]> git.proxmox.com Git - rustc.git/blame - src/llvm/include/llvm/ADT/Twine.h
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / include / llvm / ADT / Twine.h
CommitLineData
223e47cc
LB
1//===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_TWINE_H
11#define LLVM_ADT_TWINE_H
12
13#include "llvm/ADT/StringRef.h"
14#include "llvm/Support/DataTypes.h"
15#include "llvm/Support/ErrorHandling.h"
16#include <cassert>
17#include <string>
18
19namespace llvm {
20 template <typename T>
21 class SmallVectorImpl;
22 class StringRef;
23 class raw_ostream;
24
25 /// Twine - A lightweight data structure for efficiently representing the
26 /// concatenation of temporary values as strings.
27 ///
28 /// A Twine is a kind of rope, it represents a concatenated string using a
29 /// binary-tree, where the string is the preorder of the nodes. Since the
30 /// Twine can be efficiently rendered into a buffer when its result is used,
31 /// it avoids the cost of generating temporary values for intermediate string
32 /// results -- particularly in cases when the Twine result is never
33 /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34 /// the creation of temporary strings for conversions operations (such as
35 /// appending an integer to a string).
36 ///
37 /// A Twine is not intended for use directly and should not be stored, its
38 /// implementation relies on the ability to store pointers to temporary stack
39 /// objects which may be deallocated at the end of a statement. Twines should
40 /// only be used accepted as const references in arguments, when an API wishes
41 /// to accept possibly-concatenated strings.
42 ///
43 /// Twines support a special 'null' value, which always concatenates to form
44 /// itself, and renders as an empty string. This can be returned from APIs to
45 /// effectively nullify any concatenations performed on the result.
46 ///
47 /// \b Implementation
48 ///
49 /// Given the nature of a Twine, it is not possible for the Twine's
50 /// concatenation method to construct interior nodes; the result must be
51 /// represented inside the returned value. For this reason a Twine object
52 /// actually holds two values, the left- and right-hand sides of a
53 /// concatenation. We also have nullary Twine objects, which are effectively
54 /// sentinel values that represent empty strings.
55 ///
56 /// Thus, a Twine can effectively have zero, one, or two children. The \see
57 /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58 /// testing the number of children.
59 ///
60 /// We maintain a number of invariants on Twine objects (FIXME: Why):
61 /// - Nullary twines are always represented with their Kind on the left-hand
62 /// side, and the Empty kind on the right-hand side.
63 /// - Unary twines are always represented with the value on the left-hand
64 /// side, and the Empty kind on the right-hand side.
65 /// - If a Twine has another Twine as a child, that child should always be
66 /// binary (otherwise it could have been folded into the parent).
67 ///
68 /// These invariants are check by \see isValid().
69 ///
70 /// \b Efficiency Considerations
71 ///
72 /// The Twine is designed to yield efficient and small code for common
73 /// situations. For this reason, the concat() method is inlined so that
74 /// concatenations of leaf nodes can be optimized into stores directly into a
75 /// single stack allocated object.
76 ///
77 /// In practice, not all compilers can be trusted to optimize concat() fully,
78 /// so we provide two additional methods (and accompanying operator+
79 /// overloads) to guarantee that particularly important cases (cstring plus
80 /// StringRef) codegen as desired.
81 class Twine {
82 /// NodeKind - Represent the type of an argument.
85aaf69f 83 enum NodeKind : unsigned char {
223e47cc
LB
84 /// An empty string; the result of concatenating anything with it is also
85 /// empty.
86 NullKind,
87
88 /// The empty string.
89 EmptyKind,
90
91 /// A pointer to a Twine instance.
92 TwineKind,
93
94 /// A pointer to a C string instance.
95 CStringKind,
96
97 /// A pointer to an std::string instance.
98 StdStringKind,
99
100 /// A pointer to a StringRef instance.
101 StringRefKind,
102
103 /// A char value reinterpreted as a pointer, to render as a character.
104 CharKind,
105
106 /// An unsigned int value reinterpreted as a pointer, to render as an
107 /// unsigned decimal integer.
108 DecUIKind,
109
110 /// An int value reinterpreted as a pointer, to render as a signed
111 /// decimal integer.
112 DecIKind,
113
114 /// A pointer to an unsigned long value, to render as an unsigned decimal
115 /// integer.
116 DecULKind,
117
118 /// A pointer to a long value, to render as a signed decimal integer.
119 DecLKind,
120
121 /// A pointer to an unsigned long long value, to render as an unsigned
122 /// decimal integer.
123 DecULLKind,
124
125 /// A pointer to a long long value, to render as a signed decimal integer.
126 DecLLKind,
127
128 /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
129 /// integer.
130 UHexKind
131 };
132
133 union Child
134 {
135 const Twine *twine;
136 const char *cString;
137 const std::string *stdString;
138 const StringRef *stringRef;
139 char character;
140 unsigned int decUI;
141 int decI;
142 const unsigned long *decUL;
143 const long *decL;
144 const unsigned long long *decULL;
145 const long long *decLL;
146 const uint64_t *uHex;
147 };
148
149 private:
150 /// LHS - The prefix in the concatenation, which may be uninitialized for
151 /// Null or Empty kinds.
152 Child LHS;
153 /// RHS - The suffix in the concatenation, which may be uninitialized for
154 /// Null or Empty kinds.
155 Child RHS;
223e47cc 156 /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
85aaf69f
SL
157 NodeKind LHSKind;
158 /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
159 NodeKind RHSKind;
223e47cc
LB
160
161 private:
162 /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
163 explicit Twine(NodeKind Kind)
164 : LHSKind(Kind), RHSKind(EmptyKind) {
165 assert(isNullary() && "Invalid kind!");
166 }
167
168 /// Construct a binary twine.
169 explicit Twine(const Twine &_LHS, const Twine &_RHS)
170 : LHSKind(TwineKind), RHSKind(TwineKind) {
171 LHS.twine = &_LHS;
172 RHS.twine = &_RHS;
173 assert(isValid() && "Invalid twine!");
174 }
175
176 /// Construct a twine from explicit values.
177 explicit Twine(Child _LHS, NodeKind _LHSKind,
178 Child _RHS, NodeKind _RHSKind)
179 : LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
180 assert(isValid() && "Invalid twine!");
181 }
182
1a4d82fc
JJ
183 /// Since the intended use of twines is as temporary objects, assignments
184 /// when concatenating might cause undefined behavior or stack corruptions
185 Twine &operator=(const Twine &Other) LLVM_DELETED_FUNCTION;
186
223e47cc
LB
187 /// isNull - Check for the null twine.
188 bool isNull() const {
189 return getLHSKind() == NullKind;
190 }
191
192 /// isEmpty - Check for the empty twine.
193 bool isEmpty() const {
194 return getLHSKind() == EmptyKind;
195 }
196
197 /// isNullary - Check if this is a nullary twine (null or empty).
198 bool isNullary() const {
199 return isNull() || isEmpty();
200 }
201
202 /// isUnary - Check if this is a unary twine.
203 bool isUnary() const {
204 return getRHSKind() == EmptyKind && !isNullary();
205 }
206
207 /// isBinary - Check if this is a binary twine.
208 bool isBinary() const {
209 return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
210 }
211
212 /// isValid - Check if this is a valid twine (satisfying the invariants on
213 /// order and number of arguments).
214 bool isValid() const {
215 // Nullary twines always have Empty on the RHS.
216 if (isNullary() && getRHSKind() != EmptyKind)
217 return false;
218
219 // Null should never appear on the RHS.
220 if (getRHSKind() == NullKind)
221 return false;
222
223 // The RHS cannot be non-empty if the LHS is empty.
224 if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
225 return false;
226
227 // A twine child should always be binary.
228 if (getLHSKind() == TwineKind &&
229 !LHS.twine->isBinary())
230 return false;
231 if (getRHSKind() == TwineKind &&
232 !RHS.twine->isBinary())
233 return false;
234
235 return true;
236 }
237
238 /// getLHSKind - Get the NodeKind of the left-hand side.
85aaf69f 239 NodeKind getLHSKind() const { return LHSKind; }
223e47cc 240
1a4d82fc 241 /// getRHSKind - Get the NodeKind of the right-hand side.
85aaf69f 242 NodeKind getRHSKind() const { return RHSKind; }
223e47cc
LB
243
244 /// printOneChild - Print one child from a twine.
245 void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
246
247 /// printOneChildRepr - Print the representation of one child from a twine.
248 void printOneChildRepr(raw_ostream &OS, Child Ptr,
249 NodeKind Kind) const;
250
251 public:
252 /// @name Constructors
253 /// @{
254
255 /// Construct from an empty string.
256 /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
257 assert(isValid() && "Invalid twine!");
258 }
259
260 /// Construct from a C string.
261 ///
262 /// We take care here to optimize "" into the empty twine -- this will be
263 /// optimized out for string constants. This allows Twine arguments have
264 /// default "" values, without introducing unnecessary string constants.
265 /*implicit*/ Twine(const char *Str)
266 : RHSKind(EmptyKind) {
267 if (Str[0] != '\0') {
268 LHS.cString = Str;
269 LHSKind = CStringKind;
270 } else
271 LHSKind = EmptyKind;
272
273 assert(isValid() && "Invalid twine!");
274 }
275
276 /// Construct from an std::string.
277 /*implicit*/ Twine(const std::string &Str)
278 : LHSKind(StdStringKind), RHSKind(EmptyKind) {
279 LHS.stdString = &Str;
280 assert(isValid() && "Invalid twine!");
281 }
282
283 /// Construct from a StringRef.
284 /*implicit*/ Twine(const StringRef &Str)
285 : LHSKind(StringRefKind), RHSKind(EmptyKind) {
286 LHS.stringRef = &Str;
287 assert(isValid() && "Invalid twine!");
288 }
289
290 /// Construct from a char.
291 explicit Twine(char Val)
292 : LHSKind(CharKind), RHSKind(EmptyKind) {
293 LHS.character = Val;
294 }
295
296 /// Construct from a signed char.
297 explicit Twine(signed char Val)
298 : LHSKind(CharKind), RHSKind(EmptyKind) {
299 LHS.character = static_cast<char>(Val);
300 }
301
302 /// Construct from an unsigned char.
303 explicit Twine(unsigned char Val)
304 : LHSKind(CharKind), RHSKind(EmptyKind) {
305 LHS.character = static_cast<char>(Val);
306 }
307
308 /// Construct a twine to print \p Val as an unsigned decimal integer.
309 explicit Twine(unsigned Val)
310 : LHSKind(DecUIKind), RHSKind(EmptyKind) {
311 LHS.decUI = Val;
312 }
313
314 /// Construct a twine to print \p Val as a signed decimal integer.
315 explicit Twine(int Val)
316 : LHSKind(DecIKind), RHSKind(EmptyKind) {
317 LHS.decI = Val;
318 }
319
320 /// Construct a twine to print \p Val as an unsigned decimal integer.
321 explicit Twine(const unsigned long &Val)
322 : LHSKind(DecULKind), RHSKind(EmptyKind) {
323 LHS.decUL = &Val;
324 }
325
326 /// Construct a twine to print \p Val as a signed decimal integer.
327 explicit Twine(const long &Val)
328 : LHSKind(DecLKind), RHSKind(EmptyKind) {
329 LHS.decL = &Val;
330 }
331
332 /// Construct a twine to print \p Val as an unsigned decimal integer.
333 explicit Twine(const unsigned long long &Val)
334 : LHSKind(DecULLKind), RHSKind(EmptyKind) {
335 LHS.decULL = &Val;
336 }
337
338 /// Construct a twine to print \p Val as a signed decimal integer.
339 explicit Twine(const long long &Val)
340 : LHSKind(DecLLKind), RHSKind(EmptyKind) {
341 LHS.decLL = &Val;
342 }
343
344 // FIXME: Unfortunately, to make sure this is as efficient as possible we
345 // need extra binary constructors from particular types. We can't rely on
346 // the compiler to be smart enough to fold operator+()/concat() down to the
347 // right thing. Yet.
348
349 /// Construct as the concatenation of a C string and a StringRef.
350 /*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
351 : LHSKind(CStringKind), RHSKind(StringRefKind) {
352 LHS.cString = _LHS;
353 RHS.stringRef = &_RHS;
354 assert(isValid() && "Invalid twine!");
355 }
356
357 /// Construct as the concatenation of a StringRef and a C string.
358 /*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
359 : LHSKind(StringRefKind), RHSKind(CStringKind) {
360 LHS.stringRef = &_LHS;
361 RHS.cString = _RHS;
362 assert(isValid() && "Invalid twine!");
363 }
364
365 /// Create a 'null' string, which is an empty string that always
366 /// concatenates to form another empty string.
367 static Twine createNull() {
368 return Twine(NullKind);
369 }
370
371 /// @}
372 /// @name Numeric Conversions
373 /// @{
374
375 // Construct a twine to print \p Val as an unsigned hexadecimal integer.
376 static Twine utohexstr(const uint64_t &Val) {
377 Child LHS, RHS;
378 LHS.uHex = &Val;
1a4d82fc 379 RHS.twine = nullptr;
223e47cc
LB
380 return Twine(LHS, UHexKind, RHS, EmptyKind);
381 }
382
383 /// @}
384 /// @name Predicate Operations
385 /// @{
386
387 /// isTriviallyEmpty - Check if this twine is trivially empty; a false
388 /// return value does not necessarily mean the twine is empty.
389 bool isTriviallyEmpty() const {
390 return isNullary();
391 }
392
393 /// isSingleStringRef - Return true if this twine can be dynamically
394 /// accessed as a single StringRef value with getSingleStringRef().
395 bool isSingleStringRef() const {
396 if (getRHSKind() != EmptyKind) return false;
397
398 switch (getLHSKind()) {
399 case EmptyKind:
400 case CStringKind:
401 case StdStringKind:
402 case StringRefKind:
403 return true;
404 default:
405 return false;
406 }
407 }
408
409 /// @}
410 /// @name String Operations
411 /// @{
412
413 Twine concat(const Twine &Suffix) const;
414
415 /// @}
416 /// @name Output & Conversion.
417 /// @{
418
419 /// str - Return the twine contents as a std::string.
420 std::string str() const;
421
422 /// toVector - Write the concatenated string into the given SmallString or
423 /// SmallVector.
424 void toVector(SmallVectorImpl<char> &Out) const;
425
426 /// getSingleStringRef - This returns the twine as a single StringRef. This
427 /// method is only valid if isSingleStringRef() is true.
428 StringRef getSingleStringRef() const {
429 assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
430 switch (getLHSKind()) {
431 default: llvm_unreachable("Out of sync with isSingleStringRef");
432 case EmptyKind: return StringRef();
433 case CStringKind: return StringRef(LHS.cString);
434 case StdStringKind: return StringRef(*LHS.stdString);
435 case StringRefKind: return *LHS.stringRef;
436 }
437 }
438
439 /// toStringRef - This returns the twine as a single StringRef if it can be
440 /// represented as such. Otherwise the twine is written into the given
441 /// SmallVector and a StringRef to the SmallVector's data is returned.
442 StringRef toStringRef(SmallVectorImpl<char> &Out) const;
443
444 /// toNullTerminatedStringRef - This returns the twine as a single null
445 /// terminated StringRef if it can be represented as such. Otherwise the
446 /// twine is written into the given SmallVector and a StringRef to the
447 /// SmallVector's data is returned.
448 ///
449 /// The returned StringRef's size does not include the null terminator.
450 StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
451
452 /// Write the concatenated string represented by this twine to the
453 /// stream \p OS.
454 void print(raw_ostream &OS) const;
455
456 /// Dump the concatenated string represented by this twine to stderr.
457 void dump() const;
458
459 /// Write the representation of this twine to the stream \p OS.
460 void printRepr(raw_ostream &OS) const;
461
462 /// Dump the representation of this twine to stderr.
463 void dumpRepr() const;
464
465 /// @}
466 };
467
468 /// @name Twine Inline Implementations
469 /// @{
470
471 inline Twine Twine::concat(const Twine &Suffix) const {
472 // Concatenation with null is null.
473 if (isNull() || Suffix.isNull())
474 return Twine(NullKind);
475
476 // Concatenation with empty yields the other side.
477 if (isEmpty())
478 return Suffix;
479 if (Suffix.isEmpty())
480 return *this;
481
482 // Otherwise we need to create a new node, taking care to fold in unary
483 // twines.
484 Child NewLHS, NewRHS;
485 NewLHS.twine = this;
486 NewRHS.twine = &Suffix;
487 NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
488 if (isUnary()) {
489 NewLHS = LHS;
490 NewLHSKind = getLHSKind();
491 }
492 if (Suffix.isUnary()) {
493 NewRHS = Suffix.LHS;
494 NewRHSKind = Suffix.getLHSKind();
495 }
496
497 return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
498 }
499
500 inline Twine operator+(const Twine &LHS, const Twine &RHS) {
501 return LHS.concat(RHS);
502 }
503
504 /// Additional overload to guarantee simplified codegen; this is equivalent to
505 /// concat().
506
507 inline Twine operator+(const char *LHS, const StringRef &RHS) {
508 return Twine(LHS, RHS);
509 }
510
511 /// Additional overload to guarantee simplified codegen; this is equivalent to
512 /// concat().
513
514 inline Twine operator+(const StringRef &LHS, const char *RHS) {
515 return Twine(LHS, RHS);
516 }
517
518 inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
519 RHS.print(OS);
520 return OS;
521 }
522
523 /// @}
524}
525
526#endif