]> git.proxmox.com Git - rustc.git/blame - src/llvm/include/llvm/ADT/Twine.h
Imported Upstream version 1.0.0~0alpha
[rustc.git] / src / llvm / include / llvm / ADT / Twine.h
CommitLineData
223e47cc
LB
1//===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_TWINE_H
11#define LLVM_ADT_TWINE_H
12
13#include "llvm/ADT/StringRef.h"
14#include "llvm/Support/DataTypes.h"
15#include "llvm/Support/ErrorHandling.h"
16#include <cassert>
17#include <string>
18
19namespace llvm {
20 template <typename T>
21 class SmallVectorImpl;
22 class StringRef;
23 class raw_ostream;
24
25 /// Twine - A lightweight data structure for efficiently representing the
26 /// concatenation of temporary values as strings.
27 ///
28 /// A Twine is a kind of rope, it represents a concatenated string using a
29 /// binary-tree, where the string is the preorder of the nodes. Since the
30 /// Twine can be efficiently rendered into a buffer when its result is used,
31 /// it avoids the cost of generating temporary values for intermediate string
32 /// results -- particularly in cases when the Twine result is never
33 /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34 /// the creation of temporary strings for conversions operations (such as
35 /// appending an integer to a string).
36 ///
37 /// A Twine is not intended for use directly and should not be stored, its
38 /// implementation relies on the ability to store pointers to temporary stack
39 /// objects which may be deallocated at the end of a statement. Twines should
40 /// only be used accepted as const references in arguments, when an API wishes
41 /// to accept possibly-concatenated strings.
42 ///
43 /// Twines support a special 'null' value, which always concatenates to form
44 /// itself, and renders as an empty string. This can be returned from APIs to
45 /// effectively nullify any concatenations performed on the result.
46 ///
47 /// \b Implementation
48 ///
49 /// Given the nature of a Twine, it is not possible for the Twine's
50 /// concatenation method to construct interior nodes; the result must be
51 /// represented inside the returned value. For this reason a Twine object
52 /// actually holds two values, the left- and right-hand sides of a
53 /// concatenation. We also have nullary Twine objects, which are effectively
54 /// sentinel values that represent empty strings.
55 ///
56 /// Thus, a Twine can effectively have zero, one, or two children. The \see
57 /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58 /// testing the number of children.
59 ///
60 /// We maintain a number of invariants on Twine objects (FIXME: Why):
61 /// - Nullary twines are always represented with their Kind on the left-hand
62 /// side, and the Empty kind on the right-hand side.
63 /// - Unary twines are always represented with the value on the left-hand
64 /// side, and the Empty kind on the right-hand side.
65 /// - If a Twine has another Twine as a child, that child should always be
66 /// binary (otherwise it could have been folded into the parent).
67 ///
68 /// These invariants are check by \see isValid().
69 ///
70 /// \b Efficiency Considerations
71 ///
72 /// The Twine is designed to yield efficient and small code for common
73 /// situations. For this reason, the concat() method is inlined so that
74 /// concatenations of leaf nodes can be optimized into stores directly into a
75 /// single stack allocated object.
76 ///
77 /// In practice, not all compilers can be trusted to optimize concat() fully,
78 /// so we provide two additional methods (and accompanying operator+
79 /// overloads) to guarantee that particularly important cases (cstring plus
80 /// StringRef) codegen as desired.
81 class Twine {
82 /// NodeKind - Represent the type of an argument.
83 enum NodeKind {
84 /// An empty string; the result of concatenating anything with it is also
85 /// empty.
86 NullKind,
87
88 /// The empty string.
89 EmptyKind,
90
91 /// A pointer to a Twine instance.
92 TwineKind,
93
94 /// A pointer to a C string instance.
95 CStringKind,
96
97 /// A pointer to an std::string instance.
98 StdStringKind,
99
100 /// A pointer to a StringRef instance.
101 StringRefKind,
102
103 /// A char value reinterpreted as a pointer, to render as a character.
104 CharKind,
105
106 /// An unsigned int value reinterpreted as a pointer, to render as an
107 /// unsigned decimal integer.
108 DecUIKind,
109
110 /// An int value reinterpreted as a pointer, to render as a signed
111 /// decimal integer.
112 DecIKind,
113
114 /// A pointer to an unsigned long value, to render as an unsigned decimal
115 /// integer.
116 DecULKind,
117
118 /// A pointer to a long value, to render as a signed decimal integer.
119 DecLKind,
120
121 /// A pointer to an unsigned long long value, to render as an unsigned
122 /// decimal integer.
123 DecULLKind,
124
125 /// A pointer to a long long value, to render as a signed decimal integer.
126 DecLLKind,
127
128 /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
129 /// integer.
130 UHexKind
131 };
132
133 union Child
134 {
135 const Twine *twine;
136 const char *cString;
137 const std::string *stdString;
138 const StringRef *stringRef;
139 char character;
140 unsigned int decUI;
141 int decI;
142 const unsigned long *decUL;
143 const long *decL;
144 const unsigned long long *decULL;
145 const long long *decLL;
146 const uint64_t *uHex;
147 };
148
149 private:
150 /// LHS - The prefix in the concatenation, which may be uninitialized for
151 /// Null or Empty kinds.
152 Child LHS;
153 /// RHS - The suffix in the concatenation, which may be uninitialized for
154 /// Null or Empty kinds.
155 Child RHS;
156 // enums stored as unsigned chars to save on space while some compilers
157 // don't support specifying the backing type for an enum
158 /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
159 unsigned char LHSKind;
160 /// RHSKind - The NodeKind of the left hand side, \see getLHSKind().
161 unsigned char RHSKind;
162
163 private:
164 /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
165 explicit Twine(NodeKind Kind)
166 : LHSKind(Kind), RHSKind(EmptyKind) {
167 assert(isNullary() && "Invalid kind!");
168 }
169
170 /// Construct a binary twine.
171 explicit Twine(const Twine &_LHS, const Twine &_RHS)
172 : LHSKind(TwineKind), RHSKind(TwineKind) {
173 LHS.twine = &_LHS;
174 RHS.twine = &_RHS;
175 assert(isValid() && "Invalid twine!");
176 }
177
178 /// Construct a twine from explicit values.
179 explicit Twine(Child _LHS, NodeKind _LHSKind,
180 Child _RHS, NodeKind _RHSKind)
181 : LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
182 assert(isValid() && "Invalid twine!");
183 }
184
1a4d82fc
JJ
185 /// Since the intended use of twines is as temporary objects, assignments
186 /// when concatenating might cause undefined behavior or stack corruptions
187 Twine &operator=(const Twine &Other) LLVM_DELETED_FUNCTION;
188
223e47cc
LB
189 /// isNull - Check for the null twine.
190 bool isNull() const {
191 return getLHSKind() == NullKind;
192 }
193
194 /// isEmpty - Check for the empty twine.
195 bool isEmpty() const {
196 return getLHSKind() == EmptyKind;
197 }
198
199 /// isNullary - Check if this is a nullary twine (null or empty).
200 bool isNullary() const {
201 return isNull() || isEmpty();
202 }
203
204 /// isUnary - Check if this is a unary twine.
205 bool isUnary() const {
206 return getRHSKind() == EmptyKind && !isNullary();
207 }
208
209 /// isBinary - Check if this is a binary twine.
210 bool isBinary() const {
211 return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
212 }
213
214 /// isValid - Check if this is a valid twine (satisfying the invariants on
215 /// order and number of arguments).
216 bool isValid() const {
217 // Nullary twines always have Empty on the RHS.
218 if (isNullary() && getRHSKind() != EmptyKind)
219 return false;
220
221 // Null should never appear on the RHS.
222 if (getRHSKind() == NullKind)
223 return false;
224
225 // The RHS cannot be non-empty if the LHS is empty.
226 if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
227 return false;
228
229 // A twine child should always be binary.
230 if (getLHSKind() == TwineKind &&
231 !LHS.twine->isBinary())
232 return false;
233 if (getRHSKind() == TwineKind &&
234 !RHS.twine->isBinary())
235 return false;
236
237 return true;
238 }
239
240 /// getLHSKind - Get the NodeKind of the left-hand side.
241 NodeKind getLHSKind() const { return (NodeKind) LHSKind; }
242
1a4d82fc 243 /// getRHSKind - Get the NodeKind of the right-hand side.
223e47cc
LB
244 NodeKind getRHSKind() const { return (NodeKind) RHSKind; }
245
246 /// printOneChild - Print one child from a twine.
247 void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
248
249 /// printOneChildRepr - Print the representation of one child from a twine.
250 void printOneChildRepr(raw_ostream &OS, Child Ptr,
251 NodeKind Kind) const;
252
253 public:
254 /// @name Constructors
255 /// @{
256
257 /// Construct from an empty string.
258 /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
259 assert(isValid() && "Invalid twine!");
260 }
261
262 /// Construct from a C string.
263 ///
264 /// We take care here to optimize "" into the empty twine -- this will be
265 /// optimized out for string constants. This allows Twine arguments have
266 /// default "" values, without introducing unnecessary string constants.
267 /*implicit*/ Twine(const char *Str)
268 : RHSKind(EmptyKind) {
269 if (Str[0] != '\0') {
270 LHS.cString = Str;
271 LHSKind = CStringKind;
272 } else
273 LHSKind = EmptyKind;
274
275 assert(isValid() && "Invalid twine!");
276 }
277
278 /// Construct from an std::string.
279 /*implicit*/ Twine(const std::string &Str)
280 : LHSKind(StdStringKind), RHSKind(EmptyKind) {
281 LHS.stdString = &Str;
282 assert(isValid() && "Invalid twine!");
283 }
284
285 /// Construct from a StringRef.
286 /*implicit*/ Twine(const StringRef &Str)
287 : LHSKind(StringRefKind), RHSKind(EmptyKind) {
288 LHS.stringRef = &Str;
289 assert(isValid() && "Invalid twine!");
290 }
291
292 /// Construct from a char.
293 explicit Twine(char Val)
294 : LHSKind(CharKind), RHSKind(EmptyKind) {
295 LHS.character = Val;
296 }
297
298 /// Construct from a signed char.
299 explicit Twine(signed char Val)
300 : LHSKind(CharKind), RHSKind(EmptyKind) {
301 LHS.character = static_cast<char>(Val);
302 }
303
304 /// Construct from an unsigned char.
305 explicit Twine(unsigned char Val)
306 : LHSKind(CharKind), RHSKind(EmptyKind) {
307 LHS.character = static_cast<char>(Val);
308 }
309
310 /// Construct a twine to print \p Val as an unsigned decimal integer.
311 explicit Twine(unsigned Val)
312 : LHSKind(DecUIKind), RHSKind(EmptyKind) {
313 LHS.decUI = Val;
314 }
315
316 /// Construct a twine to print \p Val as a signed decimal integer.
317 explicit Twine(int Val)
318 : LHSKind(DecIKind), RHSKind(EmptyKind) {
319 LHS.decI = Val;
320 }
321
322 /// Construct a twine to print \p Val as an unsigned decimal integer.
323 explicit Twine(const unsigned long &Val)
324 : LHSKind(DecULKind), RHSKind(EmptyKind) {
325 LHS.decUL = &Val;
326 }
327
328 /// Construct a twine to print \p Val as a signed decimal integer.
329 explicit Twine(const long &Val)
330 : LHSKind(DecLKind), RHSKind(EmptyKind) {
331 LHS.decL = &Val;
332 }
333
334 /// Construct a twine to print \p Val as an unsigned decimal integer.
335 explicit Twine(const unsigned long long &Val)
336 : LHSKind(DecULLKind), RHSKind(EmptyKind) {
337 LHS.decULL = &Val;
338 }
339
340 /// Construct a twine to print \p Val as a signed decimal integer.
341 explicit Twine(const long long &Val)
342 : LHSKind(DecLLKind), RHSKind(EmptyKind) {
343 LHS.decLL = &Val;
344 }
345
346 // FIXME: Unfortunately, to make sure this is as efficient as possible we
347 // need extra binary constructors from particular types. We can't rely on
348 // the compiler to be smart enough to fold operator+()/concat() down to the
349 // right thing. Yet.
350
351 /// Construct as the concatenation of a C string and a StringRef.
352 /*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
353 : LHSKind(CStringKind), RHSKind(StringRefKind) {
354 LHS.cString = _LHS;
355 RHS.stringRef = &_RHS;
356 assert(isValid() && "Invalid twine!");
357 }
358
359 /// Construct as the concatenation of a StringRef and a C string.
360 /*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
361 : LHSKind(StringRefKind), RHSKind(CStringKind) {
362 LHS.stringRef = &_LHS;
363 RHS.cString = _RHS;
364 assert(isValid() && "Invalid twine!");
365 }
366
367 /// Create a 'null' string, which is an empty string that always
368 /// concatenates to form another empty string.
369 static Twine createNull() {
370 return Twine(NullKind);
371 }
372
373 /// @}
374 /// @name Numeric Conversions
375 /// @{
376
377 // Construct a twine to print \p Val as an unsigned hexadecimal integer.
378 static Twine utohexstr(const uint64_t &Val) {
379 Child LHS, RHS;
380 LHS.uHex = &Val;
1a4d82fc 381 RHS.twine = nullptr;
223e47cc
LB
382 return Twine(LHS, UHexKind, RHS, EmptyKind);
383 }
384
385 /// @}
386 /// @name Predicate Operations
387 /// @{
388
389 /// isTriviallyEmpty - Check if this twine is trivially empty; a false
390 /// return value does not necessarily mean the twine is empty.
391 bool isTriviallyEmpty() const {
392 return isNullary();
393 }
394
395 /// isSingleStringRef - Return true if this twine can be dynamically
396 /// accessed as a single StringRef value with getSingleStringRef().
397 bool isSingleStringRef() const {
398 if (getRHSKind() != EmptyKind) return false;
399
400 switch (getLHSKind()) {
401 case EmptyKind:
402 case CStringKind:
403 case StdStringKind:
404 case StringRefKind:
405 return true;
406 default:
407 return false;
408 }
409 }
410
411 /// @}
412 /// @name String Operations
413 /// @{
414
415 Twine concat(const Twine &Suffix) const;
416
417 /// @}
418 /// @name Output & Conversion.
419 /// @{
420
421 /// str - Return the twine contents as a std::string.
422 std::string str() const;
423
424 /// toVector - Write the concatenated string into the given SmallString or
425 /// SmallVector.
426 void toVector(SmallVectorImpl<char> &Out) const;
427
428 /// getSingleStringRef - This returns the twine as a single StringRef. This
429 /// method is only valid if isSingleStringRef() is true.
430 StringRef getSingleStringRef() const {
431 assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
432 switch (getLHSKind()) {
433 default: llvm_unreachable("Out of sync with isSingleStringRef");
434 case EmptyKind: return StringRef();
435 case CStringKind: return StringRef(LHS.cString);
436 case StdStringKind: return StringRef(*LHS.stdString);
437 case StringRefKind: return *LHS.stringRef;
438 }
439 }
440
441 /// toStringRef - This returns the twine as a single StringRef if it can be
442 /// represented as such. Otherwise the twine is written into the given
443 /// SmallVector and a StringRef to the SmallVector's data is returned.
444 StringRef toStringRef(SmallVectorImpl<char> &Out) const;
445
446 /// toNullTerminatedStringRef - This returns the twine as a single null
447 /// terminated StringRef if it can be represented as such. Otherwise the
448 /// twine is written into the given SmallVector and a StringRef to the
449 /// SmallVector's data is returned.
450 ///
451 /// The returned StringRef's size does not include the null terminator.
452 StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
453
454 /// Write the concatenated string represented by this twine to the
455 /// stream \p OS.
456 void print(raw_ostream &OS) const;
457
458 /// Dump the concatenated string represented by this twine to stderr.
459 void dump() const;
460
461 /// Write the representation of this twine to the stream \p OS.
462 void printRepr(raw_ostream &OS) const;
463
464 /// Dump the representation of this twine to stderr.
465 void dumpRepr() const;
466
467 /// @}
468 };
469
470 /// @name Twine Inline Implementations
471 /// @{
472
473 inline Twine Twine::concat(const Twine &Suffix) const {
474 // Concatenation with null is null.
475 if (isNull() || Suffix.isNull())
476 return Twine(NullKind);
477
478 // Concatenation with empty yields the other side.
479 if (isEmpty())
480 return Suffix;
481 if (Suffix.isEmpty())
482 return *this;
483
484 // Otherwise we need to create a new node, taking care to fold in unary
485 // twines.
486 Child NewLHS, NewRHS;
487 NewLHS.twine = this;
488 NewRHS.twine = &Suffix;
489 NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
490 if (isUnary()) {
491 NewLHS = LHS;
492 NewLHSKind = getLHSKind();
493 }
494 if (Suffix.isUnary()) {
495 NewRHS = Suffix.LHS;
496 NewRHSKind = Suffix.getLHSKind();
497 }
498
499 return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
500 }
501
502 inline Twine operator+(const Twine &LHS, const Twine &RHS) {
503 return LHS.concat(RHS);
504 }
505
506 /// Additional overload to guarantee simplified codegen; this is equivalent to
507 /// concat().
508
509 inline Twine operator+(const char *LHS, const StringRef &RHS) {
510 return Twine(LHS, RHS);
511 }
512
513 /// Additional overload to guarantee simplified codegen; this is equivalent to
514 /// concat().
515
516 inline Twine operator+(const StringRef &LHS, const char *RHS) {
517 return Twine(LHS, RHS);
518 }
519
520 inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
521 RHS.print(OS);
522 return OS;
523 }
524
525 /// @}
526}
527
528#endif