]> git.proxmox.com Git - rustc.git/blame - src/libstd/io/mod.rs
Imported Upstream version 1.3.0+dfsg1
[rustc.git] / src / libstd / io / mod.rs
CommitLineData
85aaf69f 1// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
1a4d82fc
JJ
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
1a4d82fc 10
85aaf69f 11//! Traits, helpers, and type definitions for core I/O functionality.
c1a9b12d
SL
12//!
13//! The `std::io` module contains a number of common things you'll need
14//! when doing input and output. The most core part of this module is
15//! the [`Read`][read] and [`Write`][write] traits, which provide the
16//! most general interface for reading and writing input and output.
17//!
18//! [read]: trait.Read.html
19//! [write]: trait.Write.html
20//!
21//! # Read and Write
22//!
23//! Because they are traits, they're implemented by a number of other types,
24//! and you can implement them for your types too. As such, you'll see a
25//! few different types of I/O throughout the documentation in this module:
26//! `File`s, `TcpStream`s, and somtimes even `Vec<T>`s. For example, `Read`
27//! adds a `read()` method, which we can use on `File`s:
28//!
29//! ```
30//! use std::io;
31//! use std::io::prelude::*;
32//! use std::fs::File;
33//!
34//! # fn foo() -> io::Result<()> {
35//! let mut f = try!(File::open("foo.txt"));
36//! let mut buffer = [0; 10];
37//!
38//! // read up to 10 bytes
39//! try!(f.read(&mut buffer));
40//!
41//! println!("The bytes: {:?}", buffer);
42//! # Ok(())
43//! # }
44//! ```
45//!
46//! `Read` and `Write` are so important, implementors of the two traits have a
47//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
48//! of 'a type that implements the `Read` trait'. Much easier!
49//!
50//! ## Seek and BufRead
51//!
52//! Beyond that, there are two important traits that are provided: [`Seek`][seek]
53//! and [`BufRead`][bufread]. Both of these build on top of a reader to control
54//! how the reading happens. `Seek` lets you control where the next byte is
55//! coming from:
56//!
57//! ```
58//! use std::io;
59//! use std::io::prelude::*;
60//! use std::io::SeekFrom;
61//! use std::fs::File;
62//!
63//! # fn foo() -> io::Result<()> {
64//! let mut f = try!(File::open("foo.txt"));
65//! let mut buffer = [0; 10];
66//!
67//! // skip to the last 10 bytes of the file
68//! try!(f.seek(SeekFrom::End(-10)));
69//!
70//! // read up to 10 bytes
71//! try!(f.read(&mut buffer));
72//!
73//! println!("The bytes: {:?}", buffer);
74//! # Ok(())
75//! # }
76//! ```
77//!
78//! [seek]: trait.Seek.html
79//! [bufread]: trait.BufRead.html
80//!
81//! `BufRead` uses an internal buffer to provide a number of other ways to read, but
82//! to show it off, we'll need to talk about buffers in general. Keep reading!
83//!
84//! ## BufReader and BufWriter
85//!
86//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
87//! making near-constant calls to the operating system. To help with this,
88//! `std::io` comes with two structs, `BufReader` and `BufWriter`, which wrap
89//! readers and writers. The wrapper uses a buffer, reducing the number of
90//! calls and providing nicer methods for accessing exactly what you want.
91//!
92//! For example, `BufReader` works with the `BufRead` trait to add extra
93//! methods to any reader:
94//!
95//! ```
96//! use std::io;
97//! use std::io::prelude::*;
98//! use std::io::BufReader;
99//! use std::fs::File;
100//!
101//! # fn foo() -> io::Result<()> {
102//! let f = try!(File::open("foo.txt"));
103//! let mut reader = BufReader::new(f);
104//! let mut buffer = String::new();
105//!
106//! // read a line into buffer
107//! try!(reader.read_line(&mut buffer));
108//!
109//! println!("{}", buffer);
110//! # Ok(())
111//! # }
112//! ```
113//!
114//! `BufWriter` doesn't add any new ways of writing, it just buffers every call
115//! to [`write()`][write]:
116//!
117//! ```
118//! use std::io;
119//! use std::io::prelude::*;
120//! use std::io::BufWriter;
121//! use std::fs::File;
122//!
123//! # fn foo() -> io::Result<()> {
124//! let f = try!(File::create("foo.txt"));
125//! {
126//! let mut writer = BufWriter::new(f);
127//!
128//! // write a byte to the buffer
129//! try!(writer.write(&[42]));
130//!
131//! } // the buffer is flushed once writer goes out of scope
132//!
133//! # Ok(())
134//! # }
135//! ```
136//!
137//! [write]: trait.Write.html#tymethod.write
138//!
139//! ## Standard input and output
140//!
141//! A very common source of input is standard input:
142//!
143//! ```
144//! use std::io;
145//!
146//! # fn foo() -> io::Result<()> {
147//! let mut input = String::new();
148//!
149//! try!(io::stdin().read_line(&mut input));
150//!
151//! println!("You typed: {}", input.trim());
152//! # Ok(())
153//! # }
154//! ```
155//!
156//! And a very common source of output is standard output:
157//!
158//! ```
159//! use std::io;
160//! use std::io::prelude::*;
161//!
162//! # fn foo() -> io::Result<()> {
163//! try!(io::stdout().write(&[42]));
164//! # Ok(())
165//! # }
166//! ```
167//!
168//! Of course, using `io::stdout()` directly is less comon than something like
169//! `println!`.
170//!
171//! ## Iterator types
172//!
173//! A large number of the structures provided by `std::io` are for various
174//! ways of iterating over I/O. For example, `Lines` is used to split over
175//! lines:
176//!
177//! ```
178//! use std::io;
179//! use std::io::prelude::*;
180//! use std::io::BufReader;
181//! use std::fs::File;
182//!
183//! # fn foo() -> io::Result<()> {
184//! let f = try!(File::open("foo.txt"));
185//! let mut reader = BufReader::new(f);
186//!
187//! for line in reader.lines() {
188//! let line = try!(line);
189//! println!("{}", line);
190//! }
191//!
192//! # Ok(())
193//! # }
194//! ```
195//!
196//! ## Functions
197//!
198//! There are a number of [functions][functions] that offer access to various
199//! features. For example, we can use three of these functions to copy everything
200//! from standard input to standard output:
201//!
202//! ```
203//! use std::io;
204//!
205//! # fn foo() -> io::Result<()> {
206//! try!(io::copy(&mut io::stdin(), &mut io::stdout()));
207//! # Ok(())
208//! # }
209//! ```
210//!
211//! [functions]: #functions
212//!
213//! ## io::Result
214//!
215//! Last, but certainly not least, is [`io::Result`][result]. This type is used
216//! as the return type of many `std::io` functions that can cause an error, and
217//! can be returned from your own functions as well. Many of the examples in this
218//! module use the [`try!`][try] macro:
219//!
220//! ```
221//! use std::io;
222//!
223//! fn read_input() -> io::Result<()> {
224//! let mut input = String::new();
225//!
226//! try!(io::stdin().read_line(&mut input));
227//!
228//! println!("You typed: {}", input.trim());
229//!
230//! Ok(())
231//! }
232//! ```
233//!
234//! The return type of `read_input()`, `io::Result<()>`, is a very common type
235//! for functions which don't have a 'real' return value, but do want to return
236//! errors if they happen. In this case, the only purpose of this function is
237//! to read the line and print it, so we use use `()`.
238//!
239//! [result]: type.Result.html
240//! [try]: macro.try!.html
1a4d82fc 241
c34b1796 242#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 243
85aaf69f 244use cmp;
d9579d0f 245use rustc_unicode::str as core_str;
c34b1796 246use error as std_error;
1a4d82fc 247use fmt;
c1a9b12d 248use iter::{Iterator};
1a4d82fc 249use marker::Sized;
85aaf69f
SL
250use ops::{Drop, FnOnce};
251use option::Option::{self, Some, None};
1a4d82fc 252use result::Result::{Ok, Err};
85aaf69f 253use result;
1a4d82fc 254use string::String;
c34b1796 255use str;
1a4d82fc
JJ
256use vec::Vec;
257
85aaf69f
SL
258pub use self::buffered::{BufReader, BufWriter, BufStream, LineWriter};
259pub use self::buffered::IntoInnerError;
260pub use self::cursor::Cursor;
261pub use self::error::{Result, Error, ErrorKind};
262pub use self::util::{copy, sink, Sink, empty, Empty, repeat, Repeat};
c34b1796
AL
263pub use self::stdio::{stdin, stdout, stderr, _print, Stdin, Stdout, Stderr};
264pub use self::stdio::{StdoutLock, StderrLock, StdinLock};
265#[doc(no_inline, hidden)]
266pub use self::stdio::{set_panic, set_print};
267
85aaf69f 268pub mod prelude;
1a4d82fc 269mod buffered;
85aaf69f
SL
270mod cursor;
271mod error;
272mod impls;
62682a34 273mod lazy;
85aaf69f 274mod util;
c34b1796 275mod stdio;
1a4d82fc 276
85aaf69f 277const DEFAULT_BUF_SIZE: usize = 64 * 1024;
1a4d82fc 278
85aaf69f
SL
279// A few methods below (read_to_string, read_line) will append data into a
280// `String` buffer, but we need to be pretty careful when doing this. The
281// implementation will just call `.as_mut_vec()` and then delegate to a
282// byte-oriented reading method, but we must ensure that when returning we never
283// leave `buf` in a state such that it contains invalid UTF-8 in its bounds.
284//
285// To this end, we use an RAII guard (to protect against panics) which updates
286// the length of the string when it is dropped. This guard initially truncates
287// the string to the prior length and only after we've validated that the
288// new contents are valid UTF-8 do we allow it to set a longer length.
289//
290// The unsafety in this function is twofold:
291//
292// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
293// checks.
294// 2. We're passing a raw buffer to the function `f`, and it is expected that
295// the function only *appends* bytes to the buffer. We'll get undefined
296// behavior if existing bytes are overwritten to have non-UTF-8 data.
c34b1796
AL
297fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
298 where F: FnOnce(&mut Vec<u8>) -> Result<usize>
85aaf69f
SL
299{
300 struct Guard<'a> { s: &'a mut Vec<u8>, len: usize }
d9579d0f 301 impl<'a> Drop for Guard<'a> {
85aaf69f
SL
302 fn drop(&mut self) {
303 unsafe { self.s.set_len(self.len); }
1a4d82fc
JJ
304 }
305 }
1a4d82fc 306
85aaf69f
SL
307 unsafe {
308 let mut g = Guard { len: buf.len(), s: buf.as_mut_vec() };
309 let ret = f(g.s);
310 if str::from_utf8(&g.s[g.len..]).is_err() {
c34b1796 311 ret.and_then(|_| {
62682a34 312 Err(Error::new(ErrorKind::InvalidData,
c34b1796 313 "stream did not contain valid UTF-8"))
85aaf69f
SL
314 })
315 } else {
316 g.len = g.s.len();
317 ret
318 }
1a4d82fc
JJ
319 }
320}
321
c34b1796
AL
322// This uses an adaptive system to extend the vector when it fills. We want to
323// avoid paying to allocate and zero a huge chunk of memory if the reader only
324// has 4 bytes while still making large reads if the reader does have a ton
325// of data to return. Simply tacking on an extra DEFAULT_BUF_SIZE space every
326// time is 4,500 times (!) slower than this if the reader has a very small
327// amount of data to return.
328fn read_to_end<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
329 let start_len = buf.len();
330 let mut len = start_len;
331 let mut new_write_size = 16;
332 let ret;
85aaf69f 333 loop {
c34b1796
AL
334 if len == buf.len() {
335 if new_write_size < DEFAULT_BUF_SIZE {
336 new_write_size *= 2;
337 }
c1a9b12d 338 buf.resize(len + new_write_size, 0);
85aaf69f 339 }
c34b1796
AL
340
341 match r.read(&mut buf[len..]) {
342 Ok(0) => {
343 ret = Ok(len - start_len);
344 break;
345 }
346 Ok(n) => len += n,
85aaf69f 347 Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
c34b1796
AL
348 Err(e) => {
349 ret = Err(e);
350 break;
351 }
85aaf69f 352 }
1a4d82fc 353 }
c34b1796
AL
354
355 buf.truncate(len);
356 ret
1a4d82fc
JJ
357}
358
c1a9b12d 359/// The `Read` trait allows for reading bytes from a source.
85aaf69f 360///
c1a9b12d 361/// Implementors of the `Read` trait are sometimes called 'readers'.
1a4d82fc 362///
c1a9b12d
SL
363/// Readers are defined by one required method, `read()`. Each call to `read`
364/// will attempt to pull bytes from this source into a provided buffer. A
365/// number of other methods are implemented in terms of `read()`, giving
366/// implementors a number of ways to read bytes while only needing to implement
367/// a single method.
368///
369/// Readers are intended to be composable with one another. Many implementors
370/// throughout `std::io` take and provide types which implement the `Read`
371/// trait.
372///
373/// # Examples
374///
375/// [`File`][file]s implement `Read`:
376///
377/// [file]: ../std/fs/struct.File.html
378///
379/// ```
380/// use std::io;
381/// use std::io::prelude::*;
382/// use std::fs::File;
383///
384/// # fn foo() -> io::Result<()> {
385/// let mut f = try!(File::open("foo.txt"));
386/// let mut buffer = [0; 10];
387///
388/// // read up to 10 bytes
389/// try!(f.read(&mut buffer));
390///
391/// let mut buffer = vec![0; 10];
392/// // read the whole file
393/// try!(f.read_to_end(&mut buffer));
394///
395/// // read into a String, so that you don't need to do the conversion.
396/// let mut buffer = String::new();
397/// try!(f.read_to_string(&mut buffer));
398///
399/// // and more! See the other methods for more details.
400/// # Ok(())
401/// # }
402/// ```
c34b1796 403#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
404pub trait Read {
405 /// Pull some bytes from this source into the specified buffer, returning
406 /// how many bytes were read.
407 ///
408 /// This function does not provide any guarantees about whether it blocks
409 /// waiting for data, but if an object needs to block for a read but cannot
410 /// it will typically signal this via an `Err` return value.
411 ///
412 /// If the return value of this method is `Ok(n)`, then it must be
413 /// guaranteed that `0 <= n <= buf.len()`. A nonzero `n` value indicates
9346a6ac 414 /// that the buffer `buf` has been filled in with `n` bytes of data from this
85aaf69f
SL
415 /// source. If `n` is `0`, then it can indicate one of two scenarios:
416 ///
417 /// 1. This reader has reached its "end of file" and will likely no longer
418 /// be able to produce bytes. Note that this does not mean that the
419 /// reader will *always* no longer be able to produce bytes.
420 /// 2. The buffer specified was 0 bytes in length.
421 ///
422 /// No guarantees are provided about the contents of `buf` when this
423 /// function is called, implementations cannot rely on any property of the
424 /// contents of `buf` being true. It is recommended that implementations
425 /// only write data to `buf` instead of reading its contents.
1a4d82fc 426 ///
85aaf69f 427 /// # Errors
1a4d82fc 428 ///
85aaf69f
SL
429 /// If this function encounters any form of I/O or other error, an error
430 /// variant will be returned. If an error is returned then it must be
431 /// guaranteed that no bytes were read.
c1a9b12d
SL
432 ///
433 /// # Examples
434 ///
435 /// [`File`][file]s implement `Read`:
436 ///
437 /// [file]: ../std/fs/struct.File.html
438 ///
439 /// ```
440 /// use std::io;
441 /// use std::io::prelude::*;
442 /// use std::fs::File;
443 ///
444 /// # fn foo() -> io::Result<()> {
445 /// let mut f = try!(File::open("foo.txt"));
446 /// let mut buffer = [0; 10];
447 ///
448 /// // read 10 bytes
449 /// try!(f.read(&mut buffer[..]));
450 /// # Ok(())
451 /// # }
452 /// ```
c34b1796 453 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 454 fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
1a4d82fc 455
85aaf69f 456 /// Read all bytes until EOF in this source, placing them into `buf`.
1a4d82fc 457 ///
85aaf69f 458 /// All bytes read from this source will be appended to the specified buffer
9346a6ac
AL
459 /// `buf`. This function will continuously call `read` to append more data to
460 /// `buf` until `read` returns either `Ok(0)` or an error of
461 /// non-`ErrorKind::Interrupted` kind.
1a4d82fc 462 ///
9346a6ac 463 /// If successful, this function will return the total number of bytes read.
1a4d82fc 464 ///
85aaf69f 465 /// # Errors
1a4d82fc 466 ///
85aaf69f
SL
467 /// If this function encounters an error of the kind
468 /// `ErrorKind::Interrupted` then the error is ignored and the operation
469 /// will continue.
1a4d82fc 470 ///
85aaf69f
SL
471 /// If any other read error is encountered then this function immediately
472 /// returns. Any bytes which have already been read will be appended to
473 /// `buf`.
c1a9b12d
SL
474 ///
475 /// # Examples
476 ///
477 /// [`File`][file]s implement `Read`:
478 ///
479 /// [file]: ../std/fs/struct.File.html
480 ///
481 /// ```
482 /// use std::io;
483 /// use std::io::prelude::*;
484 /// use std::fs::File;
485 ///
486 /// # fn foo() -> io::Result<()> {
487 /// let mut f = try!(File::open("foo.txt"));
488 /// let mut buffer = Vec::new();
489 ///
490 /// // read the whole file
491 /// try!(f.read_to_end(&mut buffer));
492 /// # Ok(())
493 /// # }
494 /// ```
c34b1796
AL
495 #[stable(feature = "rust1", since = "1.0.0")]
496 fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
85aaf69f 497 read_to_end(self, buf)
1a4d82fc
JJ
498 }
499
85aaf69f 500 /// Read all bytes until EOF in this source, placing them into `buf`.
1a4d82fc 501 ///
c34b1796
AL
502 /// If successful, this function returns the number of bytes which were read
503 /// and appended to `buf`.
504 ///
85aaf69f 505 /// # Errors
1a4d82fc 506 ///
85aaf69f
SL
507 /// If the data in this stream is *not* valid UTF-8 then an error is
508 /// returned and `buf` is unchanged.
1a4d82fc 509 ///
c1a9b12d
SL
510 /// See [`read_to_end()`][readtoend] for other error semantics.
511 ///
512 /// [readtoend]: #method.read_to_end
513 ///
514 /// # Examples
515 ///
516 /// [`File`][file]s implement `Read`:
517 ///
518 /// [file]: ../std/fs/struct.File.html
519 ///
520 /// ```
521 /// use std::io;
522 /// use std::io::prelude::*;
523 /// use std::fs::File;
524 ///
525 /// # fn foo() -> io::Result<()> {
526 /// let mut f = try!(File::open("foo.txt"));
527 /// let mut buffer = String::new();
528 ///
529 /// try!(f.read_to_string(&mut buffer));
530 /// # Ok(())
531 /// # }
532 /// ```
c34b1796
AL
533 #[stable(feature = "rust1", since = "1.0.0")]
534 fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
85aaf69f
SL
535 // Note that we do *not* call `.read_to_end()` here. We are passing
536 // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
537 // method to fill it up. An arbitrary implementation could overwrite the
538 // entire contents of the vector, not just append to it (which is what
539 // we are expecting).
540 //
541 // To prevent extraneously checking the UTF-8-ness of the entire buffer
542 // we pass it to our hardcoded `read_to_end` implementation which we
543 // know is guaranteed to only read data into the end of the buffer.
544 append_to_string(buf, |b| read_to_end(self, b))
1a4d82fc
JJ
545 }
546
9346a6ac 547 /// Creates a "by reference" adaptor for this instance of `Read`.
1a4d82fc 548 ///
85aaf69f
SL
549 /// The returned adaptor also implements `Read` and will simply borrow this
550 /// current reader.
c1a9b12d
SL
551 ///
552 /// # Examples
553 ///
554 /// [`File`][file]s implement `Read`:
555 ///
556 /// [file]: ../std/fs/struct.File.html
557 ///
558 /// ```
559 /// use std::io;
560 /// use std::io::Read;
561 /// use std::fs::File;
562 ///
563 /// # fn foo() -> io::Result<()> {
564 /// let mut f = try!(File::open("foo.txt"));
565 /// let mut buffer = Vec::new();
566 /// let mut other_buffer = Vec::new();
567 ///
568 /// {
569 /// let reference = f.by_ref();
570 ///
571 /// // read at most 5 bytes
572 /// try!(reference.take(5).read_to_end(&mut buffer));
573 ///
574 /// } // drop our &mut reference so we can use f again
575 ///
576 /// // original file still usable, read the rest
577 /// try!(f.read_to_end(&mut other_buffer));
578 /// # Ok(())
579 /// # }
580 /// ```
c34b1796
AL
581 #[stable(feature = "rust1", since = "1.0.0")]
582 fn by_ref(&mut self) -> &mut Self where Self: Sized { self }
1a4d82fc 583
9346a6ac 584 /// Transforms this `Read` instance to an `Iterator` over its bytes.
1a4d82fc 585 ///
85aaf69f
SL
586 /// The returned type implements `Iterator` where the `Item` is `Result<u8,
587 /// R::Err>`. The yielded item is `Ok` if a byte was successfully read and
588 /// `Err` otherwise for I/O errors. EOF is mapped to returning `None` from
589 /// this iterator.
c1a9b12d
SL
590 ///
591 /// # Examples
592 ///
593 /// [`File`][file]s implement `Read`:
594 ///
595 /// [file]: ../std/fs/struct.File.html
596 ///
597 /// ```
598 /// use std::io;
599 /// use std::io::prelude::*;
600 /// use std::fs::File;
601 ///
602 /// # fn foo() -> io::Result<()> {
603 /// let mut f = try!(File::open("foo.txt"));
604 ///
605 /// for byte in f.bytes() {
606 /// println!("{}", byte.unwrap());
607 /// }
608 /// # Ok(())
609 /// # }
610 /// ```
c34b1796
AL
611 #[stable(feature = "rust1", since = "1.0.0")]
612 fn bytes(self) -> Bytes<Self> where Self: Sized {
85aaf69f 613 Bytes { inner: self }
1a4d82fc
JJ
614 }
615
9346a6ac 616 /// Transforms this `Read` instance to an `Iterator` over `char`s.
1a4d82fc 617 ///
d9579d0f 618 /// This adaptor will attempt to interpret this reader as a UTF-8 encoded
85aaf69f
SL
619 /// sequence of characters. The returned iterator will return `None` once
620 /// EOF is reached for this reader. Otherwise each element yielded will be a
621 /// `Result<char, E>` where `E` may contain information about what I/O error
622 /// occurred or where decoding failed.
1a4d82fc 623 ///
85aaf69f
SL
624 /// Currently this adaptor will discard intermediate data read, and should
625 /// be avoided if this is not desired.
c1a9b12d
SL
626 ///
627 /// # Examples
628 ///
629 /// [`File`][file]s implement `Read`:
630 ///
631 /// [file]: ../std/fs/struct.File.html
632 ///
633 /// ```
634 /// #![feature(io)]
635 /// use std::io;
636 /// use std::io::prelude::*;
637 /// use std::fs::File;
638 ///
639 /// # fn foo() -> io::Result<()> {
640 /// let mut f = try!(File::open("foo.txt"));
641 ///
642 /// for c in f.chars() {
643 /// println!("{}", c.unwrap());
644 /// }
645 /// # Ok(())
646 /// # }
647 /// ```
c34b1796
AL
648 #[unstable(feature = "io", reason = "the semantics of a partial read/write \
649 of where errors happen is currently \
650 unclear and may change")]
651 fn chars(self) -> Chars<Self> where Self: Sized {
85aaf69f 652 Chars { inner: self }
1a4d82fc
JJ
653 }
654
9346a6ac 655 /// Creates an adaptor which will chain this stream with another.
1a4d82fc 656 ///
85aaf69f
SL
657 /// The returned `Read` instance will first read all bytes from this object
658 /// until EOF is encountered. Afterwards the output is equivalent to the
659 /// output of `next`.
c1a9b12d
SL
660 ///
661 /// # Examples
662 ///
663 /// [`File`][file]s implement `Read`:
664 ///
665 /// [file]: ../std/fs/struct.File.html
666 ///
667 /// ```
668 /// use std::io;
669 /// use std::io::prelude::*;
670 /// use std::fs::File;
671 ///
672 /// # fn foo() -> io::Result<()> {
673 /// let mut f1 = try!(File::open("foo.txt"));
674 /// let mut f2 = try!(File::open("bar.txt"));
675 ///
676 /// let mut handle = f1.chain(f2);
677 /// let mut buffer = String::new();
678 ///
679 /// // read the value into a String. We could use any Read method here,
680 /// // this is just one example.
681 /// try!(handle.read_to_string(&mut buffer));
682 /// # Ok(())
683 /// # }
684 /// ```
c34b1796
AL
685 #[stable(feature = "rust1", since = "1.0.0")]
686 fn chain<R: Read>(self, next: R) -> Chain<Self, R> where Self: Sized {
85aaf69f 687 Chain { first: self, second: next, done_first: false }
1a4d82fc
JJ
688 }
689
9346a6ac 690 /// Creates an adaptor which will read at most `limit` bytes from it.
1a4d82fc 691 ///
85aaf69f
SL
692 /// This function returns a new instance of `Read` which will read at most
693 /// `limit` bytes, after which it will always return EOF (`Ok(0)`). Any
694 /// read errors will not count towards the number of bytes read and future
695 /// calls to `read` may succeed.
c1a9b12d
SL
696 ///
697 /// # Examples
698 ///
699 /// [`File`][file]s implement `Read`:
700 ///
701 /// [file]: ../std/fs/struct.File.html
702 ///
703 /// ```
704 /// use std::io;
705 /// use std::io::prelude::*;
706 /// use std::fs::File;
707 ///
708 /// # fn foo() -> io::Result<()> {
709 /// let mut f = try!(File::open("foo.txt"));
710 /// let mut buffer = [0; 5];
711 ///
712 /// // read at most five bytes
713 /// let mut handle = f.take(5);
714 ///
715 /// try!(handle.read(&mut buffer));
716 /// # Ok(())
717 /// # }
718 /// ```
c34b1796
AL
719 #[stable(feature = "rust1", since = "1.0.0")]
720 fn take(self, limit: u64) -> Take<Self> where Self: Sized {
85aaf69f 721 Take { inner: self, limit: limit }
1a4d82fc
JJ
722 }
723
85aaf69f
SL
724 /// Creates a reader adaptor which will write all read data into the given
725 /// output stream.
1a4d82fc 726 ///
85aaf69f
SL
727 /// Whenever the returned `Read` instance is read it will write the read
728 /// data to `out`. The current semantics of this implementation imply that
729 /// a `write` error will not report how much data was initially read.
c1a9b12d
SL
730 ///
731 /// # Examples
732 ///
733 /// [`File`][file]s implement `Read`:
734 ///
735 /// [file]: ../std/fs/struct.File.html
736 ///
737 /// ```
738 /// #![feature(io)]
739 /// use std::io;
740 /// use std::io::prelude::*;
741 /// use std::fs::File;
742 ///
743 /// # fn foo() -> io::Result<()> {
744 /// let mut f = try!(File::open("foo.txt"));
745 /// let mut buffer1 = Vec::with_capacity(10);
746 /// let mut buffer2 = Vec::with_capacity(10);
747 ///
748 /// // write the output to buffer1 as we read
749 /// let mut handle = f.tee(&mut buffer1);
750 ///
751 /// try!(handle.read(&mut buffer2));
752 /// # Ok(())
753 /// # }
754 /// ```
c34b1796
AL
755 #[unstable(feature = "io", reason = "the semantics of a partial read/write \
756 of where errors happen is currently \
757 unclear and may change")]
758 fn tee<W: Write>(self, out: W) -> Tee<Self, W> where Self: Sized {
85aaf69f 759 Tee { reader: self, writer: out }
1a4d82fc 760 }
85aaf69f 761}
1a4d82fc 762
85aaf69f
SL
763/// A trait for objects which are byte-oriented sinks.
764///
c1a9b12d
SL
765/// Implementors of the `Write` trait are sometimes called 'writers'.
766///
767/// Writers are defined by two required methods, `write()` and `flush()`:
768///
769/// * The `write()` method will attempt to write some data into the object,
770/// returning how many bytes were successfully written.
771///
772/// * The `flush()` method is useful for adaptors and explicit buffers
773/// themselves for ensuring that all buffered data has been pushed out to the
774/// 'true sink'.
775///
776/// Writers are intended to be composable with one another. Many implementors
777/// throughout `std::io` take and provide types which implement the `Write`
778/// trait.
779///
780/// # Examples
781///
782/// ```
783/// use std::io::prelude::*;
784/// use std::fs::File;
85aaf69f 785///
c1a9b12d
SL
786/// # fn foo() -> std::io::Result<()> {
787/// let mut buffer = try!(File::create("foo.txt"));
85aaf69f 788///
c1a9b12d
SL
789/// try!(buffer.write(b"some bytes"));
790/// # Ok(())
791/// # }
792/// ```
c34b1796 793#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
794pub trait Write {
795 /// Write a buffer into this object, returning how many bytes were written.
1a4d82fc 796 ///
85aaf69f
SL
797 /// This function will attempt to write the entire contents of `buf`, but
798 /// the entire write may not succeed, or the write may also generate an
799 /// error. A call to `write` represents *at most one* attempt to write to
800 /// any wrapped object.
1a4d82fc 801 ///
85aaf69f 802 /// Calls to `write` are not guaranteed to block waiting for data to be
62682a34 803 /// written, and a write which would otherwise block can be indicated through
85aaf69f 804 /// an `Err` variant.
1a4d82fc 805 ///
85aaf69f
SL
806 /// If the return value is `Ok(n)` then it must be guaranteed that
807 /// `0 <= n <= buf.len()`. A return value of `0` typically means that the
808 /// underlying object is no longer able to accept bytes and will likely not
809 /// be able to in the future as well, or that the buffer provided is empty.
1a4d82fc 810 ///
85aaf69f 811 /// # Errors
1a4d82fc 812 ///
85aaf69f
SL
813 /// Each call to `write` may generate an I/O error indicating that the
814 /// operation could not be completed. If an error is returned then no bytes
815 /// in the buffer were written to this writer.
1a4d82fc 816 ///
85aaf69f
SL
817 /// It is **not** considered an error if the entire buffer could not be
818 /// written to this writer.
c1a9b12d
SL
819 ///
820 /// # Examples
821 ///
822 /// ```
823 /// use std::io::prelude::*;
824 /// use std::fs::File;
825 ///
826 /// # fn foo() -> std::io::Result<()> {
827 /// let mut buffer = try!(File::create("foo.txt"));
828 ///
829 /// try!(buffer.write(b"some bytes"));
830 /// # Ok(())
831 /// # }
832 /// ```
c34b1796 833 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 834 fn write(&mut self, buf: &[u8]) -> Result<usize>;
1a4d82fc 835
85aaf69f
SL
836 /// Flush this output stream, ensuring that all intermediately buffered
837 /// contents reach their destination.
1a4d82fc 838 ///
85aaf69f 839 /// # Errors
1a4d82fc 840 ///
85aaf69f
SL
841 /// It is considered an error if not all bytes could be written due to
842 /// I/O errors or EOF being reached.
c1a9b12d
SL
843 ///
844 /// # Examples
845 ///
846 /// ```
847 /// use std::io::prelude::*;
848 /// use std::io::BufWriter;
849 /// use std::fs::File;
850 ///
851 /// # fn foo() -> std::io::Result<()> {
852 /// let mut buffer = BufWriter::new(try!(File::create("foo.txt")));
853 ///
854 /// try!(buffer.write(b"some bytes"));
855 /// try!(buffer.flush());
856 /// # Ok(())
857 /// # }
858 /// ```
c34b1796 859 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 860 fn flush(&mut self) -> Result<()>;
1a4d82fc 861
85aaf69f 862 /// Attempts to write an entire buffer into this write.
1a4d82fc 863 ///
85aaf69f
SL
864 /// This method will continuously call `write` while there is more data to
865 /// write. This method will not return until the entire buffer has been
866 /// successfully written or an error occurs. The first error generated from
867 /// this method will be returned.
1a4d82fc
JJ
868 ///
869 /// # Errors
870 ///
85aaf69f 871 /// This function will return the first error that `write` returns.
c1a9b12d
SL
872 ///
873 /// # Examples
874 ///
875 /// ```
876 /// use std::io::prelude::*;
877 /// use std::fs::File;
878 ///
879 /// # fn foo() -> std::io::Result<()> {
880 /// let mut buffer = try!(File::create("foo.txt"));
881 ///
882 /// try!(buffer.write_all(b"some bytes"));
883 /// # Ok(())
884 /// # }
885 /// ```
c34b1796 886 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 887 fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
9346a6ac 888 while !buf.is_empty() {
85aaf69f
SL
889 match self.write(buf) {
890 Ok(0) => return Err(Error::new(ErrorKind::WriteZero,
c34b1796 891 "failed to write whole buffer")),
85aaf69f
SL
892 Ok(n) => buf = &buf[n..],
893 Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
894 Err(e) => return Err(e),
895 }
896 }
897 Ok(())
898 }
1a4d82fc
JJ
899
900 /// Writes a formatted string into this writer, returning any error
901 /// encountered.
902 ///
c1a9b12d
SL
903 /// This method is primarily used to interface with the
904 /// [`format_args!`][formatargs] macro, but it is rare that this should
905 /// explicitly be called. The [`write!`][write] macro should be favored to
906 /// invoke this method instead.
907 ///
908 /// [formatargs]: ../std/macro.format_args!.html
909 /// [write]: ../std/macro.write!.html
1a4d82fc 910 ///
c1a9b12d
SL
911 /// This function internally uses the [`write_all`][writeall] method on
912 /// this trait and hence will continuously write data so long as no errors
913 /// are received. This also means that partial writes are not indicated in
914 /// this signature.
915 ///
916 /// [writeall]: #method.write_all
85aaf69f 917 ///
1a4d82fc
JJ
918 /// # Errors
919 ///
920 /// This function will return any I/O error reported while formatting.
c1a9b12d
SL
921 ///
922 /// # Examples
923 ///
924 /// ```
925 /// use std::io::prelude::*;
926 /// use std::fs::File;
927 ///
928 /// # fn foo() -> std::io::Result<()> {
929 /// let mut buffer = try!(File::create("foo.txt"));
930 ///
931 /// // this call
932 /// try!(write!(buffer, "{:.*}", 2, 1.234567));
933 /// // turns into this:
934 /// try!(buffer.write_fmt(format_args!("{:.*}", 2, 1.234567)));
935 /// # Ok(())
936 /// # }
937 /// ```
c34b1796 938 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
939 fn write_fmt(&mut self, fmt: fmt::Arguments) -> Result<()> {
940 // Create a shim which translates a Write to a fmt::Write and saves
1a4d82fc 941 // off I/O errors. instead of discarding them
85aaf69f 942 struct Adaptor<'a, T: ?Sized + 'a> {
1a4d82fc 943 inner: &'a mut T,
85aaf69f 944 error: Result<()>,
1a4d82fc
JJ
945 }
946
85aaf69f 947 impl<'a, T: Write + ?Sized> fmt::Write for Adaptor<'a, T> {
1a4d82fc 948 fn write_str(&mut self, s: &str) -> fmt::Result {
85aaf69f 949 match self.inner.write_all(s.as_bytes()) {
1a4d82fc
JJ
950 Ok(()) => Ok(()),
951 Err(e) => {
952 self.error = Err(e);
953 Err(fmt::Error)
954 }
955 }
956 }
957 }
958
959 let mut output = Adaptor { inner: self, error: Ok(()) };
960 match fmt::write(&mut output, fmt) {
961 Ok(()) => Ok(()),
962 Err(..) => output.error
963 }
964 }
1a4d82fc 965
9346a6ac 966 /// Creates a "by reference" adaptor for this instance of `Write`.
1a4d82fc 967 ///
85aaf69f
SL
968 /// The returned adaptor also implements `Write` and will simply borrow this
969 /// current writer.
c1a9b12d
SL
970 ///
971 /// # Examples
972 ///
973 /// ```
974 /// use std::io::Write;
975 /// use std::fs::File;
976 ///
977 /// # fn foo() -> std::io::Result<()> {
978 /// let mut buffer = try!(File::create("foo.txt"));
979 ///
980 /// let reference = buffer.by_ref();
981 ///
982 /// // we can use reference just like our original buffer
983 /// try!(reference.write_all(b"some bytes"));
984 /// # Ok(())
985 /// # }
986 /// ```
c34b1796
AL
987 #[stable(feature = "rust1", since = "1.0.0")]
988 fn by_ref(&mut self) -> &mut Self where Self: Sized { self }
1a4d82fc 989
85aaf69f
SL
990 /// Creates a new writer which will write all data to both this writer and
991 /// another writer.
992 ///
993 /// All data written to the returned writer will both be written to `self`
994 /// as well as `other`. Note that the error semantics of the current
995 /// implementation do not precisely track where errors happen. For example
996 /// an error on the second call to `write` will not report that the first
997 /// call to `write` succeeded.
c1a9b12d
SL
998 ///
999 /// # Examples
1000 ///
1001 /// ```
1002 /// #![feature(io)]
1003 /// use std::io::prelude::*;
1004 /// use std::fs::File;
1005 ///
1006 /// # fn foo() -> std::io::Result<()> {
1007 /// let mut buffer1 = try!(File::create("foo.txt"));
1008 /// let mut buffer2 = Vec::new();
1009 ///
1010 /// // write the output to buffer1 as we read
1011 /// let mut handle = buffer1.broadcast(&mut buffer2);
1012 ///
1013 /// try!(handle.write(b"some bytes"));
1014 /// # Ok(())
1015 /// # }
1016 /// ```
c34b1796
AL
1017 #[unstable(feature = "io", reason = "the semantics of a partial read/write \
1018 of where errors happen is currently \
1019 unclear and may change")]
1020 fn broadcast<W: Write>(self, other: W) -> Broadcast<Self, W>
1021 where Self: Sized
1022 {
85aaf69f 1023 Broadcast { first: self, second: other }
1a4d82fc
JJ
1024 }
1025}
1026
c1a9b12d
SL
1027/// The `Seek` trait provides a cursor which can be moved within a stream of
1028/// bytes.
1a4d82fc 1029///
85aaf69f
SL
1030/// The stream typically has a fixed size, allowing seeking relative to either
1031/// end or the current offset.
c1a9b12d
SL
1032///
1033/// # Examples
1034///
1035/// [`File`][file]s implement `Seek`:
1036///
1037/// [file]: ../std/fs/struct.File.html
1038///
1039/// ```
1040/// use std::io;
1041/// use std::io::prelude::*;
1042/// use std::fs::File;
1043/// use std::io::SeekFrom;
1044///
1045/// # fn foo() -> io::Result<()> {
1046/// let mut f = try!(File::open("foo.txt"));
1047///
1048/// // move the cursor 42 bytes from the start of the file
1049/// try!(f.seek(SeekFrom::Start(42)));
1050/// # Ok(())
1051/// # }
1052/// ```
c34b1796 1053#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1054pub trait Seek {
c1a9b12d 1055 /// Seek to an offset, in bytes, in a stream.
85aaf69f 1056 ///
c1a9b12d
SL
1057 /// A seek beyond the end of a stream is allowed, but implementation
1058 /// defined.
85aaf69f
SL
1059 ///
1060 /// The behavior when seeking past the end of the stream is implementation
1061 /// defined.
1062 ///
c1a9b12d
SL
1063 /// If the seek operation completed successfully,
1064 /// this method returns the new position from the start of the stream.
1065 /// That position can be used later with `SeekFrom::Start`.
85aaf69f
SL
1066 ///
1067 /// # Errors
1068 ///
c1a9b12d 1069 /// Seeking to a negative offset is considered an error.
c34b1796 1070 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1071 fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
1a4d82fc
JJ
1072}
1073
85aaf69f
SL
1074/// Enumeration of possible methods to seek within an I/O object.
1075#[derive(Copy, PartialEq, Eq, Clone, Debug)]
c34b1796 1076#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1077pub enum SeekFrom {
1078 /// Set the offset to the provided number of bytes.
c34b1796 1079 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1080 Start(u64),
1a4d82fc 1081
85aaf69f
SL
1082 /// Set the offset to the size of this object plus the specified number of
1083 /// bytes.
1084 ///
1085 /// It is possible to seek beyond the end of an object, but is an error to
1086 /// seek before byte 0.
c34b1796 1087 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1088 End(i64),
1a4d82fc 1089
85aaf69f
SL
1090 /// Set the offset to the current position plus the specified number of
1091 /// bytes.
1092 ///
1093 /// It is possible to seek beyond the end of an object, but is an error to
1094 /// seek before byte 0.
c34b1796 1095 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1096 Current(i64),
1a4d82fc
JJ
1097}
1098
85aaf69f 1099fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>)
c34b1796
AL
1100 -> Result<usize> {
1101 let mut read = 0;
85aaf69f
SL
1102 loop {
1103 let (done, used) = {
1104 let available = match r.fill_buf() {
1105 Ok(n) => n,
1106 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
1107 Err(e) => return Err(e)
1108 };
c1a9b12d 1109 match available.iter().position(|x| *x == delim) {
85aaf69f
SL
1110 Some(i) => {
1111 buf.push_all(&available[..i + 1]);
1112 (true, i + 1)
1113 }
1114 None => {
1115 buf.push_all(available);
1116 (false, available.len())
1117 }
1118 }
1119 };
1120 r.consume(used);
c34b1796 1121 read += used;
85aaf69f 1122 if done || used == 0 {
c34b1796 1123 return Ok(read);
1a4d82fc
JJ
1124 }
1125 }
1126}
1127
c1a9b12d
SL
1128/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
1129/// to perform extra ways of reading.
1130///
1131/// For example, reading line-by-line is inefficient without using a buffer, so
1132/// if you want to read by line, you'll need `BufRead`, which includes a
1133/// [`read_line()`][readline] method as well as a [`lines()`][lines] iterator.
1134///
1135/// [readline]: #method.read_line
1136/// [lines]: #method.lines
1137///
1138/// # Examples
1139///
1140/// A locked standard input implements `BufRead`:
1141///
1142/// ```
1143/// use std::io;
1144/// use std::io::prelude::*;
1145///
1146/// let stdin = io::stdin();
1147/// for line in stdin.lock().lines() {
1148/// println!("{}", line.unwrap());
1149/// }
1150/// ```
1151///
1152/// If you have something that implements `Read`, you can use the [`BufReader`
1153/// type][bufreader] to turn it into a `BufRead`.
1154///
1155/// For example, [`File`][file] implements `Read`, but not `BufRead`.
1156/// `BufReader` to the rescue!
85aaf69f 1157///
c1a9b12d
SL
1158/// [bufreader]: struct.BufReader.html
1159/// [file]: ../fs/struct.File.html
1160///
1161/// ```
1162/// use std::io::{self, BufReader};
1163/// use std::io::prelude::*;
1164/// use std::fs::File;
1165///
1166/// # fn foo() -> io::Result<()> {
1167/// let f = try!(File::open("foo.txt"));
1168/// let f = BufReader::new(f);
1169///
1170/// for line in f.lines() {
1171/// println!("{}", line.unwrap());
1172/// }
1173///
1174/// # Ok(())
1175/// # }
1176/// ```
62682a34 1177///
c34b1796 1178#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1179pub trait BufRead: Read {
1a4d82fc 1180 /// Fills the internal buffer of this object, returning the buffer contents.
85aaf69f 1181 ///
c1a9b12d
SL
1182 /// This function is a lower-level call. It needs to be paired with the
1183 /// [`consume`][consume] method to function properly. When calling this
1184 /// method, none of the contents will be "read" in the sense that later
1185 /// calling `read` may return the same contents. As such, `consume` must be
1186 /// called with the number of bytes that are consumed from this buffer to
1187 /// ensure that the bytes are never returned twice.
1a4d82fc 1188 ///
c1a9b12d 1189 /// [consume]: #tymethod.consume
1a4d82fc 1190 ///
85aaf69f
SL
1191 /// An empty buffer returned indicates that the stream has reached EOF.
1192 ///
1193 /// # Errors
1a4d82fc
JJ
1194 ///
1195 /// This function will return an I/O error if the underlying reader was
85aaf69f 1196 /// read, but returned an error.
c1a9b12d
SL
1197 ///
1198 /// # Examples
1199 ///
1200 /// A locked standard input implements `BufRead`:
1201 ///
1202 /// ```
1203 /// use std::io;
1204 /// use std::io::prelude::*;
1205 ///
1206 /// let stdin = io::stdin();
1207 /// let mut stdin = stdin.lock();
1208 ///
1209 /// // we can't have two `&mut` references to `stdin`, so use a block
1210 /// // to end the borrow early.
1211 /// let length = {
1212 /// let buffer = stdin.fill_buf().unwrap();
1213 ///
1214 /// // work with buffer
1215 /// println!("{:?}", buffer);
1216 ///
1217 /// buffer.len()
1218 /// };
1219 ///
1220 /// // ensure the bytes we worked with aren't returned again later
1221 /// stdin.consume(length);
1222 /// ```
c34b1796 1223 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1224 fn fill_buf(&mut self) -> Result<&[u8]>;
1a4d82fc
JJ
1225
1226 /// Tells this buffer that `amt` bytes have been consumed from the buffer,
1227 /// so they should no longer be returned in calls to `read`.
c34b1796 1228 ///
c1a9b12d
SL
1229 /// This function is a lower-level call. It needs to be paired with the
1230 /// [`fill_buf`][fillbuf] method to function properly. This function does
1231 /// not perform any I/O, it simply informs this object that some amount of
1232 /// its buffer, returned from `fill_buf`, has been consumed and should no
1233 /// longer be returned. As such, this function may do odd things if
1234 /// `fill_buf` isn't called before calling it.
1235 ///
1236 /// [fillbuf]: #tymethod.fill_buff
1237 ///
1238 /// The `amt` must be `<=` the number of bytes in the buffer returned by
1239 /// `fill_buf`.
c34b1796 1240 ///
c1a9b12d 1241 /// # Examples
c34b1796 1242 ///
c1a9b12d
SL
1243 /// Since `consume()` is meant to be used with [`fill_buf()`][fillbuf],
1244 /// that method's example includes an example of `consume()`.
c34b1796 1245 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1246 fn consume(&mut self, amt: usize);
1a4d82fc 1247
c1a9b12d 1248 /// Read all bytes into `buf` until the delimiter `byte` is reached.
1a4d82fc 1249 ///
c1a9b12d
SL
1250 /// This function will read bytes from the underlying stream until the
1251 /// delimiter or EOF is found. Once found, all bytes up to, and including,
1252 /// the delimiter (if found) will be appended to `buf`.
1a4d82fc 1253 ///
c1a9b12d
SL
1254 /// If this reader is currently at EOF then this function will not modify
1255 /// `buf` and will return `Ok(n)` where `n` is the number of bytes which
1256 /// were read.
1a4d82fc 1257 ///
85aaf69f 1258 /// # Errors
1a4d82fc 1259 ///
85aaf69f
SL
1260 /// This function will ignore all instances of `ErrorKind::Interrupted` and
1261 /// will otherwise return any errors returned by `fill_buf`.
1a4d82fc 1262 ///
85aaf69f
SL
1263 /// If an I/O error is encountered then all bytes read so far will be
1264 /// present in `buf` and its length will have been adjusted appropriately.
c1a9b12d
SL
1265 ///
1266 /// # Examples
1267 ///
1268 /// A locked standard input implements `BufRead`. In this example, we'll
1269 /// read from standard input until we see an `a` byte.
1270 ///
1271 /// ```
1272 /// use std::io;
1273 /// use std::io::prelude::*;
1274 ///
1275 /// fn foo() -> io::Result<()> {
1276 /// let stdin = io::stdin();
1277 /// let mut stdin = stdin.lock();
1278 /// let mut buffer = Vec::new();
1279 ///
1280 /// try!(stdin.read_until(b'a', &mut buffer));
1281 ///
1282 /// println!("{:?}", buffer);
1283 /// # Ok(())
1284 /// # }
1285 /// ```
c34b1796
AL
1286 #[stable(feature = "rust1", since = "1.0.0")]
1287 fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
85aaf69f 1288 read_until(self, byte, buf)
1a4d82fc
JJ
1289 }
1290
c1a9b12d
SL
1291 /// Read all bytes until a newline (the 0xA byte) is reached, and append
1292 /// them to the provided buffer.
1a4d82fc 1293 ///
c1a9b12d
SL
1294 /// This function will read bytes from the underlying stream until the
1295 /// newline delimiter (the 0xA byte) or EOF is found. Once found, all bytes
1296 /// up to, and including, the delimiter (if found) will be appended to
1297 /// `buf`.
1a4d82fc 1298 ///
85aaf69f 1299 /// If this reader is currently at EOF then this function will not modify
c34b1796
AL
1300 /// `buf` and will return `Ok(n)` where `n` is the number of bytes which
1301 /// were read.
85aaf69f
SL
1302 ///
1303 /// # Errors
1304 ///
1305 /// This function has the same error semantics as `read_until` and will also
1306 /// return an error if the read bytes are not valid UTF-8. If an I/O error
1307 /// is encountered then `buf` may contain some bytes already read in the
1308 /// event that all data read so far was valid UTF-8.
c1a9b12d
SL
1309 ///
1310 /// # Examples
1311 ///
1312 /// A locked standard input implements `BufRead`. In this example, we'll
1313 /// read all of the lines from standard input. If we were to do this in
1314 /// an actual project, the [`lines()`][lines] method would be easier, of
1315 /// course.
1316 ///
1317 /// [lines]: #method.lines
1318 ///
1319 /// ```
1320 /// use std::io;
1321 /// use std::io::prelude::*;
1322 ///
1323 /// let stdin = io::stdin();
1324 /// let mut stdin = stdin.lock();
1325 /// let mut buffer = String::new();
1326 ///
1327 /// while stdin.read_line(&mut buffer).unwrap() > 0 {
1328 /// // work with buffer
1329 /// println!("{:?}", buffer);
1330 ///
1331 /// buffer.clear();
1332 /// }
1333 /// ```
c34b1796
AL
1334 #[stable(feature = "rust1", since = "1.0.0")]
1335 fn read_line(&mut self, buf: &mut String) -> Result<usize> {
85aaf69f
SL
1336 // Note that we are not calling the `.read_until` method here, but
1337 // rather our hardcoded implementation. For more details as to why, see
1338 // the comments in `read_to_end`.
1339 append_to_string(buf, |b| read_until(self, b'\n', b))
1a4d82fc 1340 }
1a4d82fc 1341
85aaf69f
SL
1342 /// Returns an iterator over the contents of this reader split on the byte
1343 /// `byte`.
1a4d82fc 1344 ///
85aaf69f
SL
1345 /// The iterator returned from this function will return instances of
1346 /// `io::Result<Vec<u8>>`. Each vector returned will *not* have the
1347 /// delimiter byte at the end.
1a4d82fc 1348 ///
85aaf69f
SL
1349 /// This function will yield errors whenever `read_until` would have also
1350 /// yielded an error.
c1a9b12d
SL
1351 ///
1352 /// # Examples
1353 ///
1354 /// A locked standard input implements `BufRead`. In this example, we'll
1355 /// read some input from standard input, splitting on commas.
1356 ///
1357 /// ```
1358 /// use std::io;
1359 /// use std::io::prelude::*;
1360 ///
1361 /// let stdin = io::stdin();
1362 ///
1363 /// for content in stdin.lock().split(b',') {
1364 /// println!("{:?}", content.unwrap());
1365 /// }
1366 /// ```
c34b1796
AL
1367 #[stable(feature = "rust1", since = "1.0.0")]
1368 fn split(self, byte: u8) -> Split<Self> where Self: Sized {
85aaf69f
SL
1369 Split { buf: self, delim: byte }
1370 }
1a4d82fc 1371
85aaf69f 1372 /// Returns an iterator over the lines of this reader.
1a4d82fc 1373 ///
85aaf69f
SL
1374 /// The iterator returned from this function will yield instances of
1375 /// `io::Result<String>`. Each string returned will *not* have a newline
1376 /// byte (the 0xA byte) at the end.
c1a9b12d
SL
1377 ///
1378 /// # Examples
1379 ///
1380 /// A locked standard input implements `BufRead`:
1381 ///
1382 /// ```
1383 /// use std::io;
1384 /// use std::io::prelude::*;
1385 ///
1386 /// let stdin = io::stdin();
1387 ///
1388 /// for line in stdin.lock().lines() {
1389 /// println!("{}", line.unwrap());
1390 /// }
1391 /// ```
c34b1796
AL
1392 #[stable(feature = "rust1", since = "1.0.0")]
1393 fn lines(self) -> Lines<Self> where Self: Sized {
85aaf69f
SL
1394 Lines { buf: self }
1395 }
1396}
1397
85aaf69f
SL
1398/// A `Write` adaptor which will write data to multiple locations.
1399///
c1a9b12d
SL
1400/// This struct is generally created by calling [`broadcast()`][broadcast] on a
1401/// writer. Please see the documentation of `broadcast()` for more details.
1402///
1403/// [broadcast]: trait.Write.html#method.broadcast
c34b1796 1404#[unstable(feature = "io", reason = "awaiting stability of Write::broadcast")]
85aaf69f
SL
1405pub struct Broadcast<T, U> {
1406 first: T,
1407 second: U,
1a4d82fc
JJ
1408}
1409
c34b1796 1410#[unstable(feature = "io", reason = "awaiting stability of Write::broadcast")]
85aaf69f
SL
1411impl<T: Write, U: Write> Write for Broadcast<T, U> {
1412 fn write(&mut self, data: &[u8]) -> Result<usize> {
1413 let n = try!(self.first.write(data));
1414 // FIXME: what if the write fails? (we wrote something)
1415 try!(self.second.write_all(&data[..n]));
1416 Ok(n)
1a4d82fc
JJ
1417 }
1418
85aaf69f
SL
1419 fn flush(&mut self) -> Result<()> {
1420 self.first.flush().and(self.second.flush())
1a4d82fc
JJ
1421 }
1422}
1423
c1a9b12d
SL
1424/// Adaptor to chain together two readers.
1425///
1426/// This struct is generally created by calling [`chain()`][chain] on a reader.
1427/// Please see the documentation of `chain()` for more details.
85aaf69f 1428///
c1a9b12d 1429/// [chain]: trait.Read.html#method.chain
c34b1796 1430#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1431pub struct Chain<T, U> {
1432 first: T,
1433 second: U,
1434 done_first: bool,
1a4d82fc
JJ
1435}
1436
c34b1796 1437#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1438impl<T: Read, U: Read> Read for Chain<T, U> {
1439 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
1440 if !self.done_first {
1441 match try!(self.first.read(buf)) {
1442 0 => { self.done_first = true; }
1443 n => return Ok(n),
1444 }
1445 }
1446 self.second.read(buf)
1447 }
1a4d82fc
JJ
1448}
1449
85aaf69f 1450/// Reader adaptor which limits the bytes read from an underlying reader.
1a4d82fc 1451///
c1a9b12d
SL
1452/// This struct is generally created by calling [`take()`][take] on a reader.
1453/// Please see the documentation of `take()` for more details.
1454///
1455/// [take]: trait.Read.html#method.take
c34b1796 1456#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1457pub struct Take<T> {
1458 inner: T,
1459 limit: u64,
1a4d82fc
JJ
1460}
1461
c34b1796 1462#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1463impl<T> Take<T> {
1464 /// Returns the number of bytes that can be read before this instance will
1465 /// return EOF.
1a4d82fc 1466 ///
85aaf69f 1467 /// # Note
1a4d82fc 1468 ///
85aaf69f
SL
1469 /// This instance may reach EOF after reading fewer bytes than indicated by
1470 /// this method if the underlying `Read` instance reaches EOF.
c34b1796 1471 #[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1472 pub fn limit(&self) -> u64 { self.limit }
1473}
1a4d82fc 1474
c34b1796 1475#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1476impl<T: Read> Read for Take<T> {
1477 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
c34b1796
AL
1478 // Don't call into inner reader at all at EOF because it may still block
1479 if self.limit == 0 {
1480 return Ok(0);
1481 }
1482
85aaf69f
SL
1483 let max = cmp::min(buf.len() as u64, self.limit) as usize;
1484 let n = try!(self.inner.read(&mut buf[..max]));
1485 self.limit -= n as u64;
1486 Ok(n)
1a4d82fc
JJ
1487 }
1488}
1489
c34b1796
AL
1490#[stable(feature = "rust1", since = "1.0.0")]
1491impl<T: BufRead> BufRead for Take<T> {
1492 fn fill_buf(&mut self) -> Result<&[u8]> {
1493 let buf = try!(self.inner.fill_buf());
1494 let cap = cmp::min(buf.len() as u64, self.limit) as usize;
1495 Ok(&buf[..cap])
1496 }
1497
1498 fn consume(&mut self, amt: usize) {
1499 // Don't let callers reset the limit by passing an overlarge value
1500 let amt = cmp::min(amt as u64, self.limit) as usize;
1501 self.limit -= amt as u64;
1502 self.inner.consume(amt);
1503 }
1504}
1505
85aaf69f 1506/// An adaptor which will emit all read data to a specified writer as well.
1a4d82fc 1507///
c1a9b12d
SL
1508/// This struct is generally created by calling [`tee()`][tee] on a reader.
1509/// Please see the documentation of `tee()` for more details.
1510///
1511/// [tee]: trait.Read.html#method.tee
c34b1796 1512#[unstable(feature = "io", reason = "awaiting stability of Read::tee")]
85aaf69f
SL
1513pub struct Tee<R, W> {
1514 reader: R,
1515 writer: W,
1a4d82fc
JJ
1516}
1517
c34b1796 1518#[unstable(feature = "io", reason = "awaiting stability of Read::tee")]
85aaf69f
SL
1519impl<R: Read, W: Write> Read for Tee<R, W> {
1520 fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
1521 let n = try!(self.reader.read(buf));
1522 // FIXME: what if the write fails? (we read something)
1523 try!(self.writer.write_all(&buf[..n]));
1524 Ok(n)
1a4d82fc
JJ
1525 }
1526}
1527
c1a9b12d
SL
1528/// An iterator over `u8` values of a reader.
1529///
1530/// This struct is generally created by calling [`bytes()`][bytes] on a reader.
1531/// Please see the documentation of `bytes()` for more details.
1a4d82fc 1532///
c1a9b12d 1533/// [bytes]: trait.Read.html#method.bytes
c34b1796 1534#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1535pub struct Bytes<R> {
1536 inner: R,
1a4d82fc
JJ
1537}
1538
c34b1796 1539#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1540impl<R: Read> Iterator for Bytes<R> {
1541 type Item = Result<u8>;
1a4d82fc 1542
85aaf69f
SL
1543 fn next(&mut self) -> Option<Result<u8>> {
1544 let mut buf = [0];
1545 match self.inner.read(&mut buf) {
1546 Ok(0) => None,
1547 Ok(..) => Some(Ok(buf[0])),
1548 Err(e) => Some(Err(e)),
1549 }
1550 }
1a4d82fc
JJ
1551}
1552
c1a9b12d 1553/// An iterator over the `char`s of a reader.
1a4d82fc 1554///
c1a9b12d
SL
1555/// This struct is generally created by calling [`chars()`][chars] on a reader.
1556/// Please see the documentation of `chars()` for more details.
1557///
1558/// [chars]: trait.Read.html#method.chars
c34b1796 1559#[unstable(feature = "io", reason = "awaiting stability of Read::chars")]
85aaf69f
SL
1560pub struct Chars<R> {
1561 inner: R,
1a4d82fc
JJ
1562}
1563
85aaf69f
SL
1564/// An enumeration of possible errors that can be generated from the `Chars`
1565/// adapter.
c34b1796
AL
1566#[derive(Debug)]
1567#[unstable(feature = "io", reason = "awaiting stability of Read::chars")]
85aaf69f
SL
1568pub enum CharsError {
1569 /// Variant representing that the underlying stream was read successfully
1570 /// but it did not contain valid utf8 data.
1571 NotUtf8,
1a4d82fc 1572
85aaf69f
SL
1573 /// Variant representing that an I/O error occurred.
1574 Other(Error),
1a4d82fc
JJ
1575}
1576
c34b1796 1577#[unstable(feature = "io", reason = "awaiting stability of Read::chars")]
85aaf69f
SL
1578impl<R: Read> Iterator for Chars<R> {
1579 type Item = result::Result<char, CharsError>;
1a4d82fc 1580
85aaf69f
SL
1581 fn next(&mut self) -> Option<result::Result<char, CharsError>> {
1582 let mut buf = [0];
1583 let first_byte = match self.inner.read(&mut buf) {
1584 Ok(0) => return None,
1585 Ok(..) => buf[0],
1586 Err(e) => return Some(Err(CharsError::Other(e))),
1587 };
1588 let width = core_str::utf8_char_width(first_byte);
1589 if width == 1 { return Some(Ok(first_byte as char)) }
1590 if width == 0 { return Some(Err(CharsError::NotUtf8)) }
1591 let mut buf = [first_byte, 0, 0, 0];
1592 {
1593 let mut start = 1;
1594 while start < width {
1595 match self.inner.read(&mut buf[start..width]) {
1596 Ok(0) => return Some(Err(CharsError::NotUtf8)),
1597 Ok(n) => start += n,
1598 Err(e) => return Some(Err(CharsError::Other(e))),
1599 }
1600 }
1601 }
1602 Some(match str::from_utf8(&buf[..width]).ok() {
1603 Some(s) => Ok(s.char_at(0)),
1604 None => Err(CharsError::NotUtf8),
1605 })
1606 }
1a4d82fc
JJ
1607}
1608
c34b1796
AL
1609#[unstable(feature = "io", reason = "awaiting stability of Read::chars")]
1610impl std_error::Error for CharsError {
85aaf69f
SL
1611 fn description(&self) -> &str {
1612 match *self {
1613 CharsError::NotUtf8 => "invalid utf8 encoding",
c34b1796 1614 CharsError::Other(ref e) => std_error::Error::description(e),
85aaf69f
SL
1615 }
1616 }
c34b1796 1617 fn cause(&self) -> Option<&std_error::Error> {
85aaf69f
SL
1618 match *self {
1619 CharsError::NotUtf8 => None,
1620 CharsError::Other(ref e) => e.cause(),
1621 }
1a4d82fc
JJ
1622 }
1623}
1624
c34b1796 1625#[unstable(feature = "io", reason = "awaiting stability of Read::chars")]
85aaf69f 1626impl fmt::Display for CharsError {
1a4d82fc 1627 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85aaf69f
SL
1628 match *self {
1629 CharsError::NotUtf8 => {
1630 "byte stream did not contain valid utf8".fmt(f)
1631 }
1632 CharsError::Other(ref e) => e.fmt(f),
1633 }
1a4d82fc
JJ
1634 }
1635}
1636
85aaf69f
SL
1637/// An iterator over the contents of an instance of `BufRead` split on a
1638/// particular byte.
1639///
c1a9b12d
SL
1640/// This struct is generally created by calling [`split()`][split] on a
1641/// `BufRead`. Please see the documentation of `split()` for more details.
1642///
1643/// [split]: trait.BufRead.html#method.split
c34b1796 1644#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1645pub struct Split<B> {
1646 buf: B,
1647 delim: u8,
1648}
1a4d82fc 1649
c34b1796 1650#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1651impl<B: BufRead> Iterator for Split<B> {
1652 type Item = Result<Vec<u8>>;
1a4d82fc 1653
85aaf69f
SL
1654 fn next(&mut self) -> Option<Result<Vec<u8>>> {
1655 let mut buf = Vec::new();
1656 match self.buf.read_until(self.delim, &mut buf) {
c34b1796
AL
1657 Ok(0) => None,
1658 Ok(_n) => {
85aaf69f
SL
1659 if buf[buf.len() - 1] == self.delim {
1660 buf.pop();
1661 }
1662 Some(Ok(buf))
1663 }
1664 Err(e) => Some(Err(e))
1a4d82fc
JJ
1665 }
1666 }
85aaf69f
SL
1667}
1668
c1a9b12d 1669/// An iterator over the lines of an instance of `BufRead`.
85aaf69f 1670///
c1a9b12d
SL
1671/// This struct is generally created by calling [`lines()`][lines] on a
1672/// `BufRead`. Please see the documentation of `lines()` for more details.
1673///
1674/// [lines]: trait.BufRead.html#method.lines
c34b1796 1675#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1676pub struct Lines<B> {
1677 buf: B,
1678}
1679
c34b1796 1680#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f
SL
1681impl<B: BufRead> Iterator for Lines<B> {
1682 type Item = Result<String>;
1a4d82fc 1683
85aaf69f
SL
1684 fn next(&mut self) -> Option<Result<String>> {
1685 let mut buf = String::new();
1686 match self.buf.read_line(&mut buf) {
c34b1796
AL
1687 Ok(0) => None,
1688 Ok(_n) => {
85aaf69f
SL
1689 if buf.ends_with("\n") {
1690 buf.pop();
1a4d82fc 1691 }
85aaf69f 1692 Some(Ok(buf))
1a4d82fc 1693 }
85aaf69f 1694 Err(e) => Some(Err(e))
1a4d82fc
JJ
1695 }
1696 }
85aaf69f
SL
1697}
1698
1699#[cfg(test)]
1700mod tests {
1701 use prelude::v1::*;
1702 use io::prelude::*;
c34b1796 1703 use io;
85aaf69f 1704 use super::Cursor;
c1a9b12d
SL
1705 use test;
1706 use super::repeat;
1a4d82fc
JJ
1707
1708 #[test]
85aaf69f 1709 fn read_until() {
c34b1796 1710 let mut buf = Cursor::new(&b"12"[..]);
85aaf69f 1711 let mut v = Vec::new();
c34b1796 1712 assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 2);
85aaf69f
SL
1713 assert_eq!(v, b"12");
1714
c34b1796 1715 let mut buf = Cursor::new(&b"1233"[..]);
85aaf69f 1716 let mut v = Vec::new();
c34b1796 1717 assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 3);
85aaf69f
SL
1718 assert_eq!(v, b"123");
1719 v.truncate(0);
c34b1796 1720 assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 1);
85aaf69f
SL
1721 assert_eq!(v, b"3");
1722 v.truncate(0);
c34b1796 1723 assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 0);
85aaf69f 1724 assert_eq!(v, []);
1a4d82fc
JJ
1725 }
1726
1727 #[test]
85aaf69f 1728 fn split() {
c34b1796 1729 let buf = Cursor::new(&b"12"[..]);
85aaf69f 1730 let mut s = buf.split(b'3');
c34b1796
AL
1731 assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']);
1732 assert!(s.next().is_none());
1a4d82fc 1733
c34b1796 1734 let buf = Cursor::new(&b"1233"[..]);
85aaf69f 1735 let mut s = buf.split(b'3');
c34b1796
AL
1736 assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']);
1737 assert_eq!(s.next().unwrap().unwrap(), vec![]);
1738 assert!(s.next().is_none());
85aaf69f 1739 }
1a4d82fc 1740
85aaf69f
SL
1741 #[test]
1742 fn read_line() {
c34b1796 1743 let mut buf = Cursor::new(&b"12"[..]);
85aaf69f 1744 let mut v = String::new();
c34b1796 1745 assert_eq!(buf.read_line(&mut v).unwrap(), 2);
85aaf69f
SL
1746 assert_eq!(v, "12");
1747
c34b1796 1748 let mut buf = Cursor::new(&b"12\n\n"[..]);
85aaf69f 1749 let mut v = String::new();
c34b1796 1750 assert_eq!(buf.read_line(&mut v).unwrap(), 3);
85aaf69f
SL
1751 assert_eq!(v, "12\n");
1752 v.truncate(0);
c34b1796 1753 assert_eq!(buf.read_line(&mut v).unwrap(), 1);
85aaf69f
SL
1754 assert_eq!(v, "\n");
1755 v.truncate(0);
c34b1796 1756 assert_eq!(buf.read_line(&mut v).unwrap(), 0);
85aaf69f
SL
1757 assert_eq!(v, "");
1758 }
1a4d82fc 1759
85aaf69f
SL
1760 #[test]
1761 fn lines() {
c34b1796 1762 let buf = Cursor::new(&b"12"[..]);
85aaf69f 1763 let mut s = buf.lines();
c34b1796
AL
1764 assert_eq!(s.next().unwrap().unwrap(), "12".to_string());
1765 assert!(s.next().is_none());
1a4d82fc 1766
c34b1796 1767 let buf = Cursor::new(&b"12\n\n"[..]);
85aaf69f 1768 let mut s = buf.lines();
c34b1796
AL
1769 assert_eq!(s.next().unwrap().unwrap(), "12".to_string());
1770 assert_eq!(s.next().unwrap().unwrap(), "".to_string());
1771 assert!(s.next().is_none());
1a4d82fc
JJ
1772 }
1773
1774 #[test]
85aaf69f 1775 fn read_to_end() {
c34b1796 1776 let mut c = Cursor::new(&b""[..]);
85aaf69f 1777 let mut v = Vec::new();
c34b1796 1778 assert_eq!(c.read_to_end(&mut v).unwrap(), 0);
85aaf69f
SL
1779 assert_eq!(v, []);
1780
c34b1796 1781 let mut c = Cursor::new(&b"1"[..]);
85aaf69f 1782 let mut v = Vec::new();
c34b1796 1783 assert_eq!(c.read_to_end(&mut v).unwrap(), 1);
85aaf69f 1784 assert_eq!(v, b"1");
c1a9b12d
SL
1785
1786 let cap = 1024 * 1024;
1787 let data = (0..cap).map(|i| (i / 3) as u8).collect::<Vec<_>>();
1788 let mut v = Vec::new();
1789 let (a, b) = data.split_at(data.len() / 2);
1790 assert_eq!(Cursor::new(a).read_to_end(&mut v).unwrap(), a.len());
1791 assert_eq!(Cursor::new(b).read_to_end(&mut v).unwrap(), b.len());
1792 assert_eq!(v, data);
1a4d82fc
JJ
1793 }
1794
85aaf69f
SL
1795 #[test]
1796 fn read_to_string() {
c34b1796 1797 let mut c = Cursor::new(&b""[..]);
85aaf69f 1798 let mut v = String::new();
c34b1796 1799 assert_eq!(c.read_to_string(&mut v).unwrap(), 0);
85aaf69f
SL
1800 assert_eq!(v, "");
1801
c34b1796 1802 let mut c = Cursor::new(&b"1"[..]);
85aaf69f 1803 let mut v = String::new();
c34b1796 1804 assert_eq!(c.read_to_string(&mut v).unwrap(), 1);
85aaf69f
SL
1805 assert_eq!(v, "1");
1806
c34b1796 1807 let mut c = Cursor::new(&b"\xff"[..]);
85aaf69f
SL
1808 let mut v = String::new();
1809 assert!(c.read_to_string(&mut v).is_err());
1a4d82fc 1810 }
c34b1796
AL
1811
1812 #[test]
1813 fn take_eof() {
1814 struct R;
1815
1816 impl Read for R {
1817 fn read(&mut self, _: &mut [u8]) -> io::Result<usize> {
1818 Err(io::Error::new(io::ErrorKind::Other, ""))
1819 }
1820 }
1821
1822 let mut buf = [0; 1];
1823 assert_eq!(0, R.take(0).read(&mut buf).unwrap());
1824 }
c1a9b12d
SL
1825
1826 #[bench]
1827 fn bench_read_to_end(b: &mut test::Bencher) {
1828 b.iter(|| {
1829 let mut lr = repeat(1).take(10000000);
1830 let mut vec = Vec::with_capacity(1024);
1831 super::read_to_end(&mut lr, &mut vec);
1832 });
1833 }
1a4d82fc 1834}