 /// then ensures that the lifetime of the resulting pointer is
1094 /// linked to the lifetime of its guarantor (if any).
1095 fn link_match(&self, discr: &hir::Expr, arms: &[hir::Arm]) {
1096 debug!("regionck::for_match()");
1097 let mc = mc::MemCategorizationContext::new(self);
1098 let discr_cmt = ignore_err!(mc.cat_expr(discr));
1099 debug!("discr_cmt={:?}", discr_cmt);
1100 for arm in arms {
1101 for root_pat in &arm.pats {
1102 self.link_pattern(mc, discr_cmt.clone(), &root_pat);
1103 }
1a4d82fc
JJ
1104 }
1105 }
1a4d82fc 1106
a7813a04
XL
1107 /// Computes the guarantors for any ref bindings in a match and
1108 /// then ensures that the lifetime of the resulting pointer is
1109 /// linked to the lifetime of its guarantor (if any).
1110 fn link_fn_args(&self, body_scope: CodeExtent, args: &[hir::Arg]) {
1111 debug!("regionck::link_fn_args(body_scope={:?})", body_scope);
1112 let mc = mc::MemCategorizationContext::new(self);
1113 for arg in args {
1114 let arg_ty = self.node_ty(arg.id);
9e0c209e 1115 let re_scope = self.tcx.mk_region(ty::ReScope(body_scope));
32a655c1
SL
1116 let arg_cmt = mc.cat_rvalue(
1117 arg.id, arg.pat.span, re_scope, re_scope, arg_ty);
a7813a04
XL
1118 debug!("arg_ty={:?} arg_cmt={:?} arg={:?}",
1119 arg_ty,
1120 arg_cmt,
1121 arg);
1122 self.link_pattern(mc, arg_cmt, &arg.pat);
1123 }
1a4d82fc 1124 }
1a4d82fc 1125
a7813a04
XL
1126 /// Link lifetimes of any ref bindings in `root_pat` to the pointers found
1127 /// in the discriminant, if needed.
1128 fn link_pattern<'t>(&self,
1129 mc: mc::MemCategorizationContext<'a, 'gcx, 'tcx>,
1130 discr_cmt: mc::cmt<'tcx>,
1131 root_pat: &hir::Pat) {
1132 debug!("link_pattern(discr_cmt={:?}, root_pat={:?})",
1133 discr_cmt,
1134 root_pat);
3157f602 1135 let _ = mc.cat_pattern(discr_cmt, root_pat, |_, sub_cmt, sub_pat| {
a7813a04
XL
1136 match sub_pat.node {
1137 // `ref x` pattern
9e0c209e 1138 PatKind::Binding(hir::BindByRef(mutbl), ..) => {
a7813a04
XL
1139 self.link_region_from_node_type(sub_pat.span, sub_pat.id,
1140 mutbl, sub_cmt);
1141 }
a7813a04 1142 _ => {}
1a4d82fc 1143 }
a7813a04
XL
1144 });
1145 }
1a4d82fc 1146
a7813a04
XL
1147 /// Link lifetime of borrowed pointer resulting from autoref to lifetimes in the value being
1148 /// autoref'd.
1149 fn link_autoref(&self,
1150 expr: &hir::Expr,
1151 autoderefs: usize,
c30ab7b3 1152 autoref: &adjustment::AutoBorrow<'tcx>)
a7813a04 1153 {
476ff2be 1154 debug!("link_autoref(autoderefs={}, autoref={:?})", autoderefs, autoref);
a7813a04
XL
1155 let mc = mc::MemCategorizationContext::new(self);
1156 let expr_cmt = ignore_err!(mc.cat_expr_autoderefd(expr, autoderefs));
1157 debug!("expr_cmt={:?}", expr_cmt);
1158
1159 match *autoref {
c30ab7b3 1160 adjustment::AutoBorrow::Ref(r, m) => {
a7813a04
XL
1161 self.link_region(expr.span, r,
1162 ty::BorrowKind::from_mutbl(m), expr_cmt);
1163 }
1a4d82fc 1164
c30ab7b3 1165 adjustment::AutoBorrow::RawPtr(m) => {
9e0c209e
SL
1166 let r = self.tcx.node_scope_region(expr.id);
1167 self.link_region(expr.span, r, ty::BorrowKind::from_mutbl(m), expr_cmt);
a7813a04 1168 }
9346a6ac 1169 }
1a4d82fc 1170 }
1a4d82fc 1171
a7813a04
XL
1172 /// Computes the guarantor for cases where the `expr` is being passed by implicit reference and
1173 /// must outlive `callee_scope`.
1174 fn link_by_ref(&self,
1175 expr: &hir::Expr,
1176 callee_scope: CodeExtent) {
1177 debug!("link_by_ref(expr={:?}, callee_scope={:?})",
1178 expr, callee_scope);
1179 let mc = mc::MemCategorizationContext::new(self);
1180 let expr_cmt = ignore_err!(mc.cat_expr(expr));
9e0c209e
SL
1181 let borrow_region = self.tcx.mk_region(ty::ReScope(callee_scope));
1182 self.link_region(expr.span, borrow_region, ty::ImmBorrow, expr_cmt);
a7813a04 1183 }
1a4d82fc 1184
a7813a04
XL
1185 /// Like `link_region()`, except that the region is extracted from the type of `id`,
1186 /// which must be some reference (`&T`, `&str`, etc).
1187 fn link_region_from_node_type(&self,
1188 span: Span,
1189 id: ast::NodeId,
1190 mutbl: hir::Mutability,
1191 cmt_borrowed: mc::cmt<'tcx>) {
1192 debug!("link_region_from_node_type(id={:?}, mutbl={:?}, cmt_borrowed={:?})",
1193 id, mutbl, cmt_borrowed);
1194
1195 let rptr_ty = self.resolve_node_type(id);
9e0c209e 1196 if let ty::TyRef(r, _) = rptr_ty.sty {
a7813a04 1197 debug!("rptr_ty={}", rptr_ty);
9e0c209e 1198 self.link_region(span, r, ty::BorrowKind::from_mutbl(mutbl),
a7813a04
XL
1199 cmt_borrowed);
1200 }
1a4d82fc 1201 }
1a4d82fc 1202
a7813a04
XL
1203 /// Informs the inference engine that `borrow_cmt` is being borrowed with
1204 /// kind `borrow_kind` and lifetime `borrow_region`.
1205 /// In order to ensure borrowck is satisfied, this may create constraints
1206 /// between regions, as explained in `link_reborrowed_region()`.
1207 fn link_region(&self,
1208 span: Span,
9e0c209e 1209 borrow_region: &'tcx ty::Region,
a7813a04
XL
1210 borrow_kind: ty::BorrowKind,
1211 borrow_cmt: mc::cmt<'tcx>) {
1212 let mut borrow_cmt = borrow_cmt;
1213 let mut borrow_kind = borrow_kind;
1214
1215 let origin = infer::DataBorrowed(borrow_cmt.ty, span);
9e0c209e 1216 self.type_must_outlive(origin, borrow_cmt.ty, borrow_region);
a7813a04
XL
1217
1218 loop {
1219 debug!("link_region(borrow_region={:?}, borrow_kind={:?}, borrow_cmt={:?})",
1220 borrow_region,
1221 borrow_kind,
1222 borrow_cmt);
1223 match borrow_cmt.cat.clone() {
1224 Categorization::Deref(ref_cmt, _,
1225 mc::Implicit(ref_kind, ref_region)) |
1226 Categorization::Deref(ref_cmt, _,
1227 mc::BorrowedPtr(ref_kind, ref_region)) => {
1228 match self.link_reborrowed_region(span,
1229 borrow_region, borrow_kind,
1230 ref_cmt, ref_region, ref_kind,
1231 borrow_cmt.note) {
1232 Some((c, k)) => {
1233 borrow_cmt = c;
1234 borrow_kind = k;
1235 }
1236 None => {
1237 return;
1238 }
1239 }
1240 }
1a4d82fc 1241
a7813a04
XL
1242 Categorization::Downcast(cmt_base, _) |
1243 Categorization::Deref(cmt_base, _, mc::Unique) |
1244 Categorization::Interior(cmt_base, _) => {
1245 // Borrowing interior or owned data requires the base
1246 // to be valid and borrowable in the same fashion.
1247 borrow_cmt = cmt_base;
1248 borrow_kind = borrow_kind;
1249 }
e9174d1e 1250
9e0c209e 1251 Categorization::Deref(.., mc::UnsafePtr(..)) |
a7813a04
XL
1252 Categorization::StaticItem |
1253 Categorization::Upvar(..) |
1254 Categorization::Local(..) |
1255 Categorization::Rvalue(..) => {
1256 // These are all "base cases" with independent lifetimes
1257 // that are not subject to inference
1258 return;
1259 }
1260 }
1261 }
1262 }
1263
1264 /// This is the most complicated case: the path being borrowed is
1265 /// itself the referent of a borrowed pointer. Let me give an
1266 /// example fragment of code to make clear(er) the situation:
1267 ///
1268 /// let r: &'a mut T = ...; // the original reference "r" has lifetime 'a
1269 /// ...
1270 /// &'z *r // the reborrow has lifetime 'z
1271 ///
1272 /// Now, in this case, our primary job is to add the inference
1273 /// constraint that `'z <= 'a`. Given this setup, let's clarify the
1274 /// parameters in (roughly) terms of the example:
1275 ///
1276 /// A borrow of: `& 'z bk * r` where `r` has type `& 'a bk T`
1277 /// borrow_region ^~ ref_region ^~
1278 /// borrow_kind ^~ ref_kind ^~
1279 /// ref_cmt ^
1280 ///
1281 /// Here `bk` stands for some borrow-kind (e.g., `mut`, `uniq`, etc).
1282 ///
1283 /// Unfortunately, there are some complications beyond the simple
1284 /// scenario I just painted:
1285 ///
1286 /// 1. The reference `r` might in fact be a "by-ref" upvar. In that
1287 /// case, we have two jobs. First, we are inferring whether this reference
1288 /// should be an `&T`, `&mut T`, or `&uniq T` reference, and we must
1289 /// adjust that based on this borrow (e.g., if this is an `&mut` borrow,
1290 /// then `r` must be an `&mut` reference). Second, whenever we link
1291 /// two regions (here, `'z <= 'a`), we supply a *cause*, and in this
1292 /// case we adjust the cause to indicate that the reference being
1293 /// "reborrowed" is itself an upvar. This provides a nicer error message
1294 /// should something go wrong.
1295 ///
1296 /// 2. There may in fact be more levels of reborrowing. In the
1297 /// example, I said the borrow was like `&'z *r`, but it might
1298 /// in fact be a borrow like `&'z **q` where `q` has type `&'a
1299 /// &'b mut T`. In that case, we want to ensure that `'z <= 'a`
1300 /// and `'z <= 'b`. This is explained more below.
1301 ///
1302 /// The return value of this function indicates whether we need to
1303 /// recurse and process `ref_cmt` (see case 2 above).
1304 fn link_reborrowed_region(&self,
1305 span: Span,
9e0c209e 1306 borrow_region: &'tcx ty::Region,
a7813a04
XL
1307 borrow_kind: ty::BorrowKind,
1308 ref_cmt: mc::cmt<'tcx>,
9e0c209e 1309 ref_region: &'tcx ty::Region,
a7813a04
XL
1310 mut ref_kind: ty::BorrowKind,
1311 note: mc::Note)
1312 -> Option<(mc::cmt<'tcx>, ty::BorrowKind)>
1313 {
1314 // Possible upvar ID we may need later to create an entry in the
1315 // maybe link map.
1316
1317 // Detect by-ref upvar `x`:
1318 let cause = match note {
1319 mc::NoteUpvarRef(ref upvar_id) => {
1320 let upvar_capture_map = &self.tables.borrow_mut().upvar_capture_map;
1321 match upvar_capture_map.get(upvar_id) {
1322 Some(&ty::UpvarCapture::ByRef(ref upvar_borrow)) => {
1323 // The mutability of the upvar may have been modified
1324 // by the above adjustment, so update our local variable.
1325 ref_kind = upvar_borrow.kind;
1326
1327 infer::ReborrowUpvar(span, *upvar_id)
1a4d82fc 1328 }
a7813a04
XL
1329 _ => {
1330 span_bug!( span, "Illegal upvar id: {:?}", upvar_id);
1a4d82fc
JJ
1331 }
1332 }
1333 }
a7813a04
XL
1334 mc::NoteClosureEnv(ref upvar_id) => {
1335 // We don't have any mutability changes to propagate, but
1336 // we do want to note that an upvar reborrow caused this
1337 // link
1338 infer::ReborrowUpvar(span, *upvar_id)
1339 }
1340 _ => {
1341 infer::Reborrow(span)
1342 }
1343 };
1a4d82fc 1344
a7813a04
XL
1345 debug!("link_reborrowed_region: {:?} <= {:?}",
1346 borrow_region,
1347 ref_region);
9e0c209e 1348 self.sub_regions(cause, borrow_region, ref_region);
a7813a04
XL
1349
1350 // If we end up needing to recurse and establish a region link
1351 // with `ref_cmt`, calculate what borrow kind we will end up
1352 // needing. This will be used below.
1353 //
1354 // One interesting twist is that we can weaken the borrow kind
1355 // when we recurse: to reborrow an `&mut` referent as mutable,
1356 // borrowck requires a unique path to the `&mut` reference but not
1357 // necessarily a *mutable* path.
1358 let new_borrow_kind = match borrow_kind {
1359 ty::ImmBorrow =>
1360 ty::ImmBorrow,
1361 ty::MutBorrow | ty::UniqueImmBorrow =>
1362 ty::UniqueImmBorrow
1363 };
1364
1365 // Decide whether we need to recurse and link any regions within
1366 // the `ref_cmt`. This is concerned for the case where the value
1367 // being reborrowed is in fact a borrowed pointer found within
1368 // another borrowed pointer. For example:
1369 //
1370 // let p: &'b &'a mut T = ...;
1371 // ...
1372 // &'z **p
1373 //
1374 // What makes this case particularly tricky is that, if the data
1375 // being borrowed is a `&mut` or `&uniq` borrow, borrowck requires
1376 // not only that `'z <= 'a`, (as before) but also `'z <= 'b`
1377 // (otherwise the user might mutate through the `&mut T` reference
1378 // after `'b` expires and invalidate the borrow we are looking at
1379 // now).
1380 //
1381 // So let's re-examine our parameters in light of this more
1382 // complicated (possible) scenario:
1383 //
1384 // A borrow of: `& 'z bk * * p` where `p` has type `&'b bk & 'a bk T`
1385 // borrow_region ^~ ref_region ^~
1386 // borrow_kind ^~ ref_kind ^~
1387 // ref_cmt ^~~
1388 //
1389 // (Note that since we have not examined `ref_cmt.cat`, we don't
1390 // know whether this scenario has occurred; but I wanted to show
1391 // how all the types get adjusted.)
1392 match ref_kind {
1393 ty::ImmBorrow => {
1394 // The reference being reborrowed is a sharable ref of
1395 // type `&'a T`. In this case, it doesn't matter where we
1396 // *found* the `&T` pointer, the memory it references will
1397 // be valid and immutable for `'a`. So we can stop here.
1398 //
1399 // (Note that the `borrow_kind` must also be ImmBorrow or
1400 // else the user is borrowed imm memory as mut memory,
1401 // which means they'll get an error downstream in borrowck
1402 // anyhow.)
1403 return None;
1a4d82fc
JJ
1404 }
1405
a7813a04
XL
1406 ty::MutBorrow | ty::UniqueImmBorrow => {
1407 // The reference being reborrowed is either an `&mut T` or
1408 // `&uniq T`. This is the case where recursion is needed.
1409 return Some((ref_cmt, new_borrow_kind));
1a4d82fc
JJ
1410 }
1411 }
1412 }
1a4d82fc 1413
a7813a04
XL
1414 /// Checks that the values provided for type/region arguments in a given
1415 /// expression are well-formed and in-scope.
1416 fn substs_wf_in_scope(&mut self,
1417 origin: infer::ParameterOrigin,
1418 substs: &Substs<'tcx>,
1419 expr_span: Span,
9e0c209e 1420 expr_region: &'tcx ty::Region) {
a7813a04
XL
1421 debug!("substs_wf_in_scope(substs={:?}, \
1422 expr_region={:?}, \
1423 origin={:?}, \
1424 expr_span={:?})",
1425 substs, expr_region, origin, expr_span);
1426
1427 let origin = infer::ParameterInScope(origin, expr_span);
1428
9e0c209e 1429 for region in substs.regions() {
a7813a04 1430 self.sub_regions(origin.clone(), expr_region, region);
1a4d82fc
JJ
1431 }
1432
9e0c209e 1433 for ty in substs.types() {
a7813a04
XL
1434 let ty = self.resolve_type(ty);
1435 self.type_must_outlive(origin.clone(), ty, expr_region);
1a4d82fc
JJ
1436 }
1437 }
1a4d82fc 1438
a7813a04
XL
1439 /// Ensures that type is well-formed in `region`, which implies (among
1440 /// other things) that all borrowed data reachable via `ty` outlives
1441 /// `region`.
1442 pub fn type_must_outlive(&self,
1443 origin: infer::SubregionOrigin<'tcx>,
1444 ty: Ty<'tcx>,
9e0c209e 1445 region: &'tcx ty::Region)
a7813a04
XL
1446 {
1447 let ty = self.resolve_type(ty);
e9174d1e 1448
a7813a04
XL
1449 debug!("type_must_outlive(ty={:?}, region={:?}, origin={:?})",
1450 ty,
1451 region,
1452 origin);
e9174d1e 1453
a7813a04 1454 assert!(!ty.has_escaping_regions());
e9174d1e 1455
c30ab7b3 1456 let components = self.tcx.outlives_components(ty);
a7813a04
XL
1457 self.components_must_outlive(origin, components, region);
1458 }
1459
1460 fn components_must_outlive(&self,
1461 origin: infer::SubregionOrigin<'tcx>,
1462 components: Vec<ty::outlives::Component<'tcx>>,
9e0c209e 1463 region: &'tcx ty::Region)
a7813a04
XL
1464 {
1465 for component in components {
1466 let origin = origin.clone();
1467 match component {
1468 ty::outlives::Component::Region(region1) => {
1469 self.sub_regions(origin, region, region1);
1470 }
1471 ty::outlives::Component::Param(param_ty) => {
1472 self.param_ty_must_outlive(origin, region, param_ty);
1473 }
1474 ty::outlives::Component::Projection(projection_ty) => {
1475 self.projection_must_outlive(origin, region, projection_ty);
1476 }
1477 ty::outlives::Component::EscapingProjection(subcomponents) => {
1478 self.components_must_outlive(origin, subcomponents, region);
1479 }
1480 ty::outlives::Component::UnresolvedInferenceVariable(v) => {
1481 // ignore this, we presume it will yield an error
1482 // later, since if a type variable is not resolved by
1483 // this point it never will be
1484 self.tcx.sess.delay_span_bug(
1485 origin.span(),
1486 &format!("unresolved inference variable in outlives: {:?}", v));
1487 }
1a4d82fc
JJ
1488 }
1489 }
1490 }
1a4d82fc 1491
a7813a04
XL
1492 fn param_ty_must_outlive(&self,
1493 origin: infer::SubregionOrigin<'tcx>,
9e0c209e 1494 region: &'tcx ty::Region,
a7813a04
XL
1495 param_ty: ty::ParamTy) {
1496 debug!("param_ty_must_outlive(region={:?}, param_ty={:?}, origin={:?})",
1497 region, param_ty, origin);
1a4d82fc 1498
a7813a04
XL
1499 let verify_bound = self.param_bound(param_ty);
1500 let generic = GenericKind::Param(param_ty);
1501 self.verify_generic_bound(origin, generic, region, verify_bound);
e9174d1e 1502 }
85aaf69f 1503
a7813a04
XL
1504 fn projection_must_outlive(&self,
1505 origin: infer::SubregionOrigin<'tcx>,
9e0c209e 1506 region: &'tcx ty::Region,
a7813a04
XL
1507 projection_ty: ty::ProjectionTy<'tcx>)
1508 {
1509 debug!("projection_must_outlive(region={:?}, projection_ty={:?}, origin={:?})",
1510 region, projection_ty, origin);
1511
1512 // This case is thorny for inference. The fundamental problem is
1513 // that there are many cases where we have choice, and inference
1514 // doesn't like choice (the current region inference in
1515 // particular). :) First off, we have to choose between using the
1516 // OutlivesProjectionEnv, OutlivesProjectionTraitDef, and
1517 // OutlivesProjectionComponent rules, any one of which is
1518 // sufficient. If there are no inference variables involved, it's
1519 // not hard to pick the right rule, but if there are, we're in a
1520 // bit of a catch 22: if we picked which rule we were going to
1521 // use, we could add constraints to the region inference graph
1522 // that make it apply, but if we don't add those constraints, the
1523 // rule might not apply (but another rule might). For now, we err
1524 // on the side of adding too few edges into the graph.
1525
1526 // Compute the bounds we can derive from the environment or trait
1527 // definition. We know that the projection outlives all the
1528 // regions in this list.
1529 let env_bounds = self.projection_declared_bounds(origin.span(), projection_ty);
1530
1531 debug!("projection_must_outlive: env_bounds={:?}",
1532 env_bounds);
1533
1534 // If we know that the projection outlives 'static, then we're
1535 // done here.
9e0c209e 1536 if env_bounds.contains(&&ty::ReStatic) {
a7813a04
XL
1537 debug!("projection_must_outlive: 'static as declared bound");
1538 return;
e9174d1e
SL
1539 }
1540
a7813a04
XL
1541 // If declared bounds list is empty, the only applicable rule is
1542 // OutlivesProjectionComponent. If there are inference variables,
1543 // then, we can break down the outlives into more primitive
1544 // components without adding unnecessary edges.
1545 //
1546 // If there are *no* inference variables, however, we COULD do
1547 // this, but we choose not to, because the error messages are less
1548 // good. For example, a requirement like `T::Item: 'r` would be
1549 // translated to a requirement that `T: 'r`; when this is reported
1550 // to the user, it will thus say "T: 'r must hold so that T::Item:
1551 // 'r holds". But that makes it sound like the only way to fix
1552 // the problem is to add `T: 'r`, which isn't true. So, if there are no
1553 // inference variables, we use a verify constraint instead of adding
1554 // edges, which winds up enforcing the same condition.
9e0c209e 1555 let needs_infer = projection_ty.trait_ref.needs_infer();
a7813a04
XL
1556 if env_bounds.is_empty() && needs_infer {
1557 debug!("projection_must_outlive: no declared bounds");
e9174d1e 1558
9e0c209e 1559 for component_ty in projection_ty.trait_ref.substs.types() {
a7813a04
XL
1560 self.type_must_outlive(origin.clone(), component_ty, region);
1561 }
1562
9e0c209e 1563 for r in projection_ty.trait_ref.substs.regions() {
a7813a04
XL
1564 self.sub_regions(origin.clone(), region, r);
1565 }
e9174d1e 1566
e9174d1e 1567 return;
85aaf69f 1568 }
1a4d82fc 1569
a7813a04
XL
1570 // If we find that there is a unique declared bound `'b`, and this bound
1571 // appears in the trait reference, then the best action is to require that `'b:'r`,
1572 // so do that. This is best no matter what rule we use:
1573 //
1574 // - OutlivesProjectionEnv or OutlivesProjectionTraitDef: these would translate to
1575 // the requirement that `'b:'r`
1576 // - OutlivesProjectionComponent: this would require `'b:'r` in addition to
1577 // other conditions
1578 if !env_bounds.is_empty() && env_bounds[1..].iter().all(|b| *b == env_bounds[0]) {
1579 let unique_bound = env_bounds[0];
1580 debug!("projection_must_outlive: unique declared bound = {:?}", unique_bound);
9e0c209e 1581 if projection_ty.trait_ref.substs.regions().any(|r| env_bounds.contains(&r)) {
a7813a04
XL
1582 debug!("projection_must_outlive: unique declared bound appears in trait ref");
1583 self.sub_regions(origin.clone(), region, unique_bound);
1584 return;
1585 }
e9174d1e 1586 }
a7813a04
XL
1587
1588 // Fallback to verifying after the fact that there exists a
1589 // declared bound, or that all the components appearing in the
1590 // projection outlive; in some cases, this may add insufficient
1591 // edges into the inference graph, leading to inference failures
1592 // even though a satisfactory solution exists.
1593 let verify_bound = self.projection_bound(origin.span(), env_bounds, projection_ty);
1594 let generic = GenericKind::Projection(projection_ty);
1595 self.verify_generic_bound(origin, generic.clone(), region, verify_bound);
1596 }
1597
9e0c209e 1598 fn type_bound(&self, span: Span, ty: Ty<'tcx>) -> VerifyBound<'tcx> {
a7813a04
XL
1599 match ty.sty {
1600 ty::TyParam(p) => {
1601 self.param_bound(p)
1602 }
1603 ty::TyProjection(data) => {
1604 let declared_bounds = self.projection_declared_bounds(span, data);
1605 self.projection_bound(span, declared_bounds, data)
1606 }
1607 _ => {
1608 self.recursive_type_bound(span, ty)
1609 }
e9174d1e
SL
1610 }
1611 }
e9174d1e 1612
9e0c209e 1613 fn param_bound(&self, param_ty: ty::ParamTy) -> VerifyBound<'tcx> {
a7813a04 1614 let param_env = &self.parameter_environment;
e9174d1e 1615
a7813a04
XL
1616 debug!("param_bound(param_ty={:?})",
1617 param_ty);
e9174d1e 1618
a7813a04 1619 let mut param_bounds = self.declared_generic_bounds_from_env(GenericKind::Param(param_ty));
e9174d1e 1620
a7813a04
XL
1621 // Add in the default bound of fn body that applies to all in
1622 // scope type parameters:
1623 param_bounds.push(param_env.implicit_region_bound);
1a4d82fc 1624
a7813a04
XL
1625 VerifyBound::AnyRegion(param_bounds)
1626 }
e9174d1e 1627
a7813a04
XL
1628 fn projection_declared_bounds(&self,
1629 span: Span,
1630 projection_ty: ty::ProjectionTy<'tcx>)
9e0c209e 1631 -> Vec<&'tcx ty::Region>
a7813a04
XL
1632 {
1633 // First assemble bounds from where clauses and traits.
e9174d1e 1634
a7813a04
XL
1635 let mut declared_bounds =
1636 self.declared_generic_bounds_from_env(GenericKind::Projection(projection_ty));
e9174d1e 1637
a7813a04
XL
1638 declared_bounds.extend_from_slice(
1639 &self.declared_projection_bounds_from_trait(span, projection_ty));
e9174d1e 1640
a7813a04
XL
1641 declared_bounds
1642 }
e9174d1e 1643
a7813a04
XL
1644 fn projection_bound(&self,
1645 span: Span,
9e0c209e 1646 declared_bounds: Vec<&'tcx ty::Region>,
a7813a04 1647 projection_ty: ty::ProjectionTy<'tcx>)
9e0c209e 1648 -> VerifyBound<'tcx> {
a7813a04
XL
1649 debug!("projection_bound(declared_bounds={:?}, projection_ty={:?})",
1650 declared_bounds, projection_ty);
e9174d1e 1651
a7813a04 1652 // see the extensive comment in projection_must_outlive
e9174d1e 1653
a7813a04
XL
1654 let ty = self.tcx.mk_projection(projection_ty.trait_ref, projection_ty.item_name);
1655 let recursive_bound = self.recursive_type_bound(span, ty);
e9174d1e 1656
a7813a04
XL
1657 VerifyBound::AnyRegion(declared_bounds).or(recursive_bound)
1658 }
e9174d1e 1659
9e0c209e 1660 fn recursive_type_bound(&self, span: Span, ty: Ty<'tcx>) -> VerifyBound<'tcx> {
a7813a04 1661 let mut bounds = vec![];
e9174d1e 1662
a7813a04
XL
1663 for subty in ty.walk_shallow() {
1664 bounds.push(self.type_bound(span, subty));
1665 }
e9174d1e 1666
a7813a04
XL
1667 let mut regions = ty.regions();
1668 regions.retain(|r| !r.is_bound()); // ignore late-bound regions
1669 bounds.push(VerifyBound::AllRegions(regions));
e9174d1e 1670
a7813a04
XL
1671 // remove bounds that must hold, since they are not interesting
1672 bounds.retain(|b| !b.must_hold());
e9174d1e 1673
a7813a04
XL
1674 if bounds.len() == 1 {
1675 bounds.pop().unwrap()
1676 } else {
1677 VerifyBound::AllBounds(bounds)
1678 }
e9174d1e 1679 }
e9174d1e 1680
a7813a04 1681 fn declared_generic_bounds_from_env(&self, generic: GenericKind<'tcx>)
9e0c209e 1682 -> Vec<&'tcx ty::Region>
a7813a04
XL
1683 {
1684 let param_env = &self.parameter_environment;
1685
1686 // To start, collect bounds from user:
1687 let mut param_bounds = self.tcx.required_region_bounds(generic.to_ty(self.tcx),
1688 param_env.caller_bounds.clone());
1689
1690 // Next, collect regions we scraped from the well-formedness
1691 // constraints in the fn signature. To do that, we walk the list
1692 // of known relations from the fn ctxt.
1693 //
1694 // This is crucial because otherwise code like this fails:
1695 //
1696 // fn foo<'a, A>(x: &'a A) { x.bar() }
1697 //
1698 // The problem is that the type of `x` is `&'a A`. To be
1699 // well-formed, then, A must be lower-generic by `'a`, but we
1700 // don't know that this holds from first principles.
1701 for &(r, p) in &self.region_bound_pairs {
1702 debug!("generic={:?} p={:?}",
1703 generic,
1704 p);
1705 if generic == p {
1706 param_bounds.push(r);
1707 }
1a4d82fc 1708 }
1a4d82fc 1709
a7813a04
XL
1710 param_bounds
1711 }
85aaf69f 1712
a7813a04
XL
1713 fn declared_projection_bounds_from_trait(&self,
1714 span: Span,
1715 projection_ty: ty::ProjectionTy<'tcx>)
9e0c209e 1716 -> Vec<&'tcx ty::Region>
a7813a04
XL
1717 {
1718 debug!("projection_bounds(projection_ty={:?})",
1719 projection_ty);
85aaf69f 1720
a7813a04
XL
1721 let ty = self.tcx.mk_projection(projection_ty.trait_ref.clone(),
1722 projection_ty.item_name);
85aaf69f 1723
a7813a04
XL
1724 // Say we have a projection `<T as SomeTrait<'a>>::SomeType`. We are interested
1725 // in looking for a trait definition like:
1726 //
1727 // ```
1728 // trait SomeTrait<'a> {
1729 // type SomeType : 'a;
1730 // }
1731 // ```
1732 //
1733 // we can thus deduce that `<T as SomeTrait<'a>>::SomeType : 'a`.
476ff2be 1734 let trait_predicates = self.tcx.item_predicates(projection_ty.trait_ref.def_id);
9e0c209e 1735 assert_eq!(trait_predicates.parent, None);
a7813a04
XL
1736 let predicates = trait_predicates.predicates.as_slice().to_vec();
1737 traits::elaborate_predicates(self.tcx, predicates)
1738 .filter_map(|predicate| {
1739 // we're only interesting in `T : 'a` style predicates:
1740 let outlives = match predicate {
1741 ty::Predicate::TypeOutlives(data) => data,
1742 _ => { return None; }
1743 };
85aaf69f 1744
a7813a04
XL
1745 debug!("projection_bounds: outlives={:?} (1)",
1746 outlives);
85aaf69f 1747
a7813a04
XL
1748 // apply the substitutions (and normalize any projected types)
1749 let outlives = self.instantiate_type_scheme(span,
1750 projection_ty.trait_ref.substs,
1751 &outlives);
85aaf69f 1752
a7813a04 1753 debug!("projection_bounds: outlives={:?} (2)",
62682a34 1754 outlives);
85aaf69f 1755
a7813a04
XL
1756 let region_result = self.commit_if_ok(|_| {
1757 let (outlives, _) =
1758 self.replace_late_bound_regions_with_fresh_var(
1759 span,
1760 infer::AssocTypeProjection(projection_ty.item_name),
1761 &outlives);
1762
1763 debug!("projection_bounds: outlives={:?} (3)",
1764 outlives);
1765
1766 // check whether this predicate applies to our current projection
476ff2be
SL
1767 let cause = self.fcx.misc(span);
1768 match self.eq_types(false, &cause, ty, outlives.0) {
1769 Ok(ok) => {
1770 self.register_infer_ok_obligations(ok);
a7813a04
XL
1771 Ok(outlives.1)
1772 }
1773 Err(_) => { Err(()) }
54a0048b 1774 }
a7813a04 1775 });
85aaf69f 1776
a7813a04
XL
1777 debug!("projection_bounds: region_result={:?}",
1778 region_result);
85aaf69f 1779
a7813a04
XL
1780 region_result.ok()
1781 })
1782 .collect()
1783 }
85aaf69f 1784}