]> git.proxmox.com Git - rustc.git/blame - src/llvm/include/llvm/ADT/SmallVector.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / include / llvm / ADT / SmallVector.h
CommitLineData
223e47cc
LB
1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the SmallVector class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_SMALLVECTOR_H
15#define LLVM_ADT_SMALLVECTOR_H
16
1a4d82fc 17#include "llvm/ADT/iterator_range.h"
223e47cc
LB
18#include "llvm/Support/AlignOf.h"
19#include "llvm/Support/Compiler.h"
1a4d82fc 20#include "llvm/Support/MathExtras.h"
223e47cc
LB
21#include "llvm/Support/type_traits.h"
22#include <algorithm>
23#include <cassert>
24#include <cstddef>
25#include <cstdlib>
26#include <cstring>
27#include <iterator>
28#include <memory>
29
30namespace llvm {
31
1a4d82fc 32/// This is all the non-templated stuff common to all SmallVectors.
223e47cc
LB
33class SmallVectorBase {
34protected:
35 void *BeginX, *EndX, *CapacityX;
36
37protected:
38 SmallVectorBase(void *FirstEl, size_t Size)
39 : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
40
1a4d82fc 41 /// This is an implementation of the grow() method which only works
223e47cc
LB
42 /// on POD-like data types and is out of line to reduce code duplication.
43 void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
44
45public:
1a4d82fc 46 /// This returns size()*sizeof(T).
223e47cc
LB
47 size_t size_in_bytes() const {
48 return size_t((char*)EndX - (char*)BeginX);
49 }
50
51 /// capacity_in_bytes - This returns capacity()*sizeof(T).
52 size_t capacity_in_bytes() const {
53 return size_t((char*)CapacityX - (char*)BeginX);
54 }
55
1a4d82fc 56 bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const { return BeginX == EndX; }
223e47cc
LB
57};
58
59template <typename T, unsigned N> struct SmallVectorStorage;
60
1a4d82fc
JJ
61/// This is the part of SmallVectorTemplateBase which does not depend on whether
62/// the type T is a POD. The extra dummy template argument is used by ArrayRef
63/// to avoid unnecessarily requiring T to be complete.
223e47cc
LB
64template <typename T, typename = void>
65class SmallVectorTemplateCommon : public SmallVectorBase {
66private:
67 template <typename, unsigned> friend struct SmallVectorStorage;
68
69 // Allocate raw space for N elements of type T. If T has a ctor or dtor, we
70 // don't want it to be automatically run, so we need to represent the space as
71 // something else. Use an array of char of sufficient alignment.
72 typedef llvm::AlignedCharArrayUnion<T> U;
73 U FirstEl;
74 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
75
76protected:
77 SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
78
79 void grow_pod(size_t MinSizeInBytes, size_t TSize) {
80 SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
81 }
82
1a4d82fc 83 /// Return true if this is a smallvector which has not had dynamic
223e47cc
LB
84 /// memory allocated for it.
85 bool isSmall() const {
86 return BeginX == static_cast<const void*>(&FirstEl);
87 }
88
1a4d82fc 89 /// Put this vector in a state of being small.
223e47cc
LB
90 void resetToSmall() {
91 BeginX = EndX = CapacityX = &FirstEl;
92 }
93
94 void setEnd(T *P) { this->EndX = P; }
95public:
96 typedef size_t size_type;
97 typedef ptrdiff_t difference_type;
98 typedef T value_type;
99 typedef T *iterator;
100 typedef const T *const_iterator;
101
102 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
103 typedef std::reverse_iterator<iterator> reverse_iterator;
104
105 typedef T &reference;
106 typedef const T &const_reference;
107 typedef T *pointer;
108 typedef const T *const_pointer;
109
110 // forward iterator creation methods.
111 iterator begin() { return (iterator)this->BeginX; }
112 const_iterator begin() const { return (const_iterator)this->BeginX; }
113 iterator end() { return (iterator)this->EndX; }
114 const_iterator end() const { return (const_iterator)this->EndX; }
115protected:
116 iterator capacity_ptr() { return (iterator)this->CapacityX; }
117 const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
118public:
119
120 // reverse iterator creation methods.
121 reverse_iterator rbegin() { return reverse_iterator(end()); }
122 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
123 reverse_iterator rend() { return reverse_iterator(begin()); }
124 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
125
126 size_type size() const { return end()-begin(); }
127 size_type max_size() const { return size_type(-1) / sizeof(T); }
128
1a4d82fc 129 /// Return the total number of elements in the currently allocated buffer.
223e47cc
LB
130 size_t capacity() const { return capacity_ptr() - begin(); }
131
1a4d82fc 132 /// Return a pointer to the vector's buffer, even if empty().
223e47cc 133 pointer data() { return pointer(begin()); }
1a4d82fc 134 /// Return a pointer to the vector's buffer, even if empty().
223e47cc
LB
135 const_pointer data() const { return const_pointer(begin()); }
136
85aaf69f
SL
137 reference operator[](size_type idx) {
138 assert(idx < size());
223e47cc
LB
139 return begin()[idx];
140 }
85aaf69f
SL
141 const_reference operator[](size_type idx) const {
142 assert(idx < size());
223e47cc
LB
143 return begin()[idx];
144 }
145
146 reference front() {
970d7e83 147 assert(!empty());
223e47cc
LB
148 return begin()[0];
149 }
150 const_reference front() const {
970d7e83 151 assert(!empty());
223e47cc
LB
152 return begin()[0];
153 }
154
155 reference back() {
970d7e83 156 assert(!empty());
223e47cc
LB
157 return end()[-1];
158 }
159 const_reference back() const {
970d7e83 160 assert(!empty());
223e47cc
LB
161 return end()[-1];
162 }
163};
164
165/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
166/// implementations that are designed to work with non-POD-like T's.
167template <typename T, bool isPodLike>
168class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
169protected:
170 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
171
172 static void destroy_range(T *S, T *E) {
173 while (S != E) {
174 --E;
175 E->~T();
176 }
177 }
178
1a4d82fc 179 /// Use move-assignment to move the range [I, E) onto the
223e47cc
LB
180 /// objects starting with "Dest". This is just <memory>'s
181 /// std::move, but not all stdlibs actually provide that.
182 template<typename It1, typename It2>
183 static It2 move(It1 I, It1 E, It2 Dest) {
223e47cc
LB
184 for (; I != E; ++I, ++Dest)
185 *Dest = ::std::move(*I);
186 return Dest;
223e47cc
LB
187 }
188
1a4d82fc 189 /// Use move-assignment to move the range
223e47cc
LB
190 /// [I, E) onto the objects ending at "Dest", moving objects
191 /// in reverse order. This is just <algorithm>'s
192 /// std::move_backward, but not all stdlibs actually provide that.
193 template<typename It1, typename It2>
194 static It2 move_backward(It1 I, It1 E, It2 Dest) {
223e47cc
LB
195 while (I != E)
196 *--Dest = ::std::move(*--E);
197 return Dest;
223e47cc
LB
198 }
199
1a4d82fc
JJ
200 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
201 /// constructing elements as needed.
223e47cc
LB
202 template<typename It1, typename It2>
203 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
223e47cc
LB
204 for (; I != E; ++I, ++Dest)
205 ::new ((void*) &*Dest) T(::std::move(*I));
223e47cc
LB
206 }
207
1a4d82fc
JJ
208 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
209 /// constructing elements as needed.
223e47cc
LB
210 template<typename It1, typename It2>
211 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
212 std::uninitialized_copy(I, E, Dest);
213 }
214
1a4d82fc
JJ
215 /// Grow the allocated memory (without initializing new elements), doubling
216 /// the size of the allocated memory. Guarantees space for at least one more
217 /// element, or MinSize more elements if specified.
223e47cc 218 void grow(size_t MinSize = 0);
1a4d82fc 219
223e47cc
LB
220public:
221 void push_back(const T &Elt) {
1a4d82fc
JJ
222 if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
223 this->grow();
224 ::new ((void*) this->end()) T(Elt);
225 this->setEnd(this->end()+1);
223e47cc
LB
226 }
227
223e47cc 228 void push_back(T &&Elt) {
1a4d82fc
JJ
229 if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
230 this->grow();
231 ::new ((void*) this->end()) T(::std::move(Elt));
232 this->setEnd(this->end()+1);
223e47cc 233 }
1a4d82fc 234
223e47cc
LB
235 void pop_back() {
236 this->setEnd(this->end()-1);
237 this->end()->~T();
238 }
85aaf69f
SL
239
240#if LLVM_HAS_VARIADIC_TEMPLATES
241 template <typename... ArgTypes> void emplace_back(ArgTypes &&... Args) {
242 if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
243 this->grow();
244 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
245 this->setEnd(this->end() + 1);
246 }
247#else
248private:
249 template <typename Constructor> void emplace_back_impl(Constructor construct) {
250 if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
251 this->grow();
252 construct((void *)this->end());
253 this->setEnd(this->end() + 1);
254 }
255
256public:
257 void emplace_back() {
258 emplace_back_impl([](void *Mem) { ::new (Mem) T(); });
259 }
260 template <typename T1> void emplace_back(T1 &&A1) {
261 emplace_back_impl([&](void *Mem) { ::new (Mem) T(std::forward<T1>(A1)); });
262 }
263 template <typename T1, typename T2> void emplace_back(T1 &&A1, T2 &&A2) {
264 emplace_back_impl([&](void *Mem) {
265 ::new (Mem) T(std::forward<T1>(A1), std::forward<T2>(A2));
266 });
267 }
268 template <typename T1, typename T2, typename T3>
269 void emplace_back(T1 &&A1, T2 &&A2, T3 &&A3) {
270 T(std::forward<T1>(A1), std::forward<T2>(A2), std::forward<T3>(A3));
271 emplace_back_impl([&](void *Mem) {
272 ::new (Mem)
273 T(std::forward<T1>(A1), std::forward<T2>(A2), std::forward<T3>(A3));
274 });
275 }
276 template <typename T1, typename T2, typename T3, typename T4>
277 void emplace_back(T1 &&A1, T2 &&A2, T3 &&A3, T4 &&A4) {
278 emplace_back_impl([&](void *Mem) {
279 ::new (Mem) T(std::forward<T1>(A1), std::forward<T2>(A2),
280 std::forward<T3>(A3), std::forward<T4>(A4));
281 });
282 }
283#endif // LLVM_HAS_VARIADIC_TEMPLATES
223e47cc
LB
284};
285
286// Define this out-of-line to dissuade the C++ compiler from inlining it.
287template <typename T, bool isPodLike>
288void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
289 size_t CurCapacity = this->capacity();
290 size_t CurSize = this->size();
1a4d82fc
JJ
291 // Always grow, even from zero.
292 size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
223e47cc
LB
293 if (NewCapacity < MinSize)
294 NewCapacity = MinSize;
295 T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
296
297 // Move the elements over.
298 this->uninitialized_move(this->begin(), this->end(), NewElts);
299
300 // Destroy the original elements.
301 destroy_range(this->begin(), this->end());
302
303 // If this wasn't grown from the inline copy, deallocate the old space.
304 if (!this->isSmall())
305 free(this->begin());
306
307 this->setEnd(NewElts+CurSize);
308 this->BeginX = NewElts;
309 this->CapacityX = this->begin()+NewCapacity;
310}
311
312
313/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
314/// implementations that are designed to work with POD-like T's.
315template <typename T>
316class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
317protected:
318 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
319
320 // No need to do a destroy loop for POD's.
321 static void destroy_range(T *, T *) {}
322
1a4d82fc 323 /// Use move-assignment to move the range [I, E) onto the
223e47cc
LB
324 /// objects starting with "Dest". For PODs, this is just memcpy.
325 template<typename It1, typename It2>
326 static It2 move(It1 I, It1 E, It2 Dest) {
327 return ::std::copy(I, E, Dest);
328 }
329
1a4d82fc
JJ
330 /// Use move-assignment to move the range [I, E) onto the objects ending at
331 /// "Dest", moving objects in reverse order.
223e47cc
LB
332 template<typename It1, typename It2>
333 static It2 move_backward(It1 I, It1 E, It2 Dest) {
334 return ::std::copy_backward(I, E, Dest);
335 }
336
1a4d82fc 337 /// Move the range [I, E) onto the uninitialized memory
223e47cc
LB
338 /// starting with "Dest", constructing elements into it as needed.
339 template<typename It1, typename It2>
340 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
341 // Just do a copy.
342 uninitialized_copy(I, E, Dest);
343 }
344
1a4d82fc 345 /// Copy the range [I, E) onto the uninitialized memory
223e47cc
LB
346 /// starting with "Dest", constructing elements into it as needed.
347 template<typename It1, typename It2>
348 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
349 // Arbitrary iterator types; just use the basic implementation.
350 std::uninitialized_copy(I, E, Dest);
351 }
352
1a4d82fc 353 /// Copy the range [I, E) onto the uninitialized memory
223e47cc
LB
354 /// starting with "Dest", constructing elements into it as needed.
355 template<typename T1, typename T2>
356 static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
357 // Use memcpy for PODs iterated by pointers (which includes SmallVector
358 // iterators): std::uninitialized_copy optimizes to memmove, but we can
359 // use memcpy here.
360 memcpy(Dest, I, (E-I)*sizeof(T));
361 }
362
1a4d82fc 363 /// Double the size of the allocated memory, guaranteeing space for at
223e47cc
LB
364 /// least one more element or MinSize if specified.
365 void grow(size_t MinSize = 0) {
366 this->grow_pod(MinSize*sizeof(T), sizeof(T));
367 }
368public:
369 void push_back(const T &Elt) {
1a4d82fc
JJ
370 if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
371 this->grow();
372 memcpy(this->end(), &Elt, sizeof(T));
373 this->setEnd(this->end()+1);
223e47cc 374 }
1a4d82fc 375
223e47cc
LB
376 void pop_back() {
377 this->setEnd(this->end()-1);
378 }
379};
380
381
1a4d82fc
JJ
382/// This class consists of common code factored out of the SmallVector class to
383/// reduce code duplication based on the SmallVector 'N' template parameter.
223e47cc
LB
384template <typename T>
385class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
386 typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
387
970d7e83 388 SmallVectorImpl(const SmallVectorImpl&) LLVM_DELETED_FUNCTION;
223e47cc
LB
389public:
390 typedef typename SuperClass::iterator iterator;
391 typedef typename SuperClass::size_type size_type;
392
393protected:
394 // Default ctor - Initialize to empty.
395 explicit SmallVectorImpl(unsigned N)
396 : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
397 }
398
399public:
400 ~SmallVectorImpl() {
401 // Destroy the constructed elements in the vector.
402 this->destroy_range(this->begin(), this->end());
403
404 // If this wasn't grown from the inline copy, deallocate the old space.
405 if (!this->isSmall())
406 free(this->begin());
407 }
408
409
410 void clear() {
411 this->destroy_range(this->begin(), this->end());
412 this->EndX = this->BeginX;
413 }
414
85aaf69f 415 void resize(size_type N) {
223e47cc
LB
416 if (N < this->size()) {
417 this->destroy_range(this->begin()+N, this->end());
418 this->setEnd(this->begin()+N);
419 } else if (N > this->size()) {
420 if (this->capacity() < N)
421 this->grow(N);
1a4d82fc
JJ
422 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
423 new (&*I) T();
223e47cc
LB
424 this->setEnd(this->begin()+N);
425 }
426 }
427
85aaf69f 428 void resize(size_type N, const T &NV) {
223e47cc
LB
429 if (N < this->size()) {
430 this->destroy_range(this->begin()+N, this->end());
431 this->setEnd(this->begin()+N);
432 } else if (N > this->size()) {
433 if (this->capacity() < N)
434 this->grow(N);
435 std::uninitialized_fill(this->end(), this->begin()+N, NV);
436 this->setEnd(this->begin()+N);
437 }
438 }
439
85aaf69f 440 void reserve(size_type N) {
223e47cc
LB
441 if (this->capacity() < N)
442 this->grow(N);
443 }
444
1a4d82fc 445 T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val() {
223e47cc 446 T Result = ::std::move(this->back());
223e47cc
LB
447 this->pop_back();
448 return Result;
449 }
450
451 void swap(SmallVectorImpl &RHS);
452
1a4d82fc 453 /// Add the specified range to the end of the SmallVector.
223e47cc
LB
454 template<typename in_iter>
455 void append(in_iter in_start, in_iter in_end) {
456 size_type NumInputs = std::distance(in_start, in_end);
457 // Grow allocated space if needed.
458 if (NumInputs > size_type(this->capacity_ptr()-this->end()))
459 this->grow(this->size()+NumInputs);
460
461 // Copy the new elements over.
462 // TODO: NEED To compile time dispatch on whether in_iter is a random access
463 // iterator to use the fast uninitialized_copy.
464 std::uninitialized_copy(in_start, in_end, this->end());
465 this->setEnd(this->end() + NumInputs);
466 }
467
1a4d82fc 468 /// Add the specified range to the end of the SmallVector.
223e47cc
LB
469 void append(size_type NumInputs, const T &Elt) {
470 // Grow allocated space if needed.
471 if (NumInputs > size_type(this->capacity_ptr()-this->end()))
472 this->grow(this->size()+NumInputs);
473
474 // Copy the new elements over.
475 std::uninitialized_fill_n(this->end(), NumInputs, Elt);
476 this->setEnd(this->end() + NumInputs);
477 }
478
85aaf69f 479 void assign(size_type NumElts, const T &Elt) {
223e47cc
LB
480 clear();
481 if (this->capacity() < NumElts)
482 this->grow(NumElts);
483 this->setEnd(this->begin()+NumElts);
484 std::uninitialized_fill(this->begin(), this->end(), Elt);
485 }
486
487 iterator erase(iterator I) {
488 assert(I >= this->begin() && "Iterator to erase is out of bounds.");
489 assert(I < this->end() && "Erasing at past-the-end iterator.");
490
491 iterator N = I;
492 // Shift all elts down one.
493 this->move(I+1, this->end(), I);
494 // Drop the last elt.
495 this->pop_back();
496 return(N);
497 }
498
499 iterator erase(iterator S, iterator E) {
500 assert(S >= this->begin() && "Range to erase is out of bounds.");
501 assert(S <= E && "Trying to erase invalid range.");
502 assert(E <= this->end() && "Trying to erase past the end.");
503
504 iterator N = S;
505 // Shift all elts down.
506 iterator I = this->move(E, this->end(), S);
507 // Drop the last elts.
508 this->destroy_range(I, this->end());
509 this->setEnd(I);
510 return(N);
511 }
512
223e47cc
LB
513 iterator insert(iterator I, T &&Elt) {
514 if (I == this->end()) { // Important special case for empty vector.
515 this->push_back(::std::move(Elt));
516 return this->end()-1;
517 }
518
519 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
520 assert(I <= this->end() && "Inserting past the end of the vector.");
521
1a4d82fc
JJ
522 if (this->EndX >= this->CapacityX) {
523 size_t EltNo = I-this->begin();
524 this->grow();
525 I = this->begin()+EltNo;
526 }
223e47cc 527
1a4d82fc
JJ
528 ::new ((void*) this->end()) T(::std::move(this->back()));
529 // Push everything else over.
530 this->move_backward(I, this->end()-1, this->end());
531 this->setEnd(this->end()+1);
223e47cc 532
1a4d82fc
JJ
533 // If we just moved the element we're inserting, be sure to update
534 // the reference.
535 T *EltPtr = &Elt;
536 if (I <= EltPtr && EltPtr < this->EndX)
537 ++EltPtr;
538
539 *I = ::std::move(*EltPtr);
540 return I;
223e47cc 541 }
223e47cc
LB
542
543 iterator insert(iterator I, const T &Elt) {
544 if (I == this->end()) { // Important special case for empty vector.
545 this->push_back(Elt);
546 return this->end()-1;
547 }
548
549 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
550 assert(I <= this->end() && "Inserting past the end of the vector.");
551
1a4d82fc
JJ
552 if (this->EndX >= this->CapacityX) {
553 size_t EltNo = I-this->begin();
554 this->grow();
555 I = this->begin()+EltNo;
223e47cc 556 }
1a4d82fc
JJ
557 ::new ((void*) this->end()) T(std::move(this->back()));
558 // Push everything else over.
559 this->move_backward(I, this->end()-1, this->end());
560 this->setEnd(this->end()+1);
561
562 // If we just moved the element we're inserting, be sure to update
563 // the reference.
564 const T *EltPtr = &Elt;
565 if (I <= EltPtr && EltPtr < this->EndX)
566 ++EltPtr;
567
568 *I = *EltPtr;
569 return I;
223e47cc
LB
570 }
571
572 iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
573 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
574 size_t InsertElt = I - this->begin();
575
576 if (I == this->end()) { // Important special case for empty vector.
577 append(NumToInsert, Elt);
578 return this->begin()+InsertElt;
579 }
580
581 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
582 assert(I <= this->end() && "Inserting past the end of the vector.");
583
584 // Ensure there is enough space.
85aaf69f 585 reserve(this->size() + NumToInsert);
223e47cc
LB
586
587 // Uninvalidate the iterator.
588 I = this->begin()+InsertElt;
589
590 // If there are more elements between the insertion point and the end of the
591 // range than there are being inserted, we can use a simple approach to
592 // insertion. Since we already reserved space, we know that this won't
593 // reallocate the vector.
594 if (size_t(this->end()-I) >= NumToInsert) {
595 T *OldEnd = this->end();
1a4d82fc
JJ
596 append(std::move_iterator<iterator>(this->end() - NumToInsert),
597 std::move_iterator<iterator>(this->end()));
223e47cc
LB
598
599 // Copy the existing elements that get replaced.
600 this->move_backward(I, OldEnd-NumToInsert, OldEnd);
601
602 std::fill_n(I, NumToInsert, Elt);
603 return I;
604 }
605
606 // Otherwise, we're inserting more elements than exist already, and we're
607 // not inserting at the end.
608
609 // Move over the elements that we're about to overwrite.
610 T *OldEnd = this->end();
611 this->setEnd(this->end() + NumToInsert);
612 size_t NumOverwritten = OldEnd-I;
613 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
614
615 // Replace the overwritten part.
616 std::fill_n(I, NumOverwritten, Elt);
617
618 // Insert the non-overwritten middle part.
619 std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
620 return I;
621 }
622
623 template<typename ItTy>
624 iterator insert(iterator I, ItTy From, ItTy To) {
625 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
626 size_t InsertElt = I - this->begin();
627
628 if (I == this->end()) { // Important special case for empty vector.
629 append(From, To);
630 return this->begin()+InsertElt;
631 }
632
633 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
634 assert(I <= this->end() && "Inserting past the end of the vector.");
635
636 size_t NumToInsert = std::distance(From, To);
637
638 // Ensure there is enough space.
85aaf69f 639 reserve(this->size() + NumToInsert);
223e47cc
LB
640
641 // Uninvalidate the iterator.
642 I = this->begin()+InsertElt;
643
644 // If there are more elements between the insertion point and the end of the
645 // range than there are being inserted, we can use a simple approach to
646 // insertion. Since we already reserved space, we know that this won't
647 // reallocate the vector.
648 if (size_t(this->end()-I) >= NumToInsert) {
649 T *OldEnd = this->end();
1a4d82fc
JJ
650 append(std::move_iterator<iterator>(this->end() - NumToInsert),
651 std::move_iterator<iterator>(this->end()));
223e47cc
LB
652
653 // Copy the existing elements that get replaced.
654 this->move_backward(I, OldEnd-NumToInsert, OldEnd);
655
656 std::copy(From, To, I);
657 return I;
658 }
659
660 // Otherwise, we're inserting more elements than exist already, and we're
661 // not inserting at the end.
662
663 // Move over the elements that we're about to overwrite.
664 T *OldEnd = this->end();
665 this->setEnd(this->end() + NumToInsert);
666 size_t NumOverwritten = OldEnd-I;
667 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
668
669 // Replace the overwritten part.
670 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
671 *J = *From;
672 ++J; ++From;
673 }
674
675 // Insert the non-overwritten middle part.
676 this->uninitialized_copy(From, To, OldEnd);
677 return I;
678 }
679
680 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
681
223e47cc 682 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
223e47cc
LB
683
684 bool operator==(const SmallVectorImpl &RHS) const {
685 if (this->size() != RHS.size()) return false;
686 return std::equal(this->begin(), this->end(), RHS.begin());
687 }
688 bool operator!=(const SmallVectorImpl &RHS) const {
689 return !(*this == RHS);
690 }
691
692 bool operator<(const SmallVectorImpl &RHS) const {
693 return std::lexicographical_compare(this->begin(), this->end(),
694 RHS.begin(), RHS.end());
695 }
696
697 /// Set the array size to \p N, which the current array must have enough
698 /// capacity for.
699 ///
700 /// This does not construct or destroy any elements in the vector.
701 ///
702 /// Clients can use this in conjunction with capacity() to write past the end
703 /// of the buffer when they know that more elements are available, and only
704 /// update the size later. This avoids the cost of value initializing elements
705 /// which will only be overwritten.
85aaf69f 706 void set_size(size_type N) {
223e47cc
LB
707 assert(N <= this->capacity());
708 this->setEnd(this->begin() + N);
709 }
710};
711
712
713template <typename T>
714void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
715 if (this == &RHS) return;
716
717 // We can only avoid copying elements if neither vector is small.
718 if (!this->isSmall() && !RHS.isSmall()) {
719 std::swap(this->BeginX, RHS.BeginX);
720 std::swap(this->EndX, RHS.EndX);
721 std::swap(this->CapacityX, RHS.CapacityX);
722 return;
723 }
724 if (RHS.size() > this->capacity())
725 this->grow(RHS.size());
726 if (this->size() > RHS.capacity())
727 RHS.grow(this->size());
728
729 // Swap the shared elements.
730 size_t NumShared = this->size();
731 if (NumShared > RHS.size()) NumShared = RHS.size();
85aaf69f 732 for (size_type i = 0; i != NumShared; ++i)
223e47cc
LB
733 std::swap((*this)[i], RHS[i]);
734
735 // Copy over the extra elts.
736 if (this->size() > RHS.size()) {
737 size_t EltDiff = this->size() - RHS.size();
738 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
739 RHS.setEnd(RHS.end()+EltDiff);
740 this->destroy_range(this->begin()+NumShared, this->end());
741 this->setEnd(this->begin()+NumShared);
742 } else if (RHS.size() > this->size()) {
743 size_t EltDiff = RHS.size() - this->size();
744 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
745 this->setEnd(this->end() + EltDiff);
746 this->destroy_range(RHS.begin()+NumShared, RHS.end());
747 RHS.setEnd(RHS.begin()+NumShared);
748 }
749}
750
751template <typename T>
752SmallVectorImpl<T> &SmallVectorImpl<T>::
753 operator=(const SmallVectorImpl<T> &RHS) {
754 // Avoid self-assignment.
755 if (this == &RHS) return *this;
756
757 // If we already have sufficient space, assign the common elements, then
758 // destroy any excess.
759 size_t RHSSize = RHS.size();
760 size_t CurSize = this->size();
761 if (CurSize >= RHSSize) {
762 // Assign common elements.
763 iterator NewEnd;
764 if (RHSSize)
765 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
766 else
767 NewEnd = this->begin();
768
769 // Destroy excess elements.
770 this->destroy_range(NewEnd, this->end());
771
772 // Trim.
773 this->setEnd(NewEnd);
774 return *this;
775 }
776
777 // If we have to grow to have enough elements, destroy the current elements.
778 // This allows us to avoid copying them during the grow.
779 // FIXME: don't do this if they're efficiently moveable.
780 if (this->capacity() < RHSSize) {
781 // Destroy current elements.
782 this->destroy_range(this->begin(), this->end());
783 this->setEnd(this->begin());
784 CurSize = 0;
785 this->grow(RHSSize);
786 } else if (CurSize) {
787 // Otherwise, use assignment for the already-constructed elements.
788 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
789 }
790
791 // Copy construct the new elements in place.
792 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
793 this->begin()+CurSize);
794
795 // Set end.
796 this->setEnd(this->begin()+RHSSize);
797 return *this;
798}
799
223e47cc
LB
800template <typename T>
801SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
802 // Avoid self-assignment.
803 if (this == &RHS) return *this;
804
805 // If the RHS isn't small, clear this vector and then steal its buffer.
806 if (!RHS.isSmall()) {
807 this->destroy_range(this->begin(), this->end());
808 if (!this->isSmall()) free(this->begin());
809 this->BeginX = RHS.BeginX;
810 this->EndX = RHS.EndX;
811 this->CapacityX = RHS.CapacityX;
812 RHS.resetToSmall();
813 return *this;
814 }
815
816 // If we already have sufficient space, assign the common elements, then
817 // destroy any excess.
818 size_t RHSSize = RHS.size();
819 size_t CurSize = this->size();
820 if (CurSize >= RHSSize) {
821 // Assign common elements.
822 iterator NewEnd = this->begin();
823 if (RHSSize)
824 NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
825
826 // Destroy excess elements and trim the bounds.
827 this->destroy_range(NewEnd, this->end());
828 this->setEnd(NewEnd);
829
830 // Clear the RHS.
831 RHS.clear();
832
833 return *this;
834 }
835
836 // If we have to grow to have enough elements, destroy the current elements.
837 // This allows us to avoid copying them during the grow.
838 // FIXME: this may not actually make any sense if we can efficiently move
839 // elements.
840 if (this->capacity() < RHSSize) {
841 // Destroy current elements.
842 this->destroy_range(this->begin(), this->end());
843 this->setEnd(this->begin());
844 CurSize = 0;
845 this->grow(RHSSize);
846 } else if (CurSize) {
847 // Otherwise, use assignment for the already-constructed elements.
1a4d82fc 848 this->move(RHS.begin(), RHS.begin()+CurSize, this->begin());
223e47cc
LB
849 }
850
851 // Move-construct the new elements in place.
852 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
853 this->begin()+CurSize);
854
855 // Set end.
856 this->setEnd(this->begin()+RHSSize);
857
858 RHS.clear();
859 return *this;
860}
223e47cc
LB
861
862/// Storage for the SmallVector elements which aren't contained in
863/// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
864/// element is in the base class. This is specialized for the N=1 and N=0 cases
865/// to avoid allocating unnecessary storage.
866template <typename T, unsigned N>
867struct SmallVectorStorage {
868 typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
869};
870template <typename T> struct SmallVectorStorage<T, 1> {};
871template <typename T> struct SmallVectorStorage<T, 0> {};
872
1a4d82fc 873/// This is a 'vector' (really, a variable-sized array), optimized
223e47cc
LB
874/// for the case when the array is small. It contains some number of elements
875/// in-place, which allows it to avoid heap allocation when the actual number of
876/// elements is below that threshold. This allows normal "small" cases to be
877/// fast without losing generality for large inputs.
878///
879/// Note that this does not attempt to be exception safe.
880///
881template <typename T, unsigned N>
882class SmallVector : public SmallVectorImpl<T> {
1a4d82fc 883 /// Inline space for elements which aren't stored in the base class.
223e47cc
LB
884 SmallVectorStorage<T, N> Storage;
885public:
886 SmallVector() : SmallVectorImpl<T>(N) {
887 }
888
85aaf69f 889 explicit SmallVector(size_t Size, const T &Value = T())
223e47cc
LB
890 : SmallVectorImpl<T>(N) {
891 this->assign(Size, Value);
892 }
893
894 template<typename ItTy>
895 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
896 this->append(S, E);
897 }
898
1a4d82fc
JJ
899 template <typename RangeTy>
900 explicit SmallVector(const llvm::iterator_range<RangeTy> R)
901 : SmallVectorImpl<T>(N) {
902 this->append(R.begin(), R.end());
903 }
904
223e47cc
LB
905 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
906 if (!RHS.empty())
907 SmallVectorImpl<T>::operator=(RHS);
908 }
909
910 const SmallVector &operator=(const SmallVector &RHS) {
911 SmallVectorImpl<T>::operator=(RHS);
912 return *this;
913 }
914
223e47cc
LB
915 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
916 if (!RHS.empty())
917 SmallVectorImpl<T>::operator=(::std::move(RHS));
918 }
919
920 const SmallVector &operator=(SmallVector &&RHS) {
921 SmallVectorImpl<T>::operator=(::std::move(RHS));
922 return *this;
923 }
223e47cc
LB
924};
925
926template<typename T, unsigned N>
927static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
928 return X.capacity_in_bytes();
929}
930
931} // End llvm namespace
932
933namespace std {
934 /// Implement std::swap in terms of SmallVector swap.
935 template<typename T>
936 inline void
937 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
938 LHS.swap(RHS);
939 }
940
941 /// Implement std::swap in terms of SmallVector swap.
942 template<typename T, unsigned N>
943 inline void
944 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
945 LHS.swap(RHS);
946 }
947}
948
949#endif