]> git.proxmox.com Git - rustc.git/blame - src/librustc_typeck/constrained_type_params.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / librustc_typeck / constrained_type_params.rs
CommitLineData
85aaf69f
SL
1// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
54a0048b
SL
11use rustc::ty::subst;
12use rustc::ty::{self, Ty, TyCtxt};
85aaf69f
SL
13
14use std::collections::HashSet;
85aaf69f 15
9346a6ac
AL
16#[derive(Clone, PartialEq, Eq, Hash, Debug)]
17pub enum Parameter {
18 Type(ty::ParamTy),
19 Region(ty::EarlyBoundRegion),
20}
21
92a42be0
SL
22/// If `include_projections` is false, returns the list of parameters that are
23/// constrained by the type `ty` - i.e. the value of each parameter in the list is
24/// uniquely determined by `ty` (see RFC 447). If it is true, return the list
25/// of parameters whose values are needed in order to constrain `ty` - these
26/// differ, with the latter being a superset, in the presence of projections.
27pub fn parameters_for_type<'tcx>(ty: Ty<'tcx>,
28 include_projections: bool) -> Vec<Parameter> {
62682a34 29 let mut result = vec![];
92a42be0
SL
30 ty.maybe_walk(|t| match t.sty {
31 ty::TyProjection(..) if !include_projections => {
32
62682a34 33 false // projections are not injective.
92a42be0
SL
34 }
35 _ => {
62682a34
SL
36 result.append(&mut parameters_for_type_shallow(t));
37 // non-projection type constructors are injective.
38 true
39 }
40 });
41 result
9346a6ac
AL
42}
43
92a42be0
SL
44pub fn parameters_for_trait_ref<'tcx>(trait_ref: &ty::TraitRef<'tcx>,
45 include_projections: bool) -> Vec<Parameter> {
9346a6ac
AL
46 let mut region_parameters =
47 parameters_for_regions_in_substs(&trait_ref.substs);
48
49 let type_parameters =
92a42be0
SL
50 trait_ref.substs
51 .types
52 .iter()
53 .flat_map(|ty| parameters_for_type(ty, include_projections));
9346a6ac
AL
54
55 region_parameters.extend(type_parameters);
56
57 region_parameters
58}
59
60fn parameters_for_type_shallow<'tcx>(ty: Ty<'tcx>) -> Vec<Parameter> {
61 match ty.sty {
62682a34 62 ty::TyParam(ref d) =>
9346a6ac 63 vec![Parameter::Type(d.clone())],
62682a34 64 ty::TyRef(region, _) =>
9346a6ac 65 parameters_for_region(region).into_iter().collect(),
62682a34
SL
66 ty::TyStruct(_, substs) |
67 ty::TyEnum(_, substs) =>
9346a6ac 68 parameters_for_regions_in_substs(substs),
62682a34 69 ty::TyTrait(ref data) =>
9346a6ac 70 parameters_for_regions_in_substs(&data.principal.skip_binder().substs),
92a42be0
SL
71 ty::TyProjection(ref pi) =>
72 parameters_for_regions_in_substs(&pi.trait_ref.substs),
73 ty::TyBool | ty::TyChar | ty::TyInt(..) | ty::TyUint(..) |
74 ty::TyFloat(..) | ty::TyBox(..) | ty::TyStr |
54a0048b
SL
75 ty::TyArray(..) | ty::TySlice(..) |
76 ty::TyFnDef(..) | ty::TyFnPtr(_) |
92a42be0
SL
77 ty::TyTuple(..) | ty::TyRawPtr(..) |
78 ty::TyInfer(..) | ty::TyClosure(..) | ty::TyError =>
79 vec![]
9346a6ac
AL
80 }
81}
82
83fn parameters_for_regions_in_substs(substs: &subst::Substs) -> Vec<Parameter> {
54a0048b 84 substs.regions
9346a6ac
AL
85 .iter()
86 .filter_map(|r| parameters_for_region(r))
87 .collect()
88}
89
90fn parameters_for_region(region: &ty::Region) -> Option<Parameter> {
91 match *region {
92 ty::ReEarlyBound(data) => Some(Parameter::Region(data)),
93 _ => None,
94 }
95}
96
54a0048b 97pub fn identify_constrained_type_params<'tcx>(_tcx: &TyCtxt<'tcx>,
85aaf69f 98 predicates: &[ty::Predicate<'tcx>],
d9579d0f 99 impl_trait_ref: Option<ty::TraitRef<'tcx>>,
9346a6ac 100 input_parameters: &mut HashSet<Parameter>)
85aaf69f 101{
92a42be0
SL
102 let mut predicates = predicates.to_owned();
103 setup_constraining_predicates(_tcx, &mut predicates, impl_trait_ref, input_parameters);
104}
85aaf69f 105
85aaf69f 106
92a42be0
SL
107/// Order the predicates in `predicates` such that each parameter is
108/// constrained before it is used, if that is possible, and add the
109/// paramaters so constrained to `input_parameters`. For example,
110/// imagine the following impl:
111///
112/// impl<T: Debug, U: Iterator<Item=T>> Trait for U
113///
114/// The impl's predicates are collected from left to right. Ignoring
115/// the implicit `Sized` bounds, these are
116/// * T: Debug
117/// * U: Iterator
118/// * <U as Iterator>::Item = T -- a desugared ProjectionPredicate
119///
120/// When we, for example, try to go over the trait-reference
121/// `IntoIter<u32> as Trait`, we substitute the impl parameters with fresh
122/// variables and match them with the impl trait-ref, so we know that
123/// `$U = IntoIter<u32>`.
124///
125/// However, in order to process the `$T: Debug` predicate, we must first
126/// know the value of `$T` - which is only given by processing the
127/// projection. As we occasionally want to process predicates in a single
128/// pass, we want the projection to come first. In fact, as projections
129/// can (acyclically) depend on one another - see RFC447 for details - we
130/// need to topologically sort them.
131///
132/// We *do* have to be somewhat careful when projection targets contain
133/// projections themselves, for example in
134/// impl<S,U,V,W> Trait for U where
135/// /* 0 */ S: Iterator<Item=U>,
136/// /* - */ U: Iterator,
137/// /* 1 */ <U as Iterator>::Item: ToOwned<Owned=(W,<V as Iterator>::Item)>
138/// /* 2 */ W: Iterator<Item=V>
139/// /* 3 */ V: Debug
140/// we have to evaluate the projections in the order I wrote them:
141/// `V: Debug` requires `V` to be evaluated. The only projection that
142/// *determines* `V` is 2 (1 contains it, but *does not determine it*,
143/// as it is only contained within a projection), but that requires `W`
144/// which is determined by 1, which requires `U`, that is determined
145/// by 0. I should probably pick a less tangled example, but I can't
146/// think of any.
54a0048b 147pub fn setup_constraining_predicates<'tcx>(_tcx: &TyCtxt<'tcx>,
92a42be0
SL
148 predicates: &mut [ty::Predicate<'tcx>],
149 impl_trait_ref: Option<ty::TraitRef<'tcx>>,
150 input_parameters: &mut HashSet<Parameter>)
151{
152 // The canonical way of doing the needed topological sort
153 // would be a DFS, but getting the graph and its ownership
154 // right is annoying, so I am using an in-place fixed-point iteration,
155 // which is `O(nt)` where `t` is the depth of type-parameter constraints,
156 // remembering that `t` should be less than 7 in practice.
157 //
158 // Basically, I iterate over all projections and swap every
159 // "ready" projection to the start of the list, such that
160 // all of the projections before `i` are topologically sorted
161 // and constrain all the parameters in `input_parameters`.
162 //
163 // In the example, `input_parameters` starts by containing `U` - which
164 // is constrained by the trait-ref - and so on the first pass we
165 // observe that `<U as Iterator>::Item = T` is a "ready" projection that
166 // constrains `T` and swap it to front. As it is the sole projection,
167 // no more swaps can take place afterwards, with the result being
168 // * <U as Iterator>::Item = T
169 // * T: Debug
170 // * U: Iterator
171 let mut i = 0;
172 let mut changed = true;
173 while changed {
174 changed = false;
175
176 for j in i..predicates.len() {
177
178 if let ty::Predicate::Projection(ref poly_projection) = predicates[j] {
179 // Note that we can skip binder here because the impl
180 // trait ref never contains any late-bound regions.
181 let projection = poly_projection.skip_binder();
182
183 // Special case: watch out for some kind of sneaky attempt
184 // to project out an associated type defined by this very
185 // trait.
186 let unbound_trait_ref = &projection.projection_ty.trait_ref;
187 if Some(unbound_trait_ref.clone()) == impl_trait_ref {
188 continue;
189 }
190
191 // A projection depends on its input types and determines its output
192 // type. For example, if we have
193 // `<<T as Bar>::Baz as Iterator>::Output = <U as Iterator>::Output`
194 // Then the projection only applies if `T` is known, but it still
195 // does not determine `U`.
196
197 let inputs = parameters_for_trait_ref(&projection.projection_ty.trait_ref, true);
198 let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(&p));
199 if !relies_only_on_inputs {
200 continue;
201 }
202 input_parameters.extend(parameters_for_type(projection.ty, false));
203 } else {
204 continue;
205 }
206 // fancy control flow to bypass borrow checker
207 predicates.swap(i, j);
208 i += 1;
209 changed = true;
85aaf69f
SL
210 }
211 }
212}