]> git.proxmox.com Git - rustc.git/blame - src/llvm/include/llvm/Target/Target.td
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / include / llvm / Target / Target.td
CommitLineData
223e47cc
LB
1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
970d7e83 16include "llvm/IR/Intrinsics.td"
223e47cc
LB
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
1a4d82fc 25class SubRegIndex<int size, int offset = 0> {
223e47cc
LB
26 string Namespace = "";
27
1a4d82fc
JJ
28 // Size - Size (in bits) of the sub-registers represented by this index.
29 int Size = size;
30
31 // Offset - Offset of the first bit that is part of this sub-register index.
32 // Set it to -1 if the same index is used to represent sub-registers that can
33 // be at different offsets (for example when using an index to access an
34 // element in a register tuple).
35 int Offset = offset;
36
223e47cc
LB
37 // ComposedOf - A list of two SubRegIndex instances, [A, B].
38 // This indicates that this SubRegIndex is the result of composing A and B.
1a4d82fc
JJ
39 // See ComposedSubRegIndex.
40 list<SubRegIndex> ComposedOf = [];
223e47cc
LB
41
42 // CoveringSubRegIndices - A list of two or more sub-register indexes that
43 // cover this sub-register.
44 //
45 // This field should normally be left blank as TableGen can infer it.
46 //
47 // TableGen automatically detects sub-registers that straddle the registers
48 // in the SubRegs field of a Register definition. For example:
49 //
50 // Q0 = dsub_0 -> D0, dsub_1 -> D1
51 // Q1 = dsub_0 -> D2, dsub_1 -> D3
52 // D1_D2 = dsub_0 -> D1, dsub_1 -> D2
53 // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1
54 //
55 // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
56 // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
57 // CoveringSubRegIndices = [dsub_1, dsub_2].
58 list<SubRegIndex> CoveringSubRegIndices = [];
59}
60
1a4d82fc
JJ
61// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
62// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
63class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
64 : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
65 !if(!eq(B.Offset, -1), -1,
66 !add(A.Offset, B.Offset)))> {
67 // See SubRegIndex.
68 let ComposedOf = [A, B];
69}
70
223e47cc
LB
71// RegAltNameIndex - The alternate name set to use for register operands of
72// this register class when printing.
73class RegAltNameIndex {
74 string Namespace = "";
75}
76def NoRegAltName : RegAltNameIndex;
77
78// Register - You should define one instance of this class for each register
79// in the target machine. String n will become the "name" of the register.
80class Register<string n, list<string> altNames = []> {
81 string Namespace = "";
82 string AsmName = n;
83 list<string> AltNames = altNames;
84
85 // Aliases - A list of registers that this register overlaps with. A read or
86 // modification of this register can potentially read or modify the aliased
87 // registers.
88 list<Register> Aliases = [];
89
90 // SubRegs - A list of registers that are parts of this register. Note these
91 // are "immediate" sub-registers and the registers within the list do not
92 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
93 // not [AX, AH, AL].
94 list<Register> SubRegs = [];
95
96 // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
97 // to address it. Sub-sub-register indices are automatically inherited from
98 // SubRegs.
99 list<SubRegIndex> SubRegIndices = [];
100
101 // RegAltNameIndices - The alternate name indices which are valid for this
102 // register.
103 list<RegAltNameIndex> RegAltNameIndices = [];
104
105 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
106 // These values can be determined by locating the <target>.h file in the
107 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
108 // order of these names correspond to the enumeration used by gcc. A value of
109 // -1 indicates that the gcc number is undefined and -2 that register number
110 // is invalid for this mode/flavour.
111 list<int> DwarfNumbers = [];
112
113 // CostPerUse - Additional cost of instructions using this register compared
114 // to other registers in its class. The register allocator will try to
115 // minimize the number of instructions using a register with a CostPerUse.
116 // This is used by the x86-64 and ARM Thumb targets where some registers
117 // require larger instruction encodings.
118 int CostPerUse = 0;
119
120 // CoveredBySubRegs - When this bit is set, the value of this register is
121 // completely determined by the value of its sub-registers. For example, the
122 // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
123 // covered by its sub-register AX.
124 bit CoveredBySubRegs = 0;
125
126 // HWEncoding - The target specific hardware encoding for this register.
127 bits<16> HWEncoding = 0;
128}
129
130// RegisterWithSubRegs - This can be used to define instances of Register which
131// need to specify sub-registers.
132// List "subregs" specifies which registers are sub-registers to this one. This
133// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
134// This allows the code generator to be careful not to put two values with
135// overlapping live ranges into registers which alias.
136class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
137 let SubRegs = subregs;
138}
139
140// DAGOperand - An empty base class that unifies RegisterClass's and other forms
141// of Operand's that are legal as type qualifiers in DAG patterns. This should
142// only ever be used for defining multiclasses that are polymorphic over both
143// RegisterClass's and other Operand's.
144class DAGOperand { }
145
146// RegisterClass - Now that all of the registers are defined, and aliases
147// between registers are defined, specify which registers belong to which
148// register classes. This also defines the default allocation order of
149// registers by register allocators.
150//
151class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
152 dag regList, RegAltNameIndex idx = NoRegAltName>
153 : DAGOperand {
154 string Namespace = namespace;
155
156 // RegType - Specify the list ValueType of the registers in this register
157 // class. Note that all registers in a register class must have the same
158 // ValueTypes. This is a list because some targets permit storing different
159 // types in same register, for example vector values with 128-bit total size,
160 // but different count/size of items, like SSE on x86.
161 //
162 list<ValueType> RegTypes = regTypes;
163
164 // Size - Specify the spill size in bits of the registers. A default value of
165 // zero lets tablgen pick an appropriate size.
166 int Size = 0;
167
168 // Alignment - Specify the alignment required of the registers when they are
169 // stored or loaded to memory.
170 //
171 int Alignment = alignment;
172
173 // CopyCost - This value is used to specify the cost of copying a value
174 // between two registers in this register class. The default value is one
175 // meaning it takes a single instruction to perform the copying. A negative
176 // value means copying is extremely expensive or impossible.
177 int CopyCost = 1;
178
179 // MemberList - Specify which registers are in this class. If the
180 // allocation_order_* method are not specified, this also defines the order of
181 // allocation used by the register allocator.
182 //
183 dag MemberList = regList;
184
185 // AltNameIndex - The alternate register name to use when printing operands
186 // of this register class. Every register in the register class must have
187 // a valid alternate name for the given index.
188 RegAltNameIndex altNameIndex = idx;
189
190 // isAllocatable - Specify that the register class can be used for virtual
191 // registers and register allocation. Some register classes are only used to
192 // model instruction operand constraints, and should have isAllocatable = 0.
193 bit isAllocatable = 1;
194
195 // AltOrders - List of alternative allocation orders. The default order is
196 // MemberList itself, and that is good enough for most targets since the
197 // register allocators automatically remove reserved registers and move
198 // callee-saved registers to the end.
199 list<dag> AltOrders = [];
200
201 // AltOrderSelect - The body of a function that selects the allocation order
202 // to use in a given machine function. The code will be inserted in a
203 // function like this:
204 //
205 // static inline unsigned f(const MachineFunction &MF) { ... }
206 //
207 // The function should return 0 to select the default order defined by
208 // MemberList, 1 to select the first AltOrders entry and so on.
209 code AltOrderSelect = [{}];
210}
211
212// The memberList in a RegisterClass is a dag of set operations. TableGen
213// evaluates these set operations and expand them into register lists. These
214// are the most common operation, see test/TableGen/SetTheory.td for more
215// examples of what is possible:
216//
217// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
218// register class, or a sub-expression. This is also the way to simply list
219// registers.
220//
221// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
222//
223// (and GPR, CSR) - Set intersection. All registers from the first set that are
224// also in the second set.
225//
226// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
227// numbered registers. Takes an optional 4th operand which is a stride to use
228// when generating the sequence.
229//
230// (shl GPR, 4) - Remove the first N elements.
231//
232// (trunc GPR, 4) - Truncate after the first N elements.
233//
234// (rotl GPR, 1) - Rotate N places to the left.
235//
236// (rotr GPR, 1) - Rotate N places to the right.
237//
238// (decimate GPR, 2) - Pick every N'th element, starting with the first.
239//
240// (interleave A, B, ...) - Interleave the elements from each argument list.
241//
242// All of these operators work on ordered sets, not lists. That means
243// duplicates are removed from sub-expressions.
244
245// Set operators. The rest is defined in TargetSelectionDAG.td.
246def sequence;
247def decimate;
248def interleave;
249
250// RegisterTuples - Automatically generate super-registers by forming tuples of
251// sub-registers. This is useful for modeling register sequence constraints
252// with pseudo-registers that are larger than the architectural registers.
253//
254// The sub-register lists are zipped together:
255//
256// def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
257//
258// Generates the same registers as:
259//
260// let SubRegIndices = [sube, subo] in {
261// def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
262// def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
263// }
264//
265// The generated pseudo-registers inherit super-classes and fields from their
266// first sub-register. Most fields from the Register class are inferred, and
267// the AsmName and Dwarf numbers are cleared.
268//
269// RegisterTuples instances can be used in other set operations to form
270// register classes and so on. This is the only way of using the generated
271// registers.
272class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
273 // SubRegs - N lists of registers to be zipped up. Super-registers are
274 // synthesized from the first element of each SubRegs list, the second
275 // element and so on.
276 list<dag> SubRegs = Regs;
277
278 // SubRegIndices - N SubRegIndex instances. This provides the names of the
279 // sub-registers in the synthesized super-registers.
280 list<SubRegIndex> SubRegIndices = Indices;
281}
282
283
284//===----------------------------------------------------------------------===//
285// DwarfRegNum - This class provides a mapping of the llvm register enumeration
286// to the register numbering used by gcc and gdb. These values are used by a
287// debug information writer to describe where values may be located during
288// execution.
289class DwarfRegNum<list<int> Numbers> {
290 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
291 // These values can be determined by locating the <target>.h file in the
292 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
293 // order of these names correspond to the enumeration used by gcc. A value of
294 // -1 indicates that the gcc number is undefined and -2 that register number
295 // is invalid for this mode/flavour.
296 list<int> DwarfNumbers = Numbers;
297}
298
299// DwarfRegAlias - This class declares that a given register uses the same dwarf
300// numbers as another one. This is useful for making it clear that the two
301// registers do have the same number. It also lets us build a mapping
302// from dwarf register number to llvm register.
303class DwarfRegAlias<Register reg> {
304 Register DwarfAlias = reg;
305}
306
307//===----------------------------------------------------------------------===//
308// Pull in the common support for scheduling
309//
310include "llvm/Target/TargetSchedule.td"
311
312class Predicate; // Forward def
313
314//===----------------------------------------------------------------------===//
315// Instruction set description - These classes correspond to the C++ classes in
316// the Target/TargetInstrInfo.h file.
317//
318class Instruction {
319 string Namespace = "";
320
321 dag OutOperandList; // An dag containing the MI def operand list.
322 dag InOperandList; // An dag containing the MI use operand list.
323 string AsmString = ""; // The .s format to print the instruction with.
324
325 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
326 // otherwise, uninitialized.
327 list<dag> Pattern;
328
329 // The follow state will eventually be inferred automatically from the
330 // instruction pattern.
331
332 list<Register> Uses = []; // Default to using no non-operand registers
333 list<Register> Defs = []; // Default to modifying no non-operand registers
334
335 // Predicates - List of predicates which will be turned into isel matching
336 // code.
337 list<Predicate> Predicates = [];
338
339 // Size - Size of encoded instruction, or zero if the size cannot be determined
340 // from the opcode.
341 int Size = 0;
342
343 // DecoderNamespace - The "namespace" in which this instruction exists, on
344 // targets like ARM which multiple ISA namespaces exist.
345 string DecoderNamespace = "";
346
347 // Code size, for instruction selection.
348 // FIXME: What does this actually mean?
349 int CodeSize = 0;
350
351 // Added complexity passed onto matching pattern.
352 int AddedComplexity = 0;
353
354 // These bits capture information about the high-level semantics of the
355 // instruction.
356 bit isReturn = 0; // Is this instruction a return instruction?
357 bit isBranch = 0; // Is this instruction a branch instruction?
358 bit isIndirectBranch = 0; // Is this instruction an indirect branch?
359 bit isCompare = 0; // Is this instruction a comparison instruction?
360 bit isMoveImm = 0; // Is this instruction a move immediate instruction?
361 bit isBitcast = 0; // Is this instruction a bitcast instruction?
362 bit isSelect = 0; // Is this instruction a select instruction?
363 bit isBarrier = 0; // Can control flow fall through this instruction?
364 bit isCall = 0; // Is this instruction a call instruction?
365 bit canFoldAsLoad = 0; // Can this be folded as a simple memory operand?
366 bit mayLoad = ?; // Is it possible for this inst to read memory?
367 bit mayStore = ?; // Is it possible for this inst to write memory?
368 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
369 bit isCommutable = 0; // Is this 3 operand instruction commutable?
370 bit isTerminator = 0; // Is this part of the terminator for a basic block?
371 bit isReMaterializable = 0; // Is this instruction re-materializable?
372 bit isPredicable = 0; // Is this instruction predicable?
373 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
374 bit usesCustomInserter = 0; // Pseudo instr needing special help.
375 bit hasPostISelHook = 0; // To be *adjusted* after isel by target hook.
376 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
377 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
378 bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
379 bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
380 bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
1a4d82fc
JJ
381 bit isRegSequence = 0; // Is this instruction a kind of reg sequence?
382 // If so, make sure to override
383 // TargetInstrInfo::getRegSequenceLikeInputs.
223e47cc
LB
384 bit isPseudo = 0; // Is this instruction a pseudo-instruction?
385 // If so, won't have encoding information for
386 // the [MC]CodeEmitter stuff.
1a4d82fc
JJ
387 bit isExtractSubreg = 0; // Is this instruction a kind of extract subreg?
388 // If so, make sure to override
389 // TargetInstrInfo::getExtractSubregLikeInputs.
390 bit isInsertSubreg = 0; // Is this instruction a kind of insert subreg?
391 // If so, make sure to override
392 // TargetInstrInfo::getInsertSubregLikeInputs.
223e47cc
LB
393
394 // Side effect flags - When set, the flags have these meanings:
395 //
396 // hasSideEffects - The instruction has side effects that are not
397 // captured by any operands of the instruction or other flags.
398 //
223e47cc 399 bit hasSideEffects = ?;
223e47cc
LB
400
401 // Is this instruction a "real" instruction (with a distinct machine
402 // encoding), or is it a pseudo instruction used for codegen modeling
403 // purposes.
404 // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
405 // instructions can (and often do) still have encoding information
406 // associated with them. Once we've migrated all of them over to true
407 // pseudo-instructions that are lowered to real instructions prior to
408 // the printer/emitter, we can remove this attribute and just use isPseudo.
409 //
410 // The intended use is:
411 // isPseudo: Does not have encoding information and should be expanded,
412 // at the latest, during lowering to MCInst.
413 //
414 // isCodeGenOnly: Does have encoding information and can go through to the
415 // CodeEmitter unchanged, but duplicates a canonical instruction
416 // definition's encoding and should be ignored when constructing the
417 // assembler match tables.
418 bit isCodeGenOnly = 0;
419
420 // Is this instruction a pseudo instruction for use by the assembler parser.
421 bit isAsmParserOnly = 0;
422
423 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
424
970d7e83
LB
425 // Scheduling information from TargetSchedule.td.
426 list<SchedReadWrite> SchedRW;
427
223e47cc
LB
428 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
429
430 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
431 /// be encoded into the output machineinstr.
432 string DisableEncoding = "";
433
434 string PostEncoderMethod = "";
435 string DecoderMethod = "";
436
437 /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
438 bits<64> TSFlags = 0;
439
440 ///@name Assembler Parser Support
441 ///@{
442
443 string AsmMatchConverter = "";
444
445 /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
446 /// two-operand matcher inst-alias for a three operand instruction.
447 /// For example, the arm instruction "add r3, r3, r5" can be written
448 /// as "add r3, r5". The constraint is of the same form as a tied-operand
449 /// constraint. For example, "$Rn = $Rd".
450 string TwoOperandAliasConstraint = "";
451
452 ///@}
1a4d82fc
JJ
453
454 /// UseNamedOperandTable - If set, the operand indices of this instruction
455 /// can be queried via the getNamedOperandIdx() function which is generated
456 /// by TableGen.
457 bit UseNamedOperandTable = 0;
223e47cc
LB
458}
459
460/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
461/// Which instruction it expands to and how the operands map from the
462/// pseudo.
463class PseudoInstExpansion<dag Result> {
464 dag ResultInst = Result; // The instruction to generate.
465 bit isPseudo = 1;
466}
467
468/// Predicates - These are extra conditionals which are turned into instruction
469/// selector matching code. Currently each predicate is just a string.
470class Predicate<string cond> {
471 string CondString = cond;
472
473 /// AssemblerMatcherPredicate - If this feature can be used by the assembler
474 /// matcher, this is true. Targets should set this by inheriting their
475 /// feature from the AssemblerPredicate class in addition to Predicate.
476 bit AssemblerMatcherPredicate = 0;
477
478 /// AssemblerCondString - Name of the subtarget feature being tested used
479 /// as alternative condition string used for assembler matcher.
480 /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
481 /// "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
482 /// It can also list multiple features separated by ",".
483 /// e.g. "ModeThumb,FeatureThumb2" is translated to
484 /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
485 string AssemblerCondString = "";
486
487 /// PredicateName - User-level name to use for the predicate. Mainly for use
488 /// in diagnostics such as missing feature errors in the asm matcher.
489 string PredicateName = "";
490}
491
492/// NoHonorSignDependentRounding - This predicate is true if support for
493/// sign-dependent-rounding is not enabled.
494def NoHonorSignDependentRounding
495 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
496
497class Requires<list<Predicate> preds> {
498 list<Predicate> Predicates = preds;
499}
500
501/// ops definition - This is just a simple marker used to identify the operand
502/// list for an instruction. outs and ins are identical both syntactically and
503/// semanticallyr; they are used to define def operands and use operands to
504/// improve readibility. This should be used like this:
505/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
506def ops;
507def outs;
508def ins;
509
510/// variable_ops definition - Mark this instruction as taking a variable number
511/// of operands.
512def variable_ops;
513
514
515/// PointerLikeRegClass - Values that are designed to have pointer width are
516/// derived from this. TableGen treats the register class as having a symbolic
517/// type that it doesn't know, and resolves the actual regclass to use by using
518/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
519class PointerLikeRegClass<int Kind> {
520 int RegClassKind = Kind;
521}
522
523
524/// ptr_rc definition - Mark this operand as being a pointer value whose
525/// register class is resolved dynamically via a callback to TargetInstrInfo.
526/// FIXME: We should probably change this to a class which contain a list of
527/// flags. But currently we have but one flag.
528def ptr_rc : PointerLikeRegClass<0>;
529
530/// unknown definition - Mark this operand as being of unknown type, causing
531/// it to be resolved by inference in the context it is used.
532class unknown_class;
533def unknown : unknown_class;
534
535/// AsmOperandClass - Representation for the kinds of operands which the target
536/// specific parser can create and the assembly matcher may need to distinguish.
537///
538/// Operand classes are used to define the order in which instructions are
539/// matched, to ensure that the instruction which gets matched for any
540/// particular list of operands is deterministic.
541///
542/// The target specific parser must be able to classify a parsed operand into a
543/// unique class which does not partially overlap with any other classes. It can
544/// match a subset of some other class, in which case the super class field
545/// should be defined.
546class AsmOperandClass {
547 /// The name to use for this class, which should be usable as an enum value.
548 string Name = ?;
549
550 /// The super classes of this operand.
551 list<AsmOperandClass> SuperClasses = [];
552
553 /// The name of the method on the target specific operand to call to test
554 /// whether the operand is an instance of this class. If not set, this will
555 /// default to "isFoo", where Foo is the AsmOperandClass name. The method
556 /// signature should be:
557 /// bool isFoo() const;
558 string PredicateMethod = ?;
559
560 /// The name of the method on the target specific operand to call to add the
561 /// target specific operand to an MCInst. If not set, this will default to
562 /// "addFooOperands", where Foo is the AsmOperandClass name. The method
563 /// signature should be:
564 /// void addFooOperands(MCInst &Inst, unsigned N) const;
565 string RenderMethod = ?;
566
567 /// The name of the method on the target specific operand to call to custom
568 /// handle the operand parsing. This is useful when the operands do not relate
569 /// to immediates or registers and are very instruction specific (as flags to
570 /// set in a processor register, coprocessor number, ...).
571 string ParserMethod = ?;
572
573 // The diagnostic type to present when referencing this operand in a
574 // match failure error message. By default, use a generic "invalid operand"
575 // diagnostic. The target AsmParser maps these codes to text.
576 string DiagnosticType = "";
577}
578
579def ImmAsmOperand : AsmOperandClass {
580 let Name = "Imm";
581}
582
583/// Operand Types - These provide the built-in operand types that may be used
584/// by a target. Targets can optionally provide their own operand types as
585/// needed, though this should not be needed for RISC targets.
586class Operand<ValueType ty> : DAGOperand {
587 ValueType Type = ty;
588 string PrintMethod = "printOperand";
589 string EncoderMethod = "";
590 string DecoderMethod = "";
223e47cc
LB
591 string OperandType = "OPERAND_UNKNOWN";
592 dag MIOperandInfo = (ops);
593
1a4d82fc
JJ
594 // MCOperandPredicate - Optionally, a code fragment operating on
595 // const MCOperand &MCOp, and returning a bool, to indicate if
596 // the value of MCOp is valid for the specific subclass of Operand
597 code MCOperandPredicate;
598
223e47cc
LB
599 // ParserMatchClass - The "match class" that operands of this type fit
600 // in. Match classes are used to define the order in which instructions are
601 // match, to ensure that which instructions gets matched is deterministic.
602 //
603 // The target specific parser must be able to classify an parsed operand into
604 // a unique class, which does not partially overlap with any other classes. It
605 // can match a subset of some other class, in which case the AsmOperandClass
606 // should declare the other operand as one of its super classes.
607 AsmOperandClass ParserMatchClass = ImmAsmOperand;
608}
609
610class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
611 : DAGOperand {
612 // RegClass - The register class of the operand.
613 RegisterClass RegClass = regclass;
614 // PrintMethod - The target method to call to print register operands of
615 // this type. The method normally will just use an alt-name index to look
616 // up the name to print. Default to the generic printOperand().
617 string PrintMethod = pm;
618 // ParserMatchClass - The "match class" that operands of this type fit
619 // in. Match classes are used to define the order in which instructions are
620 // match, to ensure that which instructions gets matched is deterministic.
621 //
622 // The target specific parser must be able to classify an parsed operand into
623 // a unique class, which does not partially overlap with any other classes. It
624 // can match a subset of some other class, in which case the AsmOperandClass
625 // should declare the other operand as one of its super classes.
626 AsmOperandClass ParserMatchClass;
85aaf69f
SL
627
628 string OperandNamespace = "MCOI";
629 string OperandType = "OPERAND_REGISTER";
223e47cc
LB
630}
631
632let OperandType = "OPERAND_IMMEDIATE" in {
633def i1imm : Operand<i1>;
634def i8imm : Operand<i8>;
635def i16imm : Operand<i16>;
636def i32imm : Operand<i32>;
637def i64imm : Operand<i64>;
638
639def f32imm : Operand<f32>;
640def f64imm : Operand<f64>;
641}
642
643/// zero_reg definition - Special node to stand for the zero register.
644///
645def zero_reg;
646
1a4d82fc
JJ
647/// All operands which the MC layer classifies as predicates should inherit from
648/// this class in some manner. This is already handled for the most commonly
649/// used PredicateOperand, but may be useful in other circumstances.
650class PredicateOp;
651
223e47cc
LB
652/// OperandWithDefaultOps - This Operand class can be used as the parent class
653/// for an Operand that needs to be initialized with a default value if
654/// no value is supplied in a pattern. This class can be used to simplify the
655/// pattern definitions for instructions that have target specific flags
656/// encoded as immediate operands.
657class OperandWithDefaultOps<ValueType ty, dag defaultops>
658 : Operand<ty> {
659 dag DefaultOps = defaultops;
660}
661
662/// PredicateOperand - This can be used to define a predicate operand for an
663/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
664/// AlwaysVal specifies the value of this predicate when set to "always
665/// execute".
666class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
1a4d82fc 667 : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
223e47cc
LB
668 let MIOperandInfo = OpTypes;
669}
670
671/// OptionalDefOperand - This is used to define a optional definition operand
672/// for an instruction. DefaultOps is the register the operand represents if
673/// none is supplied, e.g. zero_reg.
674class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
675 : OperandWithDefaultOps<ty, defaultops> {
676 let MIOperandInfo = OpTypes;
677}
678
679
680// InstrInfo - This class should only be instantiated once to provide parameters
681// which are global to the target machine.
682//
683class InstrInfo {
684 // Target can specify its instructions in either big or little-endian formats.
685 // For instance, while both Sparc and PowerPC are big-endian platforms, the
686 // Sparc manual specifies its instructions in the format [31..0] (big), while
687 // PowerPC specifies them using the format [0..31] (little).
688 bit isLittleEndianEncoding = 0;
689
690 // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
691 // by default, and TableGen will infer their value from the instruction
692 // pattern when possible.
693 //
694 // Normally, TableGen will issue an error it it can't infer the value of a
695 // property that hasn't been set explicitly. When guessInstructionProperties
696 // is set, it will guess a safe value instead.
697 //
698 // This option is a temporary migration help. It will go away.
699 bit guessInstructionProperties = 1;
1a4d82fc
JJ
700
701 // TableGen's instruction encoder generator has support for matching operands
702 // to bit-field variables both by name and by position. While matching by
703 // name is preferred, this is currently not possible for complex operands,
704 // and some targets still reply on the positional encoding rules. When
705 // generating a decoder for such targets, the positional encoding rules must
706 // be used by the decoder generator as well.
707 //
708 // This option is temporary; it will go away once the TableGen decoder
709 // generator has better support for complex operands and targets have
710 // migrated away from using positionally encoded operands.
711 bit decodePositionallyEncodedOperands = 0;
712
713 // When set, this indicates that there will be no overlap between those
714 // operands that are matched by ordering (positional operands) and those
715 // matched by name.
716 //
717 // This option is temporary; it will go away once the TableGen decoder
718 // generator has better support for complex operands and targets have
719 // migrated away from using positionally encoded operands.
720 bit noNamedPositionallyEncodedOperands = 0;
223e47cc
LB
721}
722
723// Standard Pseudo Instructions.
724// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
725// Only these instructions are allowed in the TargetOpcode namespace.
726let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in {
727def PHI : Instruction {
728 let OutOperandList = (outs);
729 let InOperandList = (ins variable_ops);
730 let AsmString = "PHINODE";
731}
732def INLINEASM : Instruction {
733 let OutOperandList = (outs);
734 let InOperandList = (ins variable_ops);
735 let AsmString = "";
85aaf69f 736 let hasSideEffects = 0; // Note side effect is encoded in an operand.
223e47cc 737}
1a4d82fc 738def CFI_INSTRUCTION : Instruction {
223e47cc
LB
739 let OutOperandList = (outs);
740 let InOperandList = (ins i32imm:$id);
741 let AsmString = "";
742 let hasCtrlDep = 1;
743 let isNotDuplicable = 1;
744}
745def EH_LABEL : Instruction {
746 let OutOperandList = (outs);
747 let InOperandList = (ins i32imm:$id);
748 let AsmString = "";
749 let hasCtrlDep = 1;
750 let isNotDuplicable = 1;
751}
752def GC_LABEL : Instruction {
753 let OutOperandList = (outs);
754 let InOperandList = (ins i32imm:$id);
755 let AsmString = "";
756 let hasCtrlDep = 1;
757 let isNotDuplicable = 1;
758}
759def KILL : Instruction {
760 let OutOperandList = (outs);
761 let InOperandList = (ins variable_ops);
762 let AsmString = "";
85aaf69f 763 let hasSideEffects = 0;
223e47cc
LB
764}
765def EXTRACT_SUBREG : Instruction {
766 let OutOperandList = (outs unknown:$dst);
767 let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
768 let AsmString = "";
85aaf69f 769 let hasSideEffects = 0;
223e47cc
LB
770}
771def INSERT_SUBREG : Instruction {
772 let OutOperandList = (outs unknown:$dst);
773 let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
774 let AsmString = "";
85aaf69f 775 let hasSideEffects = 0;
223e47cc
LB
776 let Constraints = "$supersrc = $dst";
777}
778def IMPLICIT_DEF : Instruction {
779 let OutOperandList = (outs unknown:$dst);
780 let InOperandList = (ins);
781 let AsmString = "";
85aaf69f 782 let hasSideEffects = 0;
223e47cc
LB
783 let isReMaterializable = 1;
784 let isAsCheapAsAMove = 1;
785}
786def SUBREG_TO_REG : Instruction {
787 let OutOperandList = (outs unknown:$dst);
788 let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
789 let AsmString = "";
85aaf69f 790 let hasSideEffects = 0;
223e47cc
LB
791}
792def COPY_TO_REGCLASS : Instruction {
793 let OutOperandList = (outs unknown:$dst);
794 let InOperandList = (ins unknown:$src, i32imm:$regclass);
795 let AsmString = "";
85aaf69f 796 let hasSideEffects = 0;
223e47cc
LB
797 let isAsCheapAsAMove = 1;
798}
799def DBG_VALUE : Instruction {
800 let OutOperandList = (outs);
801 let InOperandList = (ins variable_ops);
802 let AsmString = "DBG_VALUE";
85aaf69f 803 let hasSideEffects = 0;
223e47cc
LB
804}
805def REG_SEQUENCE : Instruction {
806 let OutOperandList = (outs unknown:$dst);
85aaf69f 807 let InOperandList = (ins unknown:$supersrc, variable_ops);
223e47cc 808 let AsmString = "";
85aaf69f 809 let hasSideEffects = 0;
223e47cc
LB
810 let isAsCheapAsAMove = 1;
811}
812def COPY : Instruction {
813 let OutOperandList = (outs unknown:$dst);
814 let InOperandList = (ins unknown:$src);
815 let AsmString = "";
85aaf69f 816 let hasSideEffects = 0;
223e47cc
LB
817 let isAsCheapAsAMove = 1;
818}
223e47cc
LB
819def BUNDLE : Instruction {
820 let OutOperandList = (outs);
821 let InOperandList = (ins variable_ops);
822 let AsmString = "BUNDLE";
823}
824def LIFETIME_START : Instruction {
825 let OutOperandList = (outs);
826 let InOperandList = (ins i32imm:$id);
827 let AsmString = "LIFETIME_START";
85aaf69f 828 let hasSideEffects = 0;
223e47cc
LB
829}
830def LIFETIME_END : Instruction {
831 let OutOperandList = (outs);
832 let InOperandList = (ins i32imm:$id);
833 let AsmString = "LIFETIME_END";
85aaf69f 834 let hasSideEffects = 0;
223e47cc 835}
1a4d82fc
JJ
836def STACKMAP : Instruction {
837 let OutOperandList = (outs);
838 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
839 let isCall = 1;
840 let mayLoad = 1;
841 let usesCustomInserter = 1;
842}
843def PATCHPOINT : Instruction {
844 let OutOperandList = (outs unknown:$dst);
845 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
846 i32imm:$nargs, i32imm:$cc, variable_ops);
847 let isCall = 1;
848 let mayLoad = 1;
849 let usesCustomInserter = 1;
850}
85aaf69f
SL
851def STATEPOINT : Instruction {
852 let OutOperandList = (outs);
853 let InOperandList = (ins variable_ops);
854 let usesCustomInserter = 1;
855 let mayLoad = 1;
856 let mayStore = 1;
857 let hasSideEffects = 1;
858 let isCall = 1;
859}
1a4d82fc
JJ
860def LOAD_STACK_GUARD : Instruction {
861 let OutOperandList = (outs ptr_rc:$dst);
862 let InOperandList = (ins);
863 let mayLoad = 1;
864 bit isReMaterializable = 1;
865 let hasSideEffects = 0;
866 bit isPseudo = 1;
867}
85aaf69f
SL
868def FRAME_ALLOC : Instruction {
869 // This instruction is really just a label. It has to be part of the chain so
870 // that it doesn't get dropped from the DAG, but it produces nothing and has
871 // no side effects.
872 let OutOperandList = (outs);
873 let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
874 let hasSideEffects = 0;
875 let hasCtrlDep = 1;
876}
223e47cc
LB
877}
878
879//===----------------------------------------------------------------------===//
880// AsmParser - This class can be implemented by targets that wish to implement
881// .s file parsing.
882//
883// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
884// syntax on X86 for example).
885//
886class AsmParser {
887 // AsmParserClassName - This specifies the suffix to use for the asmparser
888 // class. Generated AsmParser classes are always prefixed with the target
889 // name.
890 string AsmParserClassName = "AsmParser";
891
892 // AsmParserInstCleanup - If non-empty, this is the name of a custom member
893 // function of the AsmParser class to call on every matched instruction.
894 // This can be used to perform target specific instruction post-processing.
895 string AsmParserInstCleanup = "";
896
1a4d82fc
JJ
897 // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
898 // written register name matcher
223e47cc 899 bit ShouldEmitMatchRegisterName = 1;
1a4d82fc
JJ
900
901 /// Does the instruction mnemonic allow '.'
902 bit MnemonicContainsDot = 0;
223e47cc
LB
903}
904def DefaultAsmParser : AsmParser;
905
906//===----------------------------------------------------------------------===//
907// AsmParserVariant - Subtargets can have multiple different assembly parsers
908// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
909// implemented by targets to describe such variants.
910//
911class AsmParserVariant {
912 // Variant - AsmParsers can be of multiple different variants. Variants are
913 // used to support targets that need to parser multiple formats for the
914 // assembly language.
915 int Variant = 0;
916
1a4d82fc
JJ
917 // Name - The AsmParser variant name (e.g., AT&T vs Intel).
918 string Name = "";
919
223e47cc
LB
920 // CommentDelimiter - If given, the delimiter string used to recognize
921 // comments which are hard coded in the .td assembler strings for individual
922 // instructions.
923 string CommentDelimiter = "";
924
925 // RegisterPrefix - If given, the token prefix which indicates a register
926 // token. This is used by the matcher to automatically recognize hard coded
927 // register tokens as constrained registers, instead of tokens, for the
928 // purposes of matching.
929 string RegisterPrefix = "";
930}
931def DefaultAsmParserVariant : AsmParserVariant;
932
933/// AssemblerPredicate - This is a Predicate that can be used when the assembler
934/// matches instructions and aliases.
935class AssemblerPredicate<string cond, string name = ""> {
936 bit AssemblerMatcherPredicate = 1;
937 string AssemblerCondString = cond;
938 string PredicateName = name;
939}
940
941/// TokenAlias - This class allows targets to define assembler token
942/// operand aliases. That is, a token literal operand which is equivalent
943/// to another, canonical, token literal. For example, ARM allows:
944/// vmov.u32 s4, #0 -> vmov.i32, #0
945/// 'u32' is a more specific designator for the 32-bit integer type specifier
946/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
947/// def : TokenAlias<".u32", ".i32">;
948///
949/// This works by marking the match class of 'From' as a subclass of the
950/// match class of 'To'.
951class TokenAlias<string From, string To> {
952 string FromToken = From;
953 string ToToken = To;
954}
955
956/// MnemonicAlias - This class allows targets to define assembler mnemonic
957/// aliases. This should be used when all forms of one mnemonic are accepted
958/// with a different mnemonic. For example, X86 allows:
959/// sal %al, 1 -> shl %al, 1
960/// sal %ax, %cl -> shl %ax, %cl
961/// sal %eax, %cl -> shl %eax, %cl
962/// etc. Though "sal" is accepted with many forms, all of them are directly
963/// translated to a shl, so it can be handled with (in the case of X86, it
964/// actually has one for each suffix as well):
965/// def : MnemonicAlias<"sal", "shl">;
966///
967/// Mnemonic aliases are mapped before any other translation in the match phase,
968/// and do allow Requires predicates, e.g.:
969///
970/// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
971/// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
972///
1a4d82fc
JJ
973/// Mnemonic aliases can also be constrained to specific variants, e.g.:
974///
975/// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
976///
977/// If no variant (e.g., "att" or "intel") is specified then the alias is
978/// applied unconditionally.
979class MnemonicAlias<string From, string To, string VariantName = ""> {
223e47cc
LB
980 string FromMnemonic = From;
981 string ToMnemonic = To;
1a4d82fc 982 string AsmVariantName = VariantName;
223e47cc
LB
983
984 // Predicates - Predicates that must be true for this remapping to happen.
985 list<Predicate> Predicates = [];
986}
987
988/// InstAlias - This defines an alternate assembly syntax that is allowed to
989/// match an instruction that has a different (more canonical) assembly
990/// representation.
1a4d82fc 991class InstAlias<string Asm, dag Result, int Emit = 1> {
223e47cc
LB
992 string AsmString = Asm; // The .s format to match the instruction with.
993 dag ResultInst = Result; // The MCInst to generate.
1a4d82fc
JJ
994
995 // This determines which order the InstPrinter detects aliases for
996 // printing. A larger value makes the alias more likely to be
997 // emitted. The Instruction's own definition is notionally 0.5, so 0
998 // disables printing and 1 enables it if there are no conflicting aliases.
999 int EmitPriority = Emit;
223e47cc
LB
1000
1001 // Predicates - Predicates that must be true for this to match.
1002 list<Predicate> Predicates = [];
1003}
1004
1005//===----------------------------------------------------------------------===//
1006// AsmWriter - This class can be implemented by targets that need to customize
1007// the format of the .s file writer.
1008//
1009// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1010// on X86 for example).
1011//
1012class AsmWriter {
1013 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1014 // class. Generated AsmWriter classes are always prefixed with the target
1015 // name.
1a4d82fc 1016 string AsmWriterClassName = "InstPrinter";
223e47cc
LB
1017
1018 // Variant - AsmWriters can be of multiple different variants. Variants are
1019 // used to support targets that need to emit assembly code in ways that are
1020 // mostly the same for different targets, but have minor differences in
1021 // syntax. If the asmstring contains {|} characters in them, this integer
1022 // will specify which alternative to use. For example "{x|y|z}" with Variant
1023 // == 1, will expand to "y".
1024 int Variant = 0;
223e47cc
LB
1025}
1026def DefaultAsmWriter : AsmWriter;
1027
1028
1029//===----------------------------------------------------------------------===//
1030// Target - This class contains the "global" target information
1031//
1032class Target {
1033 // InstructionSet - Instruction set description for this target.
1034 InstrInfo InstructionSet;
1035
1036 // AssemblyParsers - The AsmParser instances available for this target.
1037 list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1038
1039 /// AssemblyParserVariants - The AsmParserVariant instances available for
1040 /// this target.
1041 list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1042
1043 // AssemblyWriters - The AsmWriter instances available for this target.
1044 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1045}
1046
1047//===----------------------------------------------------------------------===//
1048// SubtargetFeature - A characteristic of the chip set.
1049//
1050class SubtargetFeature<string n, string a, string v, string d,
1051 list<SubtargetFeature> i = []> {
1052 // Name - Feature name. Used by command line (-mattr=) to determine the
1053 // appropriate target chip.
1054 //
1055 string Name = n;
1056
1057 // Attribute - Attribute to be set by feature.
1058 //
1059 string Attribute = a;
1060
1061 // Value - Value the attribute to be set to by feature.
1062 //
1063 string Value = v;
1064
1065 // Desc - Feature description. Used by command line (-mattr=) to display help
1066 // information.
1067 //
1068 string Desc = d;
1069
1070 // Implies - Features that this feature implies are present. If one of those
1071 // features isn't set, then this one shouldn't be set either.
1072 //
1073 list<SubtargetFeature> Implies = i;
1074}
1075
1a4d82fc
JJ
1076/// Specifies a Subtarget feature that this instruction is deprecated on.
1077class Deprecated<SubtargetFeature dep> {
1078 SubtargetFeature DeprecatedFeatureMask = dep;
1079}
1080
1081/// A custom predicate used to determine if an instruction is
1082/// deprecated or not.
1083class ComplexDeprecationPredicate<string dep> {
1084 string ComplexDeprecationPredicate = dep;
1085}
1086
223e47cc
LB
1087//===----------------------------------------------------------------------===//
1088// Processor chip sets - These values represent each of the chip sets supported
1089// by the scheduler. Each Processor definition requires corresponding
1090// instruction itineraries.
1091//
1092class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1093 // Name - Chip set name. Used by command line (-mcpu=) to determine the
1094 // appropriate target chip.
1095 //
1096 string Name = n;
1097
1098 // SchedModel - The machine model for scheduling and instruction cost.
1099 //
1100 SchedMachineModel SchedModel = NoSchedModel;
1101
1102 // ProcItin - The scheduling information for the target processor.
1103 //
1104 ProcessorItineraries ProcItin = pi;
1105
1106 // Features - list of
1107 list<SubtargetFeature> Features = f;
1108}
1109
1110// ProcessorModel allows subtargets to specify the more general
1111// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1112// gradually move to this newer form.
1113//
1114// Although this class always passes NoItineraries to the Processor
1115// class, the SchedMachineModel may still define valid Itineraries.
1116class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1117 : Processor<n, NoItineraries, f> {
1118 let SchedModel = m;
1119}
1120
970d7e83
LB
1121//===----------------------------------------------------------------------===//
1122// InstrMapping - This class is used to create mapping tables to relate
1123// instructions with each other based on the values specified in RowFields,
1124// ColFields, KeyCol and ValueCols.
1125//
1126class InstrMapping {
1127 // FilterClass - Used to limit search space only to the instructions that
1128 // define the relationship modeled by this InstrMapping record.
1129 string FilterClass;
1130
1131 // RowFields - List of fields/attributes that should be same for all the
1132 // instructions in a row of the relation table. Think of this as a set of
1133 // properties shared by all the instructions related by this relationship
1134 // model and is used to categorize instructions into subgroups. For instance,
1135 // if we want to define a relation that maps 'Add' instruction to its
1136 // predicated forms, we can define RowFields like this:
1137 //
1138 // let RowFields = BaseOp
1139 // All add instruction predicated/non-predicated will have to set their BaseOp
1140 // to the same value.
1141 //
1142 // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1143 // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1144 // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' }
1145 list<string> RowFields = [];
1146
1147 // List of fields/attributes that are same for all the instructions
1148 // in a column of the relation table.
1149 // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1150 // based on the 'predSense' values. All the instruction in a specific
1151 // column have the same value and it is fixed for the column according
1152 // to the values set in 'ValueCols'.
1153 list<string> ColFields = [];
1154
1155 // Values for the fields/attributes listed in 'ColFields'.
1156 // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1157 // that models this relation) should be non-predicated.
1158 // In the example above, 'Add' is the key instruction.
1159 list<string> KeyCol = [];
1160
1161 // List of values for the fields/attributes listed in 'ColFields', one for
1162 // each column in the relation table.
1163 //
1164 // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1165 // table. First column requires all the instructions to have predSense
1166 // set to 'true' and second column requires it to be 'false'.
1167 list<list<string> > ValueCols = [];
1168}
1169
223e47cc
LB
1170//===----------------------------------------------------------------------===//
1171// Pull in the common support for calling conventions.
1172//
1173include "llvm/Target/TargetCallingConv.td"
1174
1175//===----------------------------------------------------------------------===//
1176// Pull in the common support for DAG isel generation.
1177//
1178include "llvm/Target/TargetSelectionDAG.td"