]> git.proxmox.com Git - rustc.git/blame - src/llvm/docs/tutorial/OCamlLangImpl4.html
Imported Upstream version 0.6
[rustc.git] / src / llvm / docs / tutorial / OCamlLangImpl4.html
CommitLineData
223e47cc
LB
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <meta name="author" content="Erick Tryzelaar">
10 <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
11</head>
12
13<body>
14
15<h1>Kaleidoscope: Adding JIT and Optimizer Support</h1>
16
17<ul>
18<li><a href="index.html">Up to Tutorial Index</a></li>
19<li>Chapter 4
20 <ol>
21 <li><a href="#intro">Chapter 4 Introduction</a></li>
22 <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
23 <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
24 <li><a href="#jit">Adding a JIT Compiler</a></li>
25 <li><a href="#code">Full Code Listing</a></li>
26 </ol>
27</li>
28<li><a href="OCamlLangImpl5.html">Chapter 5</a>: Extending the Language: Control
29Flow</li>
30</ul>
31
32<div class="doc_author">
33 <p>
34 Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
35 and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
36 </p>
37</div>
38
39<!-- *********************************************************************** -->
40<h2><a name="intro">Chapter 4 Introduction</a></h2>
41<!-- *********************************************************************** -->
42
43<div>
44
45<p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
46with LLVM</a>" tutorial. Chapters 1-3 described the implementation of a simple
47language and added support for generating LLVM IR. This chapter describes
48two new techniques: adding optimizer support to your language, and adding JIT
49compiler support. These additions will demonstrate how to get nice, efficient code
50for the Kaleidoscope language.</p>
51
52</div>
53
54<!-- *********************************************************************** -->
55<h2><a name="trivialconstfold">Trivial Constant Folding</a></h2>
56<!-- *********************************************************************** -->
57
58<div>
59
60<p><b>Note:</b> the default <tt>IRBuilder</tt> now always includes the constant
61folding optimisations below.<p>
62
63<p>
64Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately,
65it does not produce wonderful code. For example, when compiling simple code,
66we don't get obvious optimizations:</p>
67
68<div class="doc_code">
69<pre>
70ready&gt; <b>def test(x) 1+2+x;</b>
71Read function definition:
72define double @test(double %x) {
73entry:
74 %addtmp = fadd double 1.000000e+00, 2.000000e+00
75 %addtmp1 = fadd double %addtmp, %x
76 ret double %addtmp1
77}
78</pre>
79</div>
80
81<p>This code is a very, very literal transcription of the AST built by parsing
82the input. As such, this transcription lacks optimizations like constant folding
83(we'd like to get "<tt>add x, 3.0</tt>" in the example above) as well as other
84more important optimizations. Constant folding, in particular, is a very common
85and very important optimization: so much so that many language implementors
86implement constant folding support in their AST representation.</p>
87
88<p>With LLVM, you don't need this support in the AST. Since all calls to build
89LLVM IR go through the LLVM builder, it would be nice if the builder itself
90checked to see if there was a constant folding opportunity when you call it.
91If so, it could just do the constant fold and return the constant instead of
92creating an instruction. This is exactly what the <tt>LLVMFoldingBuilder</tt>
93class does.
94
95<p>All we did was switch from <tt>LLVMBuilder</tt> to
96<tt>LLVMFoldingBuilder</tt>. Though we change no other code, we now have all of our
97instructions implicitly constant folded without us having to do anything
98about it. For example, the input above now compiles to:</p>
99
100<div class="doc_code">
101<pre>
102ready&gt; <b>def test(x) 1+2+x;</b>
103Read function definition:
104define double @test(double %x) {
105entry:
106 %addtmp = fadd double 3.000000e+00, %x
107 ret double %addtmp
108}
109</pre>
110</div>
111
112<p>Well, that was easy :). In practice, we recommend always using
113<tt>LLVMFoldingBuilder</tt> when generating code like this. It has no
114"syntactic overhead" for its use (you don't have to uglify your compiler with
115constant checks everywhere) and it can dramatically reduce the amount of
116LLVM IR that is generated in some cases (particular for languages with a macro
117preprocessor or that use a lot of constants).</p>
118
119<p>On the other hand, the <tt>LLVMFoldingBuilder</tt> is limited by the fact
120that it does all of its analysis inline with the code as it is built. If you
121take a slightly more complex example:</p>
122
123<div class="doc_code">
124<pre>
125ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
126ready&gt; Read function definition:
127define double @test(double %x) {
128entry:
129 %addtmp = fadd double 3.000000e+00, %x
130 %addtmp1 = fadd double %x, 3.000000e+00
131 %multmp = fmul double %addtmp, %addtmp1
132 ret double %multmp
133}
134</pre>
135</div>
136
137<p>In this case, the LHS and RHS of the multiplication are the same value. We'd
138really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
139of computing "<tt>x*3</tt>" twice.</p>
140
141<p>Unfortunately, no amount of local analysis will be able to detect and correct
142this. This requires two transformations: reassociation of expressions (to
143make the add's lexically identical) and Common Subexpression Elimination (CSE)
144to delete the redundant add instruction. Fortunately, LLVM provides a broad
145range of optimizations that you can use, in the form of "passes".</p>
146
147</div>
148
149<!-- *********************************************************************** -->
150<h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2>
151<!-- *********************************************************************** -->
152
153<div>
154
155<p>LLVM provides many optimization passes, which do many different sorts of
156things and have different tradeoffs. Unlike other systems, LLVM doesn't hold
157to the mistaken notion that one set of optimizations is right for all languages
158and for all situations. LLVM allows a compiler implementor to make complete
159decisions about what optimizations to use, in which order, and in what
160situation.</p>
161
162<p>As a concrete example, LLVM supports both "whole module" passes, which look
163across as large of body of code as they can (often a whole file, but if run
164at link time, this can be a substantial portion of the whole program). It also
165supports and includes "per-function" passes which just operate on a single
166function at a time, without looking at other functions. For more information
167on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
168to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM
169Passes</a>.</p>
170
171<p>For Kaleidoscope, we are currently generating functions on the fly, one at
172a time, as the user types them in. We aren't shooting for the ultimate
173optimization experience in this setting, but we also want to catch the easy and
174quick stuff where possible. As such, we will choose to run a few per-function
175optimizations as the user types the function in. If we wanted to make a "static
176Kaleidoscope compiler", we would use exactly the code we have now, except that
177we would defer running the optimizer until the entire file has been parsed.</p>
178
179<p>In order to get per-function optimizations going, we need to set up a
180<a href="../WritingAnLLVMPass.html#passmanager">Llvm.PassManager</a> to hold and
181organize the LLVM optimizations that we want to run. Once we have that, we can
182add a set of optimizations to run. The code looks like this:</p>
183
184<div class="doc_code">
185<pre>
186 (* Create the JIT. *)
187 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
188 let the_fpm = PassManager.create_function Codegen.the_module in
189
190 (* Set up the optimizer pipeline. Start with registering info about how the
191 * target lays out data structures. *)
192 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
193
194 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
195 add_instruction_combining the_fpm;
196
197 (* reassociate expressions. *)
198 add_reassociation the_fpm;
199
200 (* Eliminate Common SubExpressions. *)
201 add_gvn the_fpm;
202
203 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
204 add_cfg_simplification the_fpm;
205
206 ignore (PassManager.initialize the_fpm);
207
208 (* Run the main "interpreter loop" now. *)
209 Toplevel.main_loop the_fpm the_execution_engine stream;
210</pre>
211</div>
212
213<p>The meat of the matter here, is the definition of "<tt>the_fpm</tt>". It
214requires a pointer to the <tt>the_module</tt> to construct itself. Once it is
215set up, we use a series of "add" calls to add a bunch of LLVM passes. The
216first pass is basically boilerplate, it adds a pass so that later optimizations
217know how the data structures in the program are laid out. The
218"<tt>the_execution_engine</tt>" variable is related to the JIT, which we will
219get to in the next section.</p>
220
221<p>In this case, we choose to add 4 optimization passes. The passes we chose
222here are a pretty standard set of "cleanup" optimizations that are useful for
223a wide variety of code. I won't delve into what they do but, believe me,
224they are a good starting place :).</p>
225
226<p>Once the <tt>Llvm.PassManager.</tt> is set up, we need to make use of it.
227We do this by running it after our newly created function is constructed (in
228<tt>Codegen.codegen_func</tt>), but before it is returned to the client:</p>
229
230<div class="doc_code">
231<pre>
232let codegen_func the_fpm = function
233 ...
234 try
235 let ret_val = codegen_expr body in
236
237 (* Finish off the function. *)
238 let _ = build_ret ret_val builder in
239
240 (* Validate the generated code, checking for consistency. *)
241 Llvm_analysis.assert_valid_function the_function;
242
243 (* Optimize the function. *)
244 let _ = PassManager.run_function the_function the_fpm in
245
246 the_function
247</pre>
248</div>
249
250<p>As you can see, this is pretty straightforward. The <tt>the_fpm</tt>
251optimizes and updates the LLVM Function* in place, improving (hopefully) its
252body. With this in place, we can try our test above again:</p>
253
254<div class="doc_code">
255<pre>
256ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
257ready&gt; Read function definition:
258define double @test(double %x) {
259entry:
260 %addtmp = fadd double %x, 3.000000e+00
261 %multmp = fmul double %addtmp, %addtmp
262 ret double %multmp
263}
264</pre>
265</div>
266
267<p>As expected, we now get our nicely optimized code, saving a floating point
268add instruction from every execution of this function.</p>
269
270<p>LLVM provides a wide variety of optimizations that can be used in certain
271circumstances. Some <a href="../Passes.html">documentation about the various
272passes</a> is available, but it isn't very complete. Another good source of
273ideas can come from looking at the passes that <tt>Clang</tt> runs to get
274started. The "<tt>opt</tt>" tool allows you to experiment with passes from the
275command line, so you can see if they do anything.</p>
276
277<p>Now that we have reasonable code coming out of our front-end, lets talk about
278executing it!</p>
279
280</div>
281
282<!-- *********************************************************************** -->
283<h2><a name="jit">Adding a JIT Compiler</a></h2>
284<!-- *********************************************************************** -->
285
286<div>
287
288<p>Code that is available in LLVM IR can have a wide variety of tools
289applied to it. For example, you can run optimizations on it (as we did above),
290you can dump it out in textual or binary forms, you can compile the code to an
291assembly file (.s) for some target, or you can JIT compile it. The nice thing
292about the LLVM IR representation is that it is the "common currency" between
293many different parts of the compiler.
294</p>
295
296<p>In this section, we'll add JIT compiler support to our interpreter. The
297basic idea that we want for Kaleidoscope is to have the user enter function
298bodies as they do now, but immediately evaluate the top-level expressions they
299type in. For example, if they type in "1 + 2;", we should evaluate and print
300out 3. If they define a function, they should be able to call it from the
301command line.</p>
302
303<p>In order to do this, we first declare and initialize the JIT. This is done
304by adding a global variable and a call in <tt>main</tt>:</p>
305
306<div class="doc_code">
307<pre>
308...
309let main () =
310 ...
311 <b>(* Create the JIT. *)
312 let the_execution_engine = ExecutionEngine.create Codegen.the_module in</b>
313 ...
314</pre>
315</div>
316
317<p>This creates an abstract "Execution Engine" which can be either a JIT
318compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler
319for you if one is available for your platform, otherwise it will fall back to
320the interpreter.</p>
321
322<p>Once the <tt>Llvm_executionengine.ExecutionEngine.t</tt> is created, the JIT
323is ready to be used. There are a variety of APIs that are useful, but the
324simplest one is the "<tt>Llvm_executionengine.ExecutionEngine.run_function</tt>"
325function. This method JIT compiles the specified LLVM Function and returns a
326function pointer to the generated machine code. In our case, this means that we
327can change the code that parses a top-level expression to look like this:</p>
328
329<div class="doc_code">
330<pre>
331 (* Evaluate a top-level expression into an anonymous function. *)
332 let e = Parser.parse_toplevel stream in
333 print_endline "parsed a top-level expr";
334 let the_function = Codegen.codegen_func the_fpm e in
335 dump_value the_function;
336
337 (* JIT the function, returning a function pointer. *)
338 let result = ExecutionEngine.run_function the_function [||]
339 the_execution_engine in
340
341 print_string "Evaluated to ";
342 print_float (GenericValue.as_float Codegen.double_type result);
343 print_newline ();
344</pre>
345</div>
346
347<p>Recall that we compile top-level expressions into a self-contained LLVM
348function that takes no arguments and returns the computed double. Because the
349LLVM JIT compiler matches the native platform ABI, this means that you can just
350cast the result pointer to a function pointer of that type and call it directly.
351This means, there is no difference between JIT compiled code and native machine
352code that is statically linked into your application.</p>
353
354<p>With just these two changes, lets see how Kaleidoscope works now!</p>
355
356<div class="doc_code">
357<pre>
358ready&gt; <b>4+5;</b>
359define double @""() {
360entry:
361 ret double 9.000000e+00
362}
363
364<em>Evaluated to 9.000000</em>
365</pre>
366</div>
367
368<p>Well this looks like it is basically working. The dump of the function
369shows the "no argument function that always returns double" that we synthesize
370for each top level expression that is typed in. This demonstrates very basic
371functionality, but can we do more?</p>
372
373<div class="doc_code">
374<pre>
375ready&gt; <b>def testfunc(x y) x + y*2; </b>
376Read function definition:
377define double @testfunc(double %x, double %y) {
378entry:
379 %multmp = fmul double %y, 2.000000e+00
380 %addtmp = fadd double %multmp, %x
381 ret double %addtmp
382}
383
384ready&gt; <b>testfunc(4, 10);</b>
385define double @""() {
386entry:
387 %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
388 ret double %calltmp
389}
390
391<em>Evaluated to 24.000000</em>
392</pre>
393</div>
394
395<p>This illustrates that we can now call user code, but there is something a bit
396subtle going on here. Note that we only invoke the JIT on the anonymous
397functions that <em>call testfunc</em>, but we never invoked it
398on <em>testfunc</em> itself. What actually happened here is that the JIT
399scanned for all non-JIT'd functions transitively called from the anonymous
400function and compiled all of them before returning
401from <tt>run_function</tt>.</p>
402
403<p>The JIT provides a number of other more advanced interfaces for things like
404freeing allocated machine code, rejit'ing functions to update them, etc.
405However, even with this simple code, we get some surprisingly powerful
406capabilities - check this out (I removed the dump of the anonymous functions,
407you should get the idea by now :) :</p>
408
409<div class="doc_code">
410<pre>
411ready&gt; <b>extern sin(x);</b>
412Read extern:
413declare double @sin(double)
414
415ready&gt; <b>extern cos(x);</b>
416Read extern:
417declare double @cos(double)
418
419ready&gt; <b>sin(1.0);</b>
420<em>Evaluated to 0.841471</em>
421
422ready&gt; <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
423Read function definition:
424define double @foo(double %x) {
425entry:
426 %calltmp = call double @sin(double %x)
427 %multmp = fmul double %calltmp, %calltmp
428 %calltmp2 = call double @cos(double %x)
429 %multmp4 = fmul double %calltmp2, %calltmp2
430 %addtmp = fadd double %multmp, %multmp4
431 ret double %addtmp
432}
433
434ready&gt; <b>foo(4.0);</b>
435<em>Evaluated to 1.000000</em>
436</pre>
437</div>
438
439<p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly
440simple: in this example, the JIT started execution of a function and got to a
441function call. It realized that the function was not yet JIT compiled and
442invoked the standard set of routines to resolve the function. In this case,
443there is no body defined for the function, so the JIT ended up calling
444"<tt>dlsym("sin")</tt>" on the Kaleidoscope process itself. Since
445"<tt>sin</tt>" is defined within the JIT's address space, it simply patches up
446calls in the module to call the libm version of <tt>sin</tt> directly.</p>
447
448<p>The LLVM JIT provides a number of interfaces (look in the
449<tt>llvm_executionengine.mli</tt> file) for controlling how unknown functions
450get resolved. It allows you to establish explicit mappings between IR objects
451and addresses (useful for LLVM global variables that you want to map to static
452tables, for example), allows you to dynamically decide on the fly based on the
453function name, and even allows you to have the JIT compile functions lazily the
454first time they're called.</p>
455
456<p>One interesting application of this is that we can now extend the language
457by writing arbitrary C code to implement operations. For example, if we add:
458</p>
459
460<div class="doc_code">
461<pre>
462/* putchard - putchar that takes a double and returns 0. */
463extern "C"
464double putchard(double X) {
465 putchar((char)X);
466 return 0;
467}
468</pre>
469</div>
470
471<p>Now we can produce simple output to the console by using things like:
472"<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
473the console (120 is the ASCII code for 'x'). Similar code could be used to
474implement file I/O, console input, and many other capabilities in
475Kaleidoscope.</p>
476
477<p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
478this point, we can compile a non-Turing-complete programming language, optimize
479and JIT compile it in a user-driven way. Next up we'll look into <a
480href="OCamlLangImpl5.html">extending the language with control flow
481constructs</a>, tackling some interesting LLVM IR issues along the way.</p>
482
483</div>
484
485<!-- *********************************************************************** -->
486<h2><a name="code">Full Code Listing</a></h2>
487<!-- *********************************************************************** -->
488
489<div>
490
491<p>
492Here is the complete code listing for our running example, enhanced with the
493LLVM JIT and optimizer. To build this example, use:
494</p>
495
496<div class="doc_code">
497<pre>
498# Compile
499ocamlbuild toy.byte
500# Run
501./toy.byte
502</pre>
503</div>
504
505<p>Here is the code:</p>
506
507<dl>
508<dt>_tags:</dt>
509<dd class="doc_code">
510<pre>
511&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
512&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
513&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
514&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
515</pre>
516</dd>
517
518<dt>myocamlbuild.ml:</dt>
519<dd class="doc_code">
520<pre>
521open Ocamlbuild_plugin;;
522
523ocaml_lib ~extern:true "llvm";;
524ocaml_lib ~extern:true "llvm_analysis";;
525ocaml_lib ~extern:true "llvm_executionengine";;
526ocaml_lib ~extern:true "llvm_target";;
527ocaml_lib ~extern:true "llvm_scalar_opts";;
528
529flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
530dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
531</pre>
532</dd>
533
534<dt>token.ml:</dt>
535<dd class="doc_code">
536<pre>
537(*===----------------------------------------------------------------------===
538 * Lexer Tokens
539 *===----------------------------------------------------------------------===*)
540
541(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
542 * these others for known things. *)
543type token =
544 (* commands *)
545 | Def | Extern
546
547 (* primary *)
548 | Ident of string | Number of float
549
550 (* unknown *)
551 | Kwd of char
552</pre>
553</dd>
554
555<dt>lexer.ml:</dt>
556<dd class="doc_code">
557<pre>
558(*===----------------------------------------------------------------------===
559 * Lexer
560 *===----------------------------------------------------------------------===*)
561
562let rec lex = parser
563 (* Skip any whitespace. *)
564 | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
565
566 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
567 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
568 let buffer = Buffer.create 1 in
569 Buffer.add_char buffer c;
570 lex_ident buffer stream
571
572 (* number: [0-9.]+ *)
573 | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
574 let buffer = Buffer.create 1 in
575 Buffer.add_char buffer c;
576 lex_number buffer stream
577
578 (* Comment until end of line. *)
579 | [&lt; ' ('#'); stream &gt;] -&gt;
580 lex_comment stream
581
582 (* Otherwise, just return the character as its ascii value. *)
583 | [&lt; 'c; stream &gt;] -&gt;
584 [&lt; 'Token.Kwd c; lex stream &gt;]
585
586 (* end of stream. *)
587 | [&lt; &gt;] -&gt; [&lt; &gt;]
588
589and lex_number buffer = parser
590 | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
591 Buffer.add_char buffer c;
592 lex_number buffer stream
593 | [&lt; stream=lex &gt;] -&gt;
594 [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
595
596and lex_ident buffer = parser
597 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
598 Buffer.add_char buffer c;
599 lex_ident buffer stream
600 | [&lt; stream=lex &gt;] -&gt;
601 match Buffer.contents buffer with
602 | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
603 | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
604 | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
605
606and lex_comment = parser
607 | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
608 | [&lt; 'c; e=lex_comment &gt;] -&gt; e
609 | [&lt; &gt;] -&gt; [&lt; &gt;]
610</pre>
611</dd>
612
613<dt>ast.ml:</dt>
614<dd class="doc_code">
615<pre>
616(*===----------------------------------------------------------------------===
617 * Abstract Syntax Tree (aka Parse Tree)
618 *===----------------------------------------------------------------------===*)
619
620(* expr - Base type for all expression nodes. *)
621type expr =
622 (* variant for numeric literals like "1.0". *)
623 | Number of float
624
625 (* variant for referencing a variable, like "a". *)
626 | Variable of string
627
628 (* variant for a binary operator. *)
629 | Binary of char * expr * expr
630
631 (* variant for function calls. *)
632 | Call of string * expr array
633
634(* proto - This type represents the "prototype" for a function, which captures
635 * its name, and its argument names (thus implicitly the number of arguments the
636 * function takes). *)
637type proto = Prototype of string * string array
638
639(* func - This type represents a function definition itself. *)
640type func = Function of proto * expr
641</pre>
642</dd>
643
644<dt>parser.ml:</dt>
645<dd class="doc_code">
646<pre>
647(*===---------------------------------------------------------------------===
648 * Parser
649 *===---------------------------------------------------------------------===*)
650
651(* binop_precedence - This holds the precedence for each binary operator that is
652 * defined *)
653let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
654
655(* precedence - Get the precedence of the pending binary operator token. *)
656let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
657
658(* primary
659 * ::= identifier
660 * ::= numberexpr
661 * ::= parenexpr *)
662let rec parse_primary = parser
663 (* numberexpr ::= number *)
664 | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
665
666 (* parenexpr ::= '(' expression ')' *)
667 | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
668
669 (* identifierexpr
670 * ::= identifier
671 * ::= identifier '(' argumentexpr ')' *)
672 | [&lt; 'Token.Ident id; stream &gt;] -&gt;
673 let rec parse_args accumulator = parser
674 | [&lt; e=parse_expr; stream &gt;] -&gt;
675 begin parser
676 | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
677 | [&lt; &gt;] -&gt; e :: accumulator
678 end stream
679 | [&lt; &gt;] -&gt; accumulator
680 in
681 let rec parse_ident id = parser
682 (* Call. *)
683 | [&lt; 'Token.Kwd '(';
684 args=parse_args [];
685 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
686 Ast.Call (id, Array.of_list (List.rev args))
687
688 (* Simple variable ref. *)
689 | [&lt; &gt;] -&gt; Ast.Variable id
690 in
691 parse_ident id stream
692
693 | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
694
695(* binoprhs
696 * ::= ('+' primary)* *)
697and parse_bin_rhs expr_prec lhs stream =
698 match Stream.peek stream with
699 (* If this is a binop, find its precedence. *)
700 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
701 let token_prec = precedence c in
702
703 (* If this is a binop that binds at least as tightly as the current binop,
704 * consume it, otherwise we are done. *)
705 if token_prec &lt; expr_prec then lhs else begin
706 (* Eat the binop. *)
707 Stream.junk stream;
708
709 (* Parse the primary expression after the binary operator. *)
710 let rhs = parse_primary stream in
711
712 (* Okay, we know this is a binop. *)
713 let rhs =
714 match Stream.peek stream with
715 | Some (Token.Kwd c2) -&gt;
716 (* If BinOp binds less tightly with rhs than the operator after
717 * rhs, let the pending operator take rhs as its lhs. *)
718 let next_prec = precedence c2 in
719 if token_prec &lt; next_prec
720 then parse_bin_rhs (token_prec + 1) rhs stream
721 else rhs
722 | _ -&gt; rhs
723 in
724
725 (* Merge lhs/rhs. *)
726 let lhs = Ast.Binary (c, lhs, rhs) in
727 parse_bin_rhs expr_prec lhs stream
728 end
729 | _ -&gt; lhs
730
731(* expression
732 * ::= primary binoprhs *)
733and parse_expr = parser
734 | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
735
736(* prototype
737 * ::= id '(' id* ')' *)
738let parse_prototype =
739 let rec parse_args accumulator = parser
740 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
741 | [&lt; &gt;] -&gt; accumulator
742 in
743
744 parser
745 | [&lt; 'Token.Ident id;
746 'Token.Kwd '(' ?? "expected '(' in prototype";
747 args=parse_args [];
748 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
749 (* success. *)
750 Ast.Prototype (id, Array.of_list (List.rev args))
751
752 | [&lt; &gt;] -&gt;
753 raise (Stream.Error "expected function name in prototype")
754
755(* definition ::= 'def' prototype expression *)
756let parse_definition = parser
757 | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
758 Ast.Function (p, e)
759
760(* toplevelexpr ::= expression *)
761let parse_toplevel = parser
762 | [&lt; e=parse_expr &gt;] -&gt;
763 (* Make an anonymous proto. *)
764 Ast.Function (Ast.Prototype ("", [||]), e)
765
766(* external ::= 'extern' prototype *)
767let parse_extern = parser
768 | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
769</pre>
770</dd>
771
772<dt>codegen.ml:</dt>
773<dd class="doc_code">
774<pre>
775(*===----------------------------------------------------------------------===
776 * Code Generation
777 *===----------------------------------------------------------------------===*)
778
779open Llvm
780
781exception Error of string
782
783let context = global_context ()
784let the_module = create_module context "my cool jit"
785let builder = builder context
786let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
787let double_type = double_type context
788
789let rec codegen_expr = function
790 | Ast.Number n -&gt; const_float double_type n
791 | Ast.Variable name -&gt;
792 (try Hashtbl.find named_values name with
793 | Not_found -&gt; raise (Error "unknown variable name"))
794 | Ast.Binary (op, lhs, rhs) -&gt;
795 let lhs_val = codegen_expr lhs in
796 let rhs_val = codegen_expr rhs in
797 begin
798 match op with
799 | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
800 | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
801 | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
802 | '&lt;' -&gt;
803 (* Convert bool 0/1 to double 0.0 or 1.0 *)
804 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
805 build_uitofp i double_type "booltmp" builder
806 | _ -&gt; raise (Error "invalid binary operator")
807 end
808 | Ast.Call (callee, args) -&gt;
809 (* Look up the name in the module table. *)
810 let callee =
811 match lookup_function callee the_module with
812 | Some callee -&gt; callee
813 | None -&gt; raise (Error "unknown function referenced")
814 in
815 let params = params callee in
816
817 (* If argument mismatch error. *)
818 if Array.length params == Array.length args then () else
819 raise (Error "incorrect # arguments passed");
820 let args = Array.map codegen_expr args in
821 build_call callee args "calltmp" builder
822
823let codegen_proto = function
824 | Ast.Prototype (name, args) -&gt;
825 (* Make the function type: double(double,double) etc. *)
826 let doubles = Array.make (Array.length args) double_type in
827 let ft = function_type double_type doubles in
828 let f =
829 match lookup_function name the_module with
830 | None -&gt; declare_function name ft the_module
831
832 (* If 'f' conflicted, there was already something named 'name'. If it
833 * has a body, don't allow redefinition or reextern. *)
834 | Some f -&gt;
835 (* If 'f' already has a body, reject this. *)
836 if block_begin f &lt;&gt; At_end f then
837 raise (Error "redefinition of function");
838
839 (* If 'f' took a different number of arguments, reject. *)
840 if element_type (type_of f) &lt;&gt; ft then
841 raise (Error "redefinition of function with different # args");
842 f
843 in
844
845 (* Set names for all arguments. *)
846 Array.iteri (fun i a -&gt;
847 let n = args.(i) in
848 set_value_name n a;
849 Hashtbl.add named_values n a;
850 ) (params f);
851 f
852
853let codegen_func the_fpm = function
854 | Ast.Function (proto, body) -&gt;
855 Hashtbl.clear named_values;
856 let the_function = codegen_proto proto in
857
858 (* Create a new basic block to start insertion into. *)
859 let bb = append_block context "entry" the_function in
860 position_at_end bb builder;
861
862 try
863 let ret_val = codegen_expr body in
864
865 (* Finish off the function. *)
866 let _ = build_ret ret_val builder in
867
868 (* Validate the generated code, checking for consistency. *)
869 Llvm_analysis.assert_valid_function the_function;
870
871 (* Optimize the function. *)
872 let _ = PassManager.run_function the_function the_fpm in
873
874 the_function
875 with e -&gt;
876 delete_function the_function;
877 raise e
878</pre>
879</dd>
880
881<dt>toplevel.ml:</dt>
882<dd class="doc_code">
883<pre>
884(*===----------------------------------------------------------------------===
885 * Top-Level parsing and JIT Driver
886 *===----------------------------------------------------------------------===*)
887
888open Llvm
889open Llvm_executionengine
890
891(* top ::= definition | external | expression | ';' *)
892let rec main_loop the_fpm the_execution_engine stream =
893 match Stream.peek stream with
894 | None -&gt; ()
895
896 (* ignore top-level semicolons. *)
897 | Some (Token.Kwd ';') -&gt;
898 Stream.junk stream;
899 main_loop the_fpm the_execution_engine stream
900
901 | Some token -&gt;
902 begin
903 try match token with
904 | Token.Def -&gt;
905 let e = Parser.parse_definition stream in
906 print_endline "parsed a function definition.";
907 dump_value (Codegen.codegen_func the_fpm e);
908 | Token.Extern -&gt;
909 let e = Parser.parse_extern stream in
910 print_endline "parsed an extern.";
911 dump_value (Codegen.codegen_proto e);
912 | _ -&gt;
913 (* Evaluate a top-level expression into an anonymous function. *)
914 let e = Parser.parse_toplevel stream in
915 print_endline "parsed a top-level expr";
916 let the_function = Codegen.codegen_func the_fpm e in
917 dump_value the_function;
918
919 (* JIT the function, returning a function pointer. *)
920 let result = ExecutionEngine.run_function the_function [||]
921 the_execution_engine in
922
923 print_string "Evaluated to ";
924 print_float (GenericValue.as_float Codegen.double_type result);
925 print_newline ();
926 with Stream.Error s | Codegen.Error s -&gt;
927 (* Skip token for error recovery. *)
928 Stream.junk stream;
929 print_endline s;
930 end;
931 print_string "ready&gt; "; flush stdout;
932 main_loop the_fpm the_execution_engine stream
933</pre>
934</dd>
935
936<dt>toy.ml:</dt>
937<dd class="doc_code">
938<pre>
939(*===----------------------------------------------------------------------===
940 * Main driver code.
941 *===----------------------------------------------------------------------===*)
942
943open Llvm
944open Llvm_executionengine
945open Llvm_target
946open Llvm_scalar_opts
947
948let main () =
949 ignore (initialize_native_target ());
950
951 (* Install standard binary operators.
952 * 1 is the lowest precedence. *)
953 Hashtbl.add Parser.binop_precedence '&lt;' 10;
954 Hashtbl.add Parser.binop_precedence '+' 20;
955 Hashtbl.add Parser.binop_precedence '-' 20;
956 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
957
958 (* Prime the first token. *)
959 print_string "ready&gt; "; flush stdout;
960 let stream = Lexer.lex (Stream.of_channel stdin) in
961
962 (* Create the JIT. *)
963 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
964 let the_fpm = PassManager.create_function Codegen.the_module in
965
966 (* Set up the optimizer pipeline. Start with registering info about how the
967 * target lays out data structures. *)
968 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
969
970 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
971 add_instruction_combination the_fpm;
972
973 (* reassociate expressions. *)
974 add_reassociation the_fpm;
975
976 (* Eliminate Common SubExpressions. *)
977 add_gvn the_fpm;
978
979 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
980 add_cfg_simplification the_fpm;
981
982 ignore (PassManager.initialize the_fpm);
983
984 (* Run the main "interpreter loop" now. *)
985 Toplevel.main_loop the_fpm the_execution_engine stream;
986
987 (* Print out all the generated code. *)
988 dump_module Codegen.the_module
989;;
990
991main ()
992</pre>
993</dd>
994
995<dt>bindings.c</dt>
996<dd class="doc_code">
997<pre>
998#include &lt;stdio.h&gt;
999
1000/* putchard - putchar that takes a double and returns 0. */
1001extern double putchard(double X) {
1002 putchar((char)X);
1003 return 0;
1004}
1005</pre>
1006</dd>
1007</dl>
1008
1009<a href="OCamlLangImpl5.html">Next: Extending the language: control flow</a>
1010</div>
1011
1012<!-- *********************************************************************** -->
1013<hr>
1014<address>
1015 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1016 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1017 <a href="http://validator.w3.org/check/referer"><img
1018 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1019
1020 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1021 <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
1022 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
1023 Last modified: $Date$
1024</address>
1025</body>
1026</html>