]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Analysis / MemoryDependenceAnalysis.cpp
CommitLineData
1a4d82fc 1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
223e47cc
LB
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
1a4d82fc 11// operation, what preceding memory operations it depends on. It builds on
223e47cc
LB
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
223e47cc 17#include "llvm/Analysis/MemoryDependenceAnalysis.h"
970d7e83
LB
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/Statistic.h"
223e47cc 20#include "llvm/Analysis/AliasAnalysis.h"
85aaf69f 21#include "llvm/Analysis/AssumptionCache.h"
223e47cc
LB
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/MemoryBuiltins.h"
24#include "llvm/Analysis/PHITransAddr.h"
25#include "llvm/Analysis/ValueTracking.h"
970d7e83 26#include "llvm/IR/DataLayout.h"
1a4d82fc 27#include "llvm/IR/Dominators.h"
970d7e83
LB
28#include "llvm/IR/Function.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/LLVMContext.h"
1a4d82fc 32#include "llvm/IR/PredIteratorCache.h"
223e47cc 33#include "llvm/Support/Debug.h"
223e47cc
LB
34using namespace llvm;
35
1a4d82fc
JJ
36#define DEBUG_TYPE "memdep"
37
223e47cc
LB
38STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
39STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
40STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
41
42STATISTIC(NumCacheNonLocalPtr,
43 "Number of fully cached non-local ptr responses");
44STATISTIC(NumCacheDirtyNonLocalPtr,
45 "Number of cached, but dirty, non-local ptr responses");
46STATISTIC(NumUncacheNonLocalPtr,
47 "Number of uncached non-local ptr responses");
48STATISTIC(NumCacheCompleteNonLocalPtr,
49 "Number of block queries that were completely cached");
50
51// Limit for the number of instructions to scan in a block.
85aaf69f
SL
52static const unsigned int BlockScanLimit = 100;
53
54// Limit on the number of memdep results to process.
55static const unsigned int NumResultsLimit = 100;
223e47cc
LB
56
57char MemoryDependenceAnalysis::ID = 0;
1a4d82fc 58
223e47cc
LB
59// Register this pass...
60INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
61 "Memory Dependence Analysis", false, true)
85aaf69f 62INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
223e47cc
LB
63INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
64INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
65 "Memory Dependence Analysis", false, true)
66
67MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1a4d82fc 68 : FunctionPass(ID), PredCache() {
223e47cc
LB
69 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
70}
71MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
72}
73
74/// Clean up memory in between runs
75void MemoryDependenceAnalysis::releaseMemory() {
76 LocalDeps.clear();
77 NonLocalDeps.clear();
78 NonLocalPointerDeps.clear();
79 ReverseLocalDeps.clear();
80 ReverseNonLocalDeps.clear();
81 ReverseNonLocalPtrDeps.clear();
82 PredCache->clear();
83}
84
85
86
87/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
88///
89void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
90 AU.setPreservesAll();
85aaf69f 91 AU.addRequired<AssumptionCacheTracker>();
223e47cc
LB
92 AU.addRequiredTransitive<AliasAnalysis>();
93}
94
85aaf69f 95bool MemoryDependenceAnalysis::runOnFunction(Function &F) {
223e47cc 96 AA = &getAnalysis<AliasAnalysis>();
85aaf69f 97 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1a4d82fc
JJ
98 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
99 DL = DLP ? &DLP->getDataLayout() : nullptr;
100 DominatorTreeWrapperPass *DTWP =
101 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
102 DT = DTWP ? &DTWP->getDomTree() : nullptr;
103 if (!PredCache)
223e47cc
LB
104 PredCache.reset(new PredIteratorCache());
105 return false;
106}
107
108/// RemoveFromReverseMap - This is a helper function that removes Val from
109/// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
110template <typename KeyTy>
1a4d82fc 111static void RemoveFromReverseMap(DenseMap<Instruction*,
223e47cc
LB
112 SmallPtrSet<KeyTy, 4> > &ReverseMap,
113 Instruction *Inst, KeyTy Val) {
114 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
115 InstIt = ReverseMap.find(Inst);
116 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
117 bool Found = InstIt->second.erase(Val);
118 assert(Found && "Invalid reverse map!"); (void)Found;
119 if (InstIt->second.empty())
120 ReverseMap.erase(InstIt);
121}
122
123/// GetLocation - If the given instruction references a specific memory
124/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
125/// Return a ModRefInfo value describing the general behavior of the
126/// instruction.
127static
128AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
129 AliasAnalysis::Location &Loc,
130 AliasAnalysis *AA) {
131 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
132 if (LI->isUnordered()) {
133 Loc = AA->getLocation(LI);
134 return AliasAnalysis::Ref;
1a4d82fc
JJ
135 }
136 if (LI->getOrdering() == Monotonic) {
223e47cc
LB
137 Loc = AA->getLocation(LI);
138 return AliasAnalysis::ModRef;
139 }
140 Loc = AliasAnalysis::Location();
141 return AliasAnalysis::ModRef;
142 }
143
144 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
145 if (SI->isUnordered()) {
146 Loc = AA->getLocation(SI);
147 return AliasAnalysis::Mod;
1a4d82fc
JJ
148 }
149 if (SI->getOrdering() == Monotonic) {
223e47cc
LB
150 Loc = AA->getLocation(SI);
151 return AliasAnalysis::ModRef;
152 }
153 Loc = AliasAnalysis::Location();
154 return AliasAnalysis::ModRef;
155 }
156
157 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
158 Loc = AA->getLocation(V);
159 return AliasAnalysis::ModRef;
160 }
161
162 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
163 // calls to free() deallocate the entire structure
164 Loc = AliasAnalysis::Location(CI->getArgOperand(0));
165 return AliasAnalysis::Mod;
166 }
167
1a4d82fc
JJ
168 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
169 AAMDNodes AAInfo;
170
223e47cc
LB
171 switch (II->getIntrinsicID()) {
172 case Intrinsic::lifetime_start:
173 case Intrinsic::lifetime_end:
174 case Intrinsic::invariant_start:
1a4d82fc 175 II->getAAMetadata(AAInfo);
223e47cc
LB
176 Loc = AliasAnalysis::Location(II->getArgOperand(1),
177 cast<ConstantInt>(II->getArgOperand(0))
1a4d82fc 178 ->getZExtValue(), AAInfo);
223e47cc
LB
179 // These intrinsics don't really modify the memory, but returning Mod
180 // will allow them to be handled conservatively.
181 return AliasAnalysis::Mod;
182 case Intrinsic::invariant_end:
1a4d82fc 183 II->getAAMetadata(AAInfo);
223e47cc
LB
184 Loc = AliasAnalysis::Location(II->getArgOperand(2),
185 cast<ConstantInt>(II->getArgOperand(1))
1a4d82fc 186 ->getZExtValue(), AAInfo);
223e47cc
LB
187 // These intrinsics don't really modify the memory, but returning Mod
188 // will allow them to be handled conservatively.
189 return AliasAnalysis::Mod;
190 default:
191 break;
192 }
1a4d82fc 193 }
223e47cc
LB
194
195 // Otherwise, just do the coarse-grained thing that always works.
196 if (Inst->mayWriteToMemory())
197 return AliasAnalysis::ModRef;
198 if (Inst->mayReadFromMemory())
199 return AliasAnalysis::Ref;
200 return AliasAnalysis::NoModRef;
201}
202
203/// getCallSiteDependencyFrom - Private helper for finding the local
204/// dependencies of a call site.
205MemDepResult MemoryDependenceAnalysis::
206getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
207 BasicBlock::iterator ScanIt, BasicBlock *BB) {
208 unsigned Limit = BlockScanLimit;
209
210 // Walk backwards through the block, looking for dependencies
211 while (ScanIt != BB->begin()) {
212 // Limit the amount of scanning we do so we don't end up with quadratic
1a4d82fc 213 // running time on extreme testcases.
223e47cc
LB
214 --Limit;
215 if (!Limit)
216 return MemDepResult::getUnknown();
217
218 Instruction *Inst = --ScanIt;
1a4d82fc 219
223e47cc
LB
220 // If this inst is a memory op, get the pointer it accessed
221 AliasAnalysis::Location Loc;
222 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
223 if (Loc.Ptr) {
224 // A simple instruction.
225 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
226 return MemDepResult::getClobber(Inst);
227 continue;
228 }
229
230 if (CallSite InstCS = cast<Value>(Inst)) {
231 // Debug intrinsics don't cause dependences.
232 if (isa<DbgInfoIntrinsic>(Inst)) continue;
233 // If these two calls do not interfere, look past it.
234 switch (AA->getModRefInfo(CS, InstCS)) {
235 case AliasAnalysis::NoModRef:
236 // If the two calls are the same, return InstCS as a Def, so that
237 // CS can be found redundant and eliminated.
238 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
239 CS.getInstruction()->isIdenticalToWhenDefined(Inst))
240 return MemDepResult::getDef(Inst);
241
242 // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
243 // keep scanning.
244 continue;
245 default:
246 return MemDepResult::getClobber(Inst);
247 }
248 }
249
250 // If we could not obtain a pointer for the instruction and the instruction
251 // touches memory then assume that this is a dependency.
252 if (MR != AliasAnalysis::NoModRef)
253 return MemDepResult::getClobber(Inst);
254 }
255
256 // No dependence found. If this is the entry block of the function, it is
257 // unknown, otherwise it is non-local.
258 if (BB != &BB->getParent()->getEntryBlock())
259 return MemDepResult::getNonLocal();
260 return MemDepResult::getNonFuncLocal();
261}
262
263/// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
264/// would fully overlap MemLoc if done as a wider legal integer load.
265///
266/// MemLocBase, MemLocOffset are lazily computed here the first time the
267/// base/offs of memloc is needed.
1a4d82fc 268static bool
223e47cc
LB
269isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
270 const Value *&MemLocBase,
271 int64_t &MemLocOffs,
272 const LoadInst *LI,
1a4d82fc 273 const DataLayout *DL) {
223e47cc 274 // If we have no target data, we can't do this.
1a4d82fc 275 if (!DL) return false;
223e47cc
LB
276
277 // If we haven't already computed the base/offset of MemLoc, do so now.
1a4d82fc
JJ
278 if (!MemLocBase)
279 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
223e47cc
LB
280
281 unsigned Size = MemoryDependenceAnalysis::
282 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
1a4d82fc 283 LI, *DL);
223e47cc
LB
284 return Size != 0;
285}
286
287/// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
288/// looks at a memory location for a load (specified by MemLocBase, Offs,
289/// and Size) and compares it against a load. If the specified load could
290/// be safely widened to a larger integer load that is 1) still efficient,
291/// 2) safe for the target, and 3) would provide the specified memory
292/// location value, then this function returns the size in bytes of the
293/// load width to use. If not, this returns zero.
294unsigned MemoryDependenceAnalysis::
295getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
296 unsigned MemLocSize, const LoadInst *LI,
1a4d82fc 297 const DataLayout &DL) {
223e47cc
LB
298 // We can only extend simple integer loads.
299 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
970d7e83
LB
300
301 // Load widening is hostile to ThreadSanitizer: it may cause false positives
302 // or make the reports more cryptic (access sizes are wrong).
303 if (LI->getParent()->getParent()->getAttributes().
304 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread))
305 return 0;
1a4d82fc 306
223e47cc
LB
307 // Get the base of this load.
308 int64_t LIOffs = 0;
1a4d82fc
JJ
309 const Value *LIBase =
310 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL);
311
223e47cc
LB
312 // If the two pointers are not based on the same pointer, we can't tell that
313 // they are related.
314 if (LIBase != MemLocBase) return 0;
1a4d82fc 315
223e47cc
LB
316 // Okay, the two values are based on the same pointer, but returned as
317 // no-alias. This happens when we have things like two byte loads at "P+1"
318 // and "P+3". Check to see if increasing the size of the "LI" load up to its
319 // alignment (or the largest native integer type) will allow us to load all
320 // the bits required by MemLoc.
1a4d82fc 321
223e47cc
LB
322 // If MemLoc is before LI, then no widening of LI will help us out.
323 if (MemLocOffs < LIOffs) return 0;
1a4d82fc 324
223e47cc
LB
325 // Get the alignment of the load in bytes. We assume that it is safe to load
326 // any legal integer up to this size without a problem. For example, if we're
327 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
328 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
329 // to i16.
330 unsigned LoadAlign = LI->getAlignment();
331
332 int64_t MemLocEnd = MemLocOffs+MemLocSize;
1a4d82fc 333
223e47cc
LB
334 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
335 if (LIOffs+LoadAlign < MemLocEnd) return 0;
1a4d82fc 336
223e47cc
LB
337 // This is the size of the load to try. Start with the next larger power of
338 // two.
339 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
340 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
1a4d82fc 341
223e47cc
LB
342 while (1) {
343 // If this load size is bigger than our known alignment or would not fit
344 // into a native integer register, then we fail.
345 if (NewLoadByteSize > LoadAlign ||
1a4d82fc 346 !DL.fitsInLegalInteger(NewLoadByteSize*8))
223e47cc
LB
347 return 0;
348
349 if (LIOffs+NewLoadByteSize > MemLocEnd &&
970d7e83
LB
350 LI->getParent()->getParent()->getAttributes().
351 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress))
223e47cc
LB
352 // We will be reading past the location accessed by the original program.
353 // While this is safe in a regular build, Address Safety analysis tools
354 // may start reporting false warnings. So, don't do widening.
355 return 0;
223e47cc
LB
356
357 // If a load of this width would include all of MemLoc, then we succeed.
358 if (LIOffs+NewLoadByteSize >= MemLocEnd)
359 return NewLoadByteSize;
1a4d82fc 360
223e47cc
LB
361 NewLoadByteSize <<= 1;
362 }
363}
364
365/// getPointerDependencyFrom - Return the instruction on which a memory
366/// location depends. If isLoad is true, this routine ignores may-aliases with
367/// read-only operations. If isLoad is false, this routine ignores may-aliases
970d7e83
LB
368/// with reads from read-only locations. If possible, pass the query
369/// instruction as well; this function may take advantage of the metadata
370/// annotated to the query instruction to refine the result.
223e47cc 371MemDepResult MemoryDependenceAnalysis::
1a4d82fc 372getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
970d7e83
LB
373 BasicBlock::iterator ScanIt, BasicBlock *BB,
374 Instruction *QueryInst) {
223e47cc 375
1a4d82fc 376 const Value *MemLocBase = nullptr;
223e47cc 377 int64_t MemLocOffset = 0;
223e47cc 378 unsigned Limit = BlockScanLimit;
970d7e83 379 bool isInvariantLoad = false;
1a4d82fc
JJ
380
381 // We must be careful with atomic accesses, as they may allow another thread
382 // to touch this location, cloberring it. We are conservative: if the
383 // QueryInst is not a simple (non-atomic) memory access, we automatically
384 // return getClobber.
385 // If it is simple, we know based on the results of
386 // "Compiler testing via a theory of sound optimisations in the C11/C++11
387 // memory model" in PLDI 2013, that a non-atomic location can only be
388 // clobbered between a pair of a release and an acquire action, with no
389 // access to the location in between.
390 // Here is an example for giving the general intuition behind this rule.
391 // In the following code:
392 // store x 0;
393 // release action; [1]
394 // acquire action; [4]
395 // %val = load x;
396 // It is unsafe to replace %val by 0 because another thread may be running:
397 // acquire action; [2]
398 // store x 42;
399 // release action; [3]
400 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
401 // being 42. A key property of this program however is that if either
402 // 1 or 4 were missing, there would be a race between the store of 42
403 // either the store of 0 or the load (making the whole progam racy).
404 // The paper mentionned above shows that the same property is respected
405 // by every program that can detect any optimisation of that kind: either
406 // it is racy (undefined) or there is a release followed by an acquire
407 // between the pair of accesses under consideration.
408 bool HasSeenAcquire = false;
409
970d7e83
LB
410 if (isLoad && QueryInst) {
411 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
1a4d82fc 412 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
970d7e83
LB
413 isInvariantLoad = true;
414 }
223e47cc
LB
415
416 // Walk backwards through the basic block, looking for dependencies.
417 while (ScanIt != BB->begin()) {
1a4d82fc
JJ
418 Instruction *Inst = --ScanIt;
419
420 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
421 // Debug intrinsics don't (and can't) cause dependencies.
422 if (isa<DbgInfoIntrinsic>(II)) continue;
423
223e47cc
LB
424 // Limit the amount of scanning we do so we don't end up with quadratic
425 // running time on extreme testcases.
426 --Limit;
427 if (!Limit)
428 return MemDepResult::getUnknown();
429
223e47cc 430 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
223e47cc
LB
431 // If we reach a lifetime begin or end marker, then the query ends here
432 // because the value is undefined.
433 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
434 // FIXME: This only considers queries directly on the invariant-tagged
435 // pointer, not on query pointers that are indexed off of them. It'd
436 // be nice to handle that at some point (the right approach is to use
437 // GetPointerBaseWithConstantOffset).
438 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
439 MemLoc))
440 return MemDepResult::getDef(II);
441 continue;
442 }
443 }
444
445 // Values depend on loads if the pointers are must aliased. This means that
446 // a load depends on another must aliased load from the same value.
1a4d82fc
JJ
447 // One exception is atomic loads: a value can depend on an atomic load that it
448 // does not alias with when this atomic load indicates that another thread may
449 // be accessing the location.
223e47cc
LB
450 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
451 // Atomic loads have complications involved.
1a4d82fc
JJ
452 // A Monotonic (or higher) load is OK if the query inst is itself not atomic.
453 // An Acquire (or higher) load sets the HasSeenAcquire flag, so that any
454 // release store will know to return getClobber.
223e47cc 455 // FIXME: This is overly conservative.
1a4d82fc
JJ
456 if (!LI->isUnordered()) {
457 if (!QueryInst)
458 return MemDepResult::getClobber(LI);
459 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
460 if (!QueryLI->isSimple())
461 return MemDepResult::getClobber(LI);
462 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
463 if (!QuerySI->isSimple())
464 return MemDepResult::getClobber(LI);
465 } else if (QueryInst->mayReadOrWriteMemory()) {
466 return MemDepResult::getClobber(LI);
467 }
468
469 if (isAtLeastAcquire(LI->getOrdering()))
470 HasSeenAcquire = true;
471 }
472
473 // FIXME: this is overly conservative.
474 // While volatile access cannot be eliminated, they do not have to clobber
475 // non-aliasing locations, as normal accesses can for example be reordered
476 // with volatile accesses.
477 if (LI->isVolatile())
223e47cc
LB
478 return MemDepResult::getClobber(LI);
479
480 AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
1a4d82fc 481
223e47cc
LB
482 // If we found a pointer, check if it could be the same as our pointer.
483 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
1a4d82fc 484
223e47cc
LB
485 if (isLoad) {
486 if (R == AliasAnalysis::NoAlias) {
487 // If this is an over-aligned integer load (for example,
488 // "load i8* %P, align 4") see if it would obviously overlap with the
489 // queried location if widened to a larger load (e.g. if the queried
490 // location is 1 byte at P+1). If so, return it as a load/load
491 // clobber result, allowing the client to decide to widen the load if
492 // it wants to.
493 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
494 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
495 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
1a4d82fc 496 MemLocOffset, LI, DL))
223e47cc 497 return MemDepResult::getClobber(Inst);
1a4d82fc 498
223e47cc
LB
499 continue;
500 }
1a4d82fc 501
223e47cc
LB
502 // Must aliased loads are defs of each other.
503 if (R == AliasAnalysis::MustAlias)
504 return MemDepResult::getDef(Inst);
505
506#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
507 // in terms of clobbering loads, but since it does this by looking
508 // at the clobbering load directly, it doesn't know about any
509 // phi translation that may have happened along the way.
510
511 // If we have a partial alias, then return this as a clobber for the
512 // client to handle.
513 if (R == AliasAnalysis::PartialAlias)
514 return MemDepResult::getClobber(Inst);
515#endif
1a4d82fc 516
223e47cc
LB
517 // Random may-alias loads don't depend on each other without a
518 // dependence.
519 continue;
520 }
521
522 // Stores don't depend on other no-aliased accesses.
523 if (R == AliasAnalysis::NoAlias)
524 continue;
525
526 // Stores don't alias loads from read-only memory.
527 if (AA->pointsToConstantMemory(LoadLoc))
528 continue;
529
530 // Stores depend on may/must aliased loads.
531 return MemDepResult::getDef(Inst);
532 }
1a4d82fc 533
223e47cc
LB
534 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
535 // Atomic stores have complications involved.
1a4d82fc
JJ
536 // A Monotonic store is OK if the query inst is itself not atomic.
537 // A Release (or higher) store further requires that no acquire load
538 // has been seen.
223e47cc 539 // FIXME: This is overly conservative.
1a4d82fc
JJ
540 if (!SI->isUnordered()) {
541 if (!QueryInst)
542 return MemDepResult::getClobber(SI);
543 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
544 if (!QueryLI->isSimple())
545 return MemDepResult::getClobber(SI);
546 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
547 if (!QuerySI->isSimple())
548 return MemDepResult::getClobber(SI);
549 } else if (QueryInst->mayReadOrWriteMemory()) {
550 return MemDepResult::getClobber(SI);
551 }
552
553 if (HasSeenAcquire && isAtLeastRelease(SI->getOrdering()))
554 return MemDepResult::getClobber(SI);
555 }
556
557 // FIXME: this is overly conservative.
558 // While volatile access cannot be eliminated, they do not have to clobber
559 // non-aliasing locations, as normal accesses can for example be reordered
560 // with volatile accesses.
561 if (SI->isVolatile())
223e47cc
LB
562 return MemDepResult::getClobber(SI);
563
564 // If alias analysis can tell that this store is guaranteed to not modify
565 // the query pointer, ignore it. Use getModRefInfo to handle cases where
566 // the query pointer points to constant memory etc.
567 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
568 continue;
569
570 // Ok, this store might clobber the query pointer. Check to see if it is
571 // a must alias: in this case, we want to return this as a def.
572 AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
1a4d82fc 573
223e47cc
LB
574 // If we found a pointer, check if it could be the same as our pointer.
575 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
1a4d82fc 576
223e47cc
LB
577 if (R == AliasAnalysis::NoAlias)
578 continue;
579 if (R == AliasAnalysis::MustAlias)
580 return MemDepResult::getDef(Inst);
970d7e83
LB
581 if (isInvariantLoad)
582 continue;
223e47cc
LB
583 return MemDepResult::getClobber(Inst);
584 }
585
586 // If this is an allocation, and if we know that the accessed pointer is to
587 // the allocation, return Def. This means that there is no dependence and
588 // the access can be optimized based on that. For example, a load could
589 // turn into undef.
590 // Note: Only determine this to be a malloc if Inst is the malloc call, not
591 // a subsequent bitcast of the malloc call result. There can be stores to
592 // the malloced memory between the malloc call and its bitcast uses, and we
593 // need to continue scanning until the malloc call.
594 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
595 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
1a4d82fc
JJ
596 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
597
223e47cc
LB
598 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
599 return MemDepResult::getDef(Inst);
600 // Be conservative if the accessed pointer may alias the allocation.
601 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
602 return MemDepResult::getClobber(Inst);
603 // If the allocation is not aliased and does not read memory (like
604 // strdup), it is safe to ignore.
605 if (isa<AllocaInst>(Inst) ||
606 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
607 continue;
608 }
609
610 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
611 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
612 // If necessary, perform additional analysis.
613 if (MR == AliasAnalysis::ModRef)
614 MR = AA->callCapturesBefore(Inst, MemLoc, DT);
615 switch (MR) {
616 case AliasAnalysis::NoModRef:
617 // If the call has no effect on the queried pointer, just ignore it.
618 continue;
619 case AliasAnalysis::Mod:
620 return MemDepResult::getClobber(Inst);
621 case AliasAnalysis::Ref:
622 // If the call is known to never store to the pointer, and if this is a
623 // load query, we can safely ignore it (scan past it).
624 if (isLoad)
625 continue;
626 default:
627 // Otherwise, there is a potential dependence. Return a clobber.
628 return MemDepResult::getClobber(Inst);
629 }
630 }
1a4d82fc 631
223e47cc
LB
632 // No dependence found. If this is the entry block of the function, it is
633 // unknown, otherwise it is non-local.
634 if (BB != &BB->getParent()->getEntryBlock())
635 return MemDepResult::getNonLocal();
636 return MemDepResult::getNonFuncLocal();
637}
638
639/// getDependency - Return the instruction on which a memory operation
640/// depends.
641MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
642 Instruction *ScanPos = QueryInst;
1a4d82fc 643
223e47cc
LB
644 // Check for a cached result
645 MemDepResult &LocalCache = LocalDeps[QueryInst];
1a4d82fc 646
223e47cc
LB
647 // If the cached entry is non-dirty, just return it. Note that this depends
648 // on MemDepResult's default constructing to 'dirty'.
649 if (!LocalCache.isDirty())
650 return LocalCache;
1a4d82fc 651
223e47cc
LB
652 // Otherwise, if we have a dirty entry, we know we can start the scan at that
653 // instruction, which may save us some work.
654 if (Instruction *Inst = LocalCache.getInst()) {
655 ScanPos = Inst;
1a4d82fc 656
223e47cc
LB
657 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
658 }
1a4d82fc 659
223e47cc 660 BasicBlock *QueryParent = QueryInst->getParent();
1a4d82fc 661
223e47cc
LB
662 // Do the scan.
663 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
664 // No dependence found. If this is the entry block of the function, it is
665 // unknown, otherwise it is non-local.
666 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
667 LocalCache = MemDepResult::getNonLocal();
668 else
669 LocalCache = MemDepResult::getNonFuncLocal();
670 } else {
671 AliasAnalysis::Location MemLoc;
672 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
673 if (MemLoc.Ptr) {
674 // If we can do a pointer scan, make it happen.
675 bool isLoad = !(MR & AliasAnalysis::Mod);
676 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
677 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
678
679 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
970d7e83 680 QueryParent, QueryInst);
223e47cc
LB
681 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
682 CallSite QueryCS(QueryInst);
683 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
684 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
685 QueryParent);
686 } else
687 // Non-memory instruction.
688 LocalCache = MemDepResult::getUnknown();
689 }
1a4d82fc 690
223e47cc
LB
691 // Remember the result!
692 if (Instruction *I = LocalCache.getInst())
693 ReverseLocalDeps[I].insert(QueryInst);
1a4d82fc 694
223e47cc
LB
695 return LocalCache;
696}
697
698#ifndef NDEBUG
699/// AssertSorted - This method is used when -debug is specified to verify that
700/// cache arrays are properly kept sorted.
701static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
702 int Count = -1) {
703 if (Count == -1) Count = Cache.size();
704 if (Count == 0) return;
705
706 for (unsigned i = 1; i != unsigned(Count); ++i)
707 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
708}
709#endif
710
711/// getNonLocalCallDependency - Perform a full dependency query for the
712/// specified call, returning the set of blocks that the value is
713/// potentially live across. The returned set of results will include a
714/// "NonLocal" result for all blocks where the value is live across.
715///
716/// This method assumes the instruction returns a "NonLocal" dependency
717/// within its own block.
718///
719/// This returns a reference to an internal data structure that may be
720/// invalidated on the next non-local query or when an instruction is
721/// removed. Clients must copy this data if they want it around longer than
722/// that.
723const MemoryDependenceAnalysis::NonLocalDepInfo &
724MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
725 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
726 "getNonLocalCallDependency should only be used on calls with non-local deps!");
727 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
728 NonLocalDepInfo &Cache = CacheP.first;
729
730 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
731 /// the cached case, this can happen due to instructions being deleted etc. In
732 /// the uncached case, this starts out as the set of predecessors we care
733 /// about.
734 SmallVector<BasicBlock*, 32> DirtyBlocks;
1a4d82fc 735
223e47cc
LB
736 if (!Cache.empty()) {
737 // Okay, we have a cache entry. If we know it is not dirty, just return it
738 // with no computation.
739 if (!CacheP.second) {
740 ++NumCacheNonLocal;
741 return Cache;
742 }
1a4d82fc 743
223e47cc
LB
744 // If we already have a partially computed set of results, scan them to
745 // determine what is dirty, seeding our initial DirtyBlocks worklist.
746 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
747 I != E; ++I)
748 if (I->getResult().isDirty())
749 DirtyBlocks.push_back(I->getBB());
1a4d82fc 750
223e47cc
LB
751 // Sort the cache so that we can do fast binary search lookups below.
752 std::sort(Cache.begin(), Cache.end());
1a4d82fc 753
223e47cc
LB
754 ++NumCacheDirtyNonLocal;
755 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
756 // << Cache.size() << " cached: " << *QueryInst;
757 } else {
758 // Seed DirtyBlocks with each of the preds of QueryInst's block.
759 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
760 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
761 DirtyBlocks.push_back(*PI);
762 ++NumUncacheNonLocal;
763 }
1a4d82fc 764
223e47cc
LB
765 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
766 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
767
768 SmallPtrSet<BasicBlock*, 64> Visited;
1a4d82fc 769
223e47cc
LB
770 unsigned NumSortedEntries = Cache.size();
771 DEBUG(AssertSorted(Cache));
1a4d82fc 772
223e47cc
LB
773 // Iterate while we still have blocks to update.
774 while (!DirtyBlocks.empty()) {
775 BasicBlock *DirtyBB = DirtyBlocks.back();
776 DirtyBlocks.pop_back();
1a4d82fc 777
223e47cc 778 // Already processed this block?
85aaf69f 779 if (!Visited.insert(DirtyBB).second)
223e47cc 780 continue;
1a4d82fc 781
223e47cc
LB
782 // Do a binary search to see if we already have an entry for this block in
783 // the cache set. If so, find it.
784 DEBUG(AssertSorted(Cache, NumSortedEntries));
1a4d82fc 785 NonLocalDepInfo::iterator Entry =
223e47cc
LB
786 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
787 NonLocalDepEntry(DirtyBB));
1a4d82fc 788 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
223e47cc 789 --Entry;
1a4d82fc
JJ
790
791 NonLocalDepEntry *ExistingResult = nullptr;
792 if (Entry != Cache.begin()+NumSortedEntries &&
223e47cc
LB
793 Entry->getBB() == DirtyBB) {
794 // If we already have an entry, and if it isn't already dirty, the block
795 // is done.
796 if (!Entry->getResult().isDirty())
797 continue;
1a4d82fc 798
223e47cc
LB
799 // Otherwise, remember this slot so we can update the value.
800 ExistingResult = &*Entry;
801 }
1a4d82fc 802
223e47cc
LB
803 // If the dirty entry has a pointer, start scanning from it so we don't have
804 // to rescan the entire block.
805 BasicBlock::iterator ScanPos = DirtyBB->end();
806 if (ExistingResult) {
807 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
808 ScanPos = Inst;
809 // We're removing QueryInst's use of Inst.
810 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
811 QueryCS.getInstruction());
812 }
813 }
1a4d82fc 814
223e47cc
LB
815 // Find out if this block has a local dependency for QueryInst.
816 MemDepResult Dep;
1a4d82fc 817
223e47cc
LB
818 if (ScanPos != DirtyBB->begin()) {
819 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
820 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
821 // No dependence found. If this is the entry block of the function, it is
822 // a clobber, otherwise it is unknown.
823 Dep = MemDepResult::getNonLocal();
824 } else {
825 Dep = MemDepResult::getNonFuncLocal();
826 }
1a4d82fc 827
223e47cc
LB
828 // If we had a dirty entry for the block, update it. Otherwise, just add
829 // a new entry.
830 if (ExistingResult)
831 ExistingResult->setResult(Dep);
832 else
833 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
1a4d82fc 834
223e47cc
LB
835 // If the block has a dependency (i.e. it isn't completely transparent to
836 // the value), remember the association!
837 if (!Dep.isNonLocal()) {
838 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
839 // update this when we remove instructions.
840 if (Instruction *Inst = Dep.getInst())
841 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
842 } else {
1a4d82fc 843
223e47cc
LB
844 // If the block *is* completely transparent to the load, we need to check
845 // the predecessors of this block. Add them to our worklist.
846 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
847 DirtyBlocks.push_back(*PI);
848 }
849 }
1a4d82fc 850
223e47cc
LB
851 return Cache;
852}
853
854/// getNonLocalPointerDependency - Perform a full dependency query for an
855/// access to the specified (non-volatile) memory location, returning the
856/// set of instructions that either define or clobber the value.
857///
858/// This method assumes the pointer has a "NonLocal" dependency within its
859/// own block.
860///
861void MemoryDependenceAnalysis::
85aaf69f 862getNonLocalPointerDependency(Instruction *QueryInst,
223e47cc 863 SmallVectorImpl<NonLocalDepResult> &Result) {
85aaf69f
SL
864
865 auto getLocation = [](AliasAnalysis *AA, Instruction *Inst) {
866 if (auto *I = dyn_cast<LoadInst>(Inst))
867 return AA->getLocation(I);
868 else if (auto *I = dyn_cast<StoreInst>(Inst))
869 return AA->getLocation(I);
870 else if (auto *I = dyn_cast<VAArgInst>(Inst))
871 return AA->getLocation(I);
872 else if (auto *I = dyn_cast<AtomicCmpXchgInst>(Inst))
873 return AA->getLocation(I);
874 else if (auto *I = dyn_cast<AtomicRMWInst>(Inst))
875 return AA->getLocation(I);
876 else
877 llvm_unreachable("unsupported memory instruction");
878 };
879
880 const AliasAnalysis::Location Loc = getLocation(AA, QueryInst);
881 bool isLoad = isa<LoadInst>(QueryInst);
882 BasicBlock *FromBB = QueryInst->getParent();
883 assert(FromBB);
884
223e47cc
LB
885 assert(Loc.Ptr->getType()->isPointerTy() &&
886 "Can't get pointer deps of a non-pointer!");
887 Result.clear();
85aaf69f
SL
888
889 // This routine does not expect to deal with volatile instructions.
890 // Doing so would require piping through the QueryInst all the way through.
891 // TODO: volatiles can't be elided, but they can be reordered with other
892 // non-volatile accesses.
893 auto isVolatile = [](Instruction *Inst) {
894 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
895 return LI->isVolatile();
896 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
897 return SI->isVolatile();
898 }
899 return false;
900 };
901 // We currently give up on any instruction which is ordered, but we do handle
902 // atomic instructions which are unordered.
903 // TODO: Handle ordered instructions
904 auto isOrdered = [](Instruction *Inst) {
905 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
906 return !LI->isUnordered();
907 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
908 return !SI->isUnordered();
909 }
910 return false;
911 };
912 if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
913 Result.push_back(NonLocalDepResult(FromBB,
914 MemDepResult::getUnknown(),
915 const_cast<Value *>(Loc.Ptr)));
916 return;
917 }
1a4d82fc 918
85aaf69f
SL
919
920 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC);
1a4d82fc 921
223e47cc
LB
922 // This is the set of blocks we've inspected, and the pointer we consider in
923 // each block. Because of critical edges, we currently bail out if querying
924 // a block with multiple different pointers. This can happen during PHI
925 // translation.
926 DenseMap<BasicBlock*, Value*> Visited;
927 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
928 Result, Visited, true))
929 return;
930 Result.clear();
931 Result.push_back(NonLocalDepResult(FromBB,
932 MemDepResult::getUnknown(),
933 const_cast<Value *>(Loc.Ptr)));
934}
935
936/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
937/// Pointer/PointeeSize using either cached information in Cache or by doing a
938/// lookup (which may use dirty cache info if available). If we do a lookup,
939/// add the result to the cache.
940MemDepResult MemoryDependenceAnalysis::
941GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
942 bool isLoad, BasicBlock *BB,
943 NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
1a4d82fc 944
223e47cc
LB
945 // Do a binary search to see if we already have an entry for this block in
946 // the cache set. If so, find it.
947 NonLocalDepInfo::iterator Entry =
948 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
949 NonLocalDepEntry(BB));
950 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
951 --Entry;
1a4d82fc
JJ
952
953 NonLocalDepEntry *ExistingResult = nullptr;
223e47cc
LB
954 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
955 ExistingResult = &*Entry;
1a4d82fc 956
223e47cc
LB
957 // If we have a cached entry, and it is non-dirty, use it as the value for
958 // this dependency.
959 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
960 ++NumCacheNonLocalPtr;
961 return ExistingResult->getResult();
1a4d82fc
JJ
962 }
963
223e47cc
LB
964 // Otherwise, we have to scan for the value. If we have a dirty cache
965 // entry, start scanning from its position, otherwise we scan from the end
966 // of the block.
967 BasicBlock::iterator ScanPos = BB->end();
968 if (ExistingResult && ExistingResult->getResult().getInst()) {
969 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
970 "Instruction invalidated?");
971 ++NumCacheDirtyNonLocalPtr;
972 ScanPos = ExistingResult->getResult().getInst();
1a4d82fc 973
223e47cc
LB
974 // Eliminating the dirty entry from 'Cache', so update the reverse info.
975 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
976 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
977 } else {
978 ++NumUncacheNonLocalPtr;
979 }
1a4d82fc 980
223e47cc
LB
981 // Scan the block for the dependency.
982 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
1a4d82fc 983
223e47cc
LB
984 // If we had a dirty entry for the block, update it. Otherwise, just add
985 // a new entry.
986 if (ExistingResult)
987 ExistingResult->setResult(Dep);
988 else
989 Cache->push_back(NonLocalDepEntry(BB, Dep));
1a4d82fc 990
223e47cc
LB
991 // If the block has a dependency (i.e. it isn't completely transparent to
992 // the value), remember the reverse association because we just added it
993 // to Cache!
994 if (!Dep.isDef() && !Dep.isClobber())
995 return Dep;
1a4d82fc 996
223e47cc
LB
997 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
998 // update MemDep when we remove instructions.
999 Instruction *Inst = Dep.getInst();
1000 assert(Inst && "Didn't depend on anything?");
1001 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1002 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1003 return Dep;
1004}
1005
1a4d82fc 1006/// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain
223e47cc
LB
1007/// number of elements in the array that are already properly ordered. This is
1008/// optimized for the case when only a few entries are added.
1a4d82fc 1009static void
223e47cc
LB
1010SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
1011 unsigned NumSortedEntries) {
1012 switch (Cache.size() - NumSortedEntries) {
1013 case 0:
1014 // done, no new entries.
1015 break;
1016 case 2: {
1017 // Two new entries, insert the last one into place.
1018 NonLocalDepEntry Val = Cache.back();
1019 Cache.pop_back();
1020 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1021 std::upper_bound(Cache.begin(), Cache.end()-1, Val);
1022 Cache.insert(Entry, Val);
1023 // FALL THROUGH.
1024 }
1025 case 1:
1026 // One new entry, Just insert the new value at the appropriate position.
1027 if (Cache.size() != 1) {
1028 NonLocalDepEntry Val = Cache.back();
1029 Cache.pop_back();
1030 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1031 std::upper_bound(Cache.begin(), Cache.end(), Val);
1032 Cache.insert(Entry, Val);
1033 }
1034 break;
1035 default:
1036 // Added many values, do a full scale sort.
1037 std::sort(Cache.begin(), Cache.end());
1038 break;
1039 }
1040}
1041
1042/// getNonLocalPointerDepFromBB - Perform a dependency query based on
1043/// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
1044/// results to the results vector and keep track of which blocks are visited in
1045/// 'Visited'.
1046///
1047/// This has special behavior for the first block queries (when SkipFirstBlock
1048/// is true). In this special case, it ignores the contents of the specified
1049/// block and starts returning dependence info for its predecessors.
1050///
1051/// This function returns false on success, or true to indicate that it could
1052/// not compute dependence information for some reason. This should be treated
1053/// as a clobber dependence on the first instruction in the predecessor block.
1054bool MemoryDependenceAnalysis::
1055getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
1056 const AliasAnalysis::Location &Loc,
1057 bool isLoad, BasicBlock *StartBB,
1058 SmallVectorImpl<NonLocalDepResult> &Result,
1059 DenseMap<BasicBlock*, Value*> &Visited,
1060 bool SkipFirstBlock) {
223e47cc
LB
1061 // Look up the cached info for Pointer.
1062 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1063
1064 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1065 // CacheKey, this value will be inserted as the associated value. Otherwise,
1066 // it'll be ignored, and we'll have to check to see if the cached size and
1a4d82fc 1067 // aa tags are consistent with the current query.
223e47cc
LB
1068 NonLocalPointerInfo InitialNLPI;
1069 InitialNLPI.Size = Loc.Size;
1a4d82fc 1070 InitialNLPI.AATags = Loc.AATags;
223e47cc
LB
1071
1072 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1073 // already have one.
1a4d82fc 1074 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
223e47cc
LB
1075 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1076 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1077
1078 // If we already have a cache entry for this CacheKey, we may need to do some
1079 // work to reconcile the cache entry and the current query.
1080 if (!Pair.second) {
1081 if (CacheInfo->Size < Loc.Size) {
1082 // The query's Size is greater than the cached one. Throw out the
1083 // cached data and proceed with the query at the greater size.
1084 CacheInfo->Pair = BBSkipFirstBlockPair();
1085 CacheInfo->Size = Loc.Size;
1086 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1087 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1088 if (Instruction *Inst = DI->getResult().getInst())
1089 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1090 CacheInfo->NonLocalDeps.clear();
1091 } else if (CacheInfo->Size > Loc.Size) {
1092 // This query's Size is less than the cached one. Conservatively restart
1093 // the query using the greater size.
1094 return getNonLocalPointerDepFromBB(Pointer,
1095 Loc.getWithNewSize(CacheInfo->Size),
1096 isLoad, StartBB, Result, Visited,
1097 SkipFirstBlock);
1098 }
1099
1a4d82fc 1100 // If the query's AATags are inconsistent with the cached one,
223e47cc
LB
1101 // conservatively throw out the cached data and restart the query with
1102 // no tag if needed.
1a4d82fc
JJ
1103 if (CacheInfo->AATags != Loc.AATags) {
1104 if (CacheInfo->AATags) {
223e47cc 1105 CacheInfo->Pair = BBSkipFirstBlockPair();
1a4d82fc 1106 CacheInfo->AATags = AAMDNodes();
223e47cc
LB
1107 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1108 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1109 if (Instruction *Inst = DI->getResult().getInst())
1110 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1111 CacheInfo->NonLocalDeps.clear();
1112 }
1a4d82fc
JJ
1113 if (Loc.AATags)
1114 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutAATags(),
223e47cc
LB
1115 isLoad, StartBB, Result, Visited,
1116 SkipFirstBlock);
1117 }
1118 }
1119
1120 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1121
1122 // If we have valid cached information for exactly the block we are
1123 // investigating, just return it with no recomputation.
1124 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1125 // We have a fully cached result for this query then we can just return the
1126 // cached results and populate the visited set. However, we have to verify
1127 // that we don't already have conflicting results for these blocks. Check
1128 // to ensure that if a block in the results set is in the visited set that
1129 // it was for the same pointer query.
1130 if (!Visited.empty()) {
1131 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1132 I != E; ++I) {
1133 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
1134 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1135 continue;
1a4d82fc 1136
223e47cc
LB
1137 // We have a pointer mismatch in a block. Just return clobber, saying
1138 // that something was clobbered in this result. We could also do a
1139 // non-fully cached query, but there is little point in doing this.
1140 return true;
1141 }
1142 }
1a4d82fc 1143
223e47cc
LB
1144 Value *Addr = Pointer.getAddr();
1145 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1146 I != E; ++I) {
1147 Visited.insert(std::make_pair(I->getBB(), Addr));
1a4d82fc
JJ
1148 if (I->getResult().isNonLocal()) {
1149 continue;
1150 }
1151
1152 if (!DT) {
1153 Result.push_back(NonLocalDepResult(I->getBB(),
1154 MemDepResult::getUnknown(),
1155 Addr));
1156 } else if (DT->isReachableFromEntry(I->getBB())) {
223e47cc 1157 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
1a4d82fc 1158 }
223e47cc
LB
1159 }
1160 ++NumCacheCompleteNonLocalPtr;
1161 return false;
1162 }
1a4d82fc 1163
223e47cc
LB
1164 // Otherwise, either this is a new block, a block with an invalid cache
1165 // pointer or one that we're about to invalidate by putting more info into it
1166 // than its valid cache info. If empty, the result will be valid cache info,
1167 // otherwise it isn't.
1168 if (Cache->empty())
1169 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1170 else
1171 CacheInfo->Pair = BBSkipFirstBlockPair();
1a4d82fc 1172
223e47cc
LB
1173 SmallVector<BasicBlock*, 32> Worklist;
1174 Worklist.push_back(StartBB);
1a4d82fc 1175
223e47cc
LB
1176 // PredList used inside loop.
1177 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1178
1179 // Keep track of the entries that we know are sorted. Previously cached
1180 // entries will all be sorted. The entries we add we only sort on demand (we
1181 // don't insert every element into its sorted position). We know that we
1182 // won't get any reuse from currently inserted values, because we don't
1183 // revisit blocks after we insert info for them.
1184 unsigned NumSortedEntries = Cache->size();
1185 DEBUG(AssertSorted(*Cache));
1a4d82fc 1186
223e47cc
LB
1187 while (!Worklist.empty()) {
1188 BasicBlock *BB = Worklist.pop_back_val();
1a4d82fc 1189
85aaf69f
SL
1190 // If we do process a large number of blocks it becomes very expensive and
1191 // likely it isn't worth worrying about
1192 if (Result.size() > NumResultsLimit) {
1193 Worklist.clear();
1194 // Sort it now (if needed) so that recursive invocations of
1195 // getNonLocalPointerDepFromBB and other routines that could reuse the
1196 // cache value will only see properly sorted cache arrays.
1197 if (Cache && NumSortedEntries != Cache->size()) {
1198 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1199 }
1200 // Since we bail out, the "Cache" set won't contain all of the
1201 // results for the query. This is ok (we can still use it to accelerate
1202 // specific block queries) but we can't do the fastpath "return all
1203 // results from the set". Clear out the indicator for this.
1204 CacheInfo->Pair = BBSkipFirstBlockPair();
1205 return true;
1206 }
1207
223e47cc
LB
1208 // Skip the first block if we have it.
1209 if (!SkipFirstBlock) {
1210 // Analyze the dependency of *Pointer in FromBB. See if we already have
1211 // been here.
1212 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1213
1214 // Get the dependency info for Pointer in BB. If we have cached
1215 // information, we will use it, otherwise we compute it.
1216 DEBUG(AssertSorted(*Cache, NumSortedEntries));
1217 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
1218 NumSortedEntries);
1a4d82fc 1219
223e47cc 1220 // If we got a Def or Clobber, add this to the list of results.
1a4d82fc
JJ
1221 if (!Dep.isNonLocal()) {
1222 if (!DT) {
1223 Result.push_back(NonLocalDepResult(BB,
1224 MemDepResult::getUnknown(),
1225 Pointer.getAddr()));
1226 continue;
1227 } else if (DT->isReachableFromEntry(BB)) {
1228 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1229 continue;
1230 }
223e47cc
LB
1231 }
1232 }
1a4d82fc 1233
223e47cc
LB
1234 // If 'Pointer' is an instruction defined in this block, then we need to do
1235 // phi translation to change it into a value live in the predecessor block.
1236 // If not, we just add the predecessors to the worklist and scan them with
1237 // the same Pointer.
1238 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1239 SkipFirstBlock = false;
1240 SmallVector<BasicBlock*, 16> NewBlocks;
1241 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1242 // Verify that we haven't looked at this block yet.
1243 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1244 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1245 if (InsertRes.second) {
1246 // First time we've looked at *PI.
1247 NewBlocks.push_back(*PI);
1248 continue;
1249 }
1a4d82fc 1250
223e47cc
LB
1251 // If we have seen this block before, but it was with a different
1252 // pointer then we have a phi translation failure and we have to treat
1253 // this as a clobber.
1254 if (InsertRes.first->second != Pointer.getAddr()) {
1255 // Make sure to clean up the Visited map before continuing on to
1256 // PredTranslationFailure.
1257 for (unsigned i = 0; i < NewBlocks.size(); i++)
1258 Visited.erase(NewBlocks[i]);
1259 goto PredTranslationFailure;
1260 }
1261 }
1262 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1263 continue;
1264 }
1a4d82fc 1265
223e47cc
LB
1266 // We do need to do phi translation, if we know ahead of time we can't phi
1267 // translate this value, don't even try.
1268 if (!Pointer.IsPotentiallyPHITranslatable())
1269 goto PredTranslationFailure;
1a4d82fc 1270
223e47cc
LB
1271 // We may have added values to the cache list before this PHI translation.
1272 // If so, we haven't done anything to ensure that the cache remains sorted.
1273 // Sort it now (if needed) so that recursive invocations of
1274 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1275 // value will only see properly sorted cache arrays.
1276 if (Cache && NumSortedEntries != Cache->size()) {
1277 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1278 NumSortedEntries = Cache->size();
1279 }
1a4d82fc 1280 Cache = nullptr;
223e47cc
LB
1281
1282 PredList.clear();
1283 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1284 BasicBlock *Pred = *PI;
1285 PredList.push_back(std::make_pair(Pred, Pointer));
1286
1287 // Get the PHI translated pointer in this predecessor. This can fail if
1288 // not translatable, in which case the getAddr() returns null.
1289 PHITransAddr &PredPointer = PredList.back().second;
1a4d82fc 1290 PredPointer.PHITranslateValue(BB, Pred, nullptr);
223e47cc
LB
1291
1292 Value *PredPtrVal = PredPointer.getAddr();
1a4d82fc 1293
223e47cc
LB
1294 // Check to see if we have already visited this pred block with another
1295 // pointer. If so, we can't do this lookup. This failure can occur
1296 // with PHI translation when a critical edge exists and the PHI node in
1297 // the successor translates to a pointer value different than the
1298 // pointer the block was first analyzed with.
1299 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1300 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1301
1302 if (!InsertRes.second) {
1303 // We found the pred; take it off the list of preds to visit.
1304 PredList.pop_back();
1305
1306 // If the predecessor was visited with PredPtr, then we already did
1307 // the analysis and can ignore it.
1308 if (InsertRes.first->second == PredPtrVal)
1309 continue;
1a4d82fc 1310
223e47cc
LB
1311 // Otherwise, the block was previously analyzed with a different
1312 // pointer. We can't represent the result of this case, so we just
1313 // treat this as a phi translation failure.
1314
1315 // Make sure to clean up the Visited map before continuing on to
1316 // PredTranslationFailure.
1a4d82fc 1317 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
223e47cc
LB
1318 Visited.erase(PredList[i].first);
1319
1320 goto PredTranslationFailure;
1321 }
1322 }
1323
1324 // Actually process results here; this need to be a separate loop to avoid
1325 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1a4d82fc 1326 // any results for. (getNonLocalPointerDepFromBB will modify our
223e47cc
LB
1327 // datastructures in ways the code after the PredTranslationFailure label
1328 // doesn't expect.)
1a4d82fc 1329 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
223e47cc
LB
1330 BasicBlock *Pred = PredList[i].first;
1331 PHITransAddr &PredPointer = PredList[i].second;
1332 Value *PredPtrVal = PredPointer.getAddr();
1333
1334 bool CanTranslate = true;
1335 // If PHI translation was unable to find an available pointer in this
1336 // predecessor, then we have to assume that the pointer is clobbered in
1337 // that predecessor. We can still do PRE of the load, which would insert
1338 // a computation of the pointer in this predecessor.
1a4d82fc 1339 if (!PredPtrVal)
223e47cc
LB
1340 CanTranslate = false;
1341
1342 // FIXME: it is entirely possible that PHI translating will end up with
1343 // the same value. Consider PHI translating something like:
1344 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1345 // to recurse here, pedantically speaking.
1346
1347 // If getNonLocalPointerDepFromBB fails here, that means the cached
1348 // result conflicted with the Visited list; we have to conservatively
1349 // assume it is unknown, but this also does not block PRE of the load.
1350 if (!CanTranslate ||
1351 getNonLocalPointerDepFromBB(PredPointer,
1352 Loc.getWithNewPtr(PredPtrVal),
1353 isLoad, Pred,
1354 Result, Visited)) {
1355 // Add the entry to the Result list.
1356 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1357 Result.push_back(Entry);
1358
1359 // Since we had a phi translation failure, the cache for CacheKey won't
1360 // include all of the entries that we need to immediately satisfy future
1361 // queries. Mark this in NonLocalPointerDeps by setting the
1362 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1363 // cached value to do more work but not miss the phi trans failure.
1364 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1365 NLPI.Pair = BBSkipFirstBlockPair();
1366 continue;
1367 }
1368 }
1a4d82fc 1369
223e47cc
LB
1370 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1371 CacheInfo = &NonLocalPointerDeps[CacheKey];
1372 Cache = &CacheInfo->NonLocalDeps;
1373 NumSortedEntries = Cache->size();
1a4d82fc 1374
223e47cc
LB
1375 // Since we did phi translation, the "Cache" set won't contain all of the
1376 // results for the query. This is ok (we can still use it to accelerate
1377 // specific block queries) but we can't do the fastpath "return all
1378 // results from the set" Clear out the indicator for this.
1379 CacheInfo->Pair = BBSkipFirstBlockPair();
1380 SkipFirstBlock = false;
1381 continue;
1382
1383 PredTranslationFailure:
1384 // The following code is "failure"; we can't produce a sane translation
1385 // for the given block. It assumes that we haven't modified any of
1386 // our datastructures while processing the current block.
1a4d82fc
JJ
1387
1388 if (!Cache) {
223e47cc
LB
1389 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1390 CacheInfo = &NonLocalPointerDeps[CacheKey];
1391 Cache = &CacheInfo->NonLocalDeps;
1392 NumSortedEntries = Cache->size();
1393 }
1a4d82fc 1394
223e47cc
LB
1395 // Since we failed phi translation, the "Cache" set won't contain all of the
1396 // results for the query. This is ok (we can still use it to accelerate
1397 // specific block queries) but we can't do the fastpath "return all
1398 // results from the set". Clear out the indicator for this.
1399 CacheInfo->Pair = BBSkipFirstBlockPair();
1a4d82fc 1400
223e47cc
LB
1401 // If *nothing* works, mark the pointer as unknown.
1402 //
1403 // If this is the magic first block, return this as a clobber of the whole
1404 // incoming value. Since we can't phi translate to one of the predecessors,
1405 // we have to bail out.
1406 if (SkipFirstBlock)
1407 return true;
1a4d82fc 1408
223e47cc
LB
1409 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1410 assert(I != Cache->rend() && "Didn't find current block??");
1411 if (I->getBB() != BB)
1412 continue;
1a4d82fc 1413
85aaf69f 1414 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) &&
223e47cc
LB
1415 "Should only be here with transparent block");
1416 I->setResult(MemDepResult::getUnknown());
1417 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1418 Pointer.getAddr()));
1419 break;
1420 }
1421 }
1422
1423 // Okay, we're done now. If we added new values to the cache, re-sort it.
1424 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1425 DEBUG(AssertSorted(*Cache));
1426 return false;
1427}
1428
1429/// RemoveCachedNonLocalPointerDependencies - If P exists in
1430/// CachedNonLocalPointerInfo, remove it.
1431void MemoryDependenceAnalysis::
1432RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1a4d82fc 1433 CachedNonLocalPointerInfo::iterator It =
223e47cc
LB
1434 NonLocalPointerDeps.find(P);
1435 if (It == NonLocalPointerDeps.end()) return;
1a4d82fc 1436
223e47cc
LB
1437 // Remove all of the entries in the BB->val map. This involves removing
1438 // instructions from the reverse map.
1439 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1a4d82fc 1440
223e47cc
LB
1441 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1442 Instruction *Target = PInfo[i].getResult().getInst();
1a4d82fc 1443 if (!Target) continue; // Ignore non-local dep results.
223e47cc 1444 assert(Target->getParent() == PInfo[i].getBB());
1a4d82fc 1445
223e47cc
LB
1446 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1447 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1448 }
1a4d82fc 1449
223e47cc
LB
1450 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1451 NonLocalPointerDeps.erase(It);
1452}
1453
1454
1455/// invalidateCachedPointerInfo - This method is used to invalidate cached
1456/// information about the specified pointer, because it may be too
1457/// conservative in memdep. This is an optional call that can be used when
1458/// the client detects an equivalence between the pointer and some other
1459/// value and replaces the other value with ptr. This can make Ptr available
1460/// in more places that cached info does not necessarily keep.
1461void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1462 // If Ptr isn't really a pointer, just ignore it.
1463 if (!Ptr->getType()->isPointerTy()) return;
1464 // Flush store info for the pointer.
1465 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1466 // Flush load info for the pointer.
1467 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1468}
1469
1470/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1471/// This needs to be done when the CFG changes, e.g., due to splitting
1472/// critical edges.
1473void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1474 PredCache->clear();
1475}
1476
1477/// removeInstruction - Remove an instruction from the dependence analysis,
1478/// updating the dependence of instructions that previously depended on it.
1479/// This method attempts to keep the cache coherent using the reverse map.
1480void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1481 // Walk through the Non-local dependencies, removing this one as the value
1482 // for any cached queries.
1483 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1484 if (NLDI != NonLocalDeps.end()) {
1485 NonLocalDepInfo &BlockMap = NLDI->second.first;
1486 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1487 DI != DE; ++DI)
1488 if (Instruction *Inst = DI->getResult().getInst())
1489 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1490 NonLocalDeps.erase(NLDI);
1491 }
1492
1493 // If we have a cached local dependence query for this instruction, remove it.
1494 //
1495 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1496 if (LocalDepEntry != LocalDeps.end()) {
1497 // Remove us from DepInst's reverse set now that the local dep info is gone.
1498 if (Instruction *Inst = LocalDepEntry->second.getInst())
1499 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1500
1501 // Remove this local dependency info.
1502 LocalDeps.erase(LocalDepEntry);
1503 }
1a4d82fc 1504
223e47cc
LB
1505 // If we have any cached pointer dependencies on this instruction, remove
1506 // them. If the instruction has non-pointer type, then it can't be a pointer
1507 // base.
1a4d82fc 1508
223e47cc
LB
1509 // Remove it from both the load info and the store info. The instruction
1510 // can't be in either of these maps if it is non-pointer.
1511 if (RemInst->getType()->isPointerTy()) {
1512 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1513 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1514 }
1a4d82fc 1515
223e47cc 1516 // Loop over all of the things that depend on the instruction we're removing.
1a4d82fc 1517 //
223e47cc
LB
1518 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1519
1520 // If we find RemInst as a clobber or Def in any of the maps for other values,
1521 // we need to replace its entry with a dirty version of the instruction after
1522 // it. If RemInst is a terminator, we use a null dirty value.
1523 //
1524 // Using a dirty version of the instruction after RemInst saves having to scan
1525 // the entire block to get to this point.
1526 MemDepResult NewDirtyVal;
1527 if (!RemInst->isTerminator())
1528 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1a4d82fc 1529
223e47cc
LB
1530 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1531 if (ReverseDepIt != ReverseLocalDeps.end()) {
223e47cc 1532 // RemInst can't be the terminator if it has local stuff depending on it.
1a4d82fc 1533 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
223e47cc 1534 "Nothing can locally depend on a terminator");
1a4d82fc
JJ
1535
1536 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
223e47cc
LB
1537 assert(InstDependingOnRemInst != RemInst &&
1538 "Already removed our local dep info");
1a4d82fc 1539
223e47cc 1540 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1a4d82fc 1541
223e47cc
LB
1542 // Make sure to remember that new things depend on NewDepInst.
1543 assert(NewDirtyVal.getInst() && "There is no way something else can have "
1544 "a local dep on this if it is a terminator!");
1a4d82fc 1545 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
223e47cc
LB
1546 InstDependingOnRemInst));
1547 }
1a4d82fc 1548
223e47cc
LB
1549 ReverseLocalDeps.erase(ReverseDepIt);
1550
1551 // Add new reverse deps after scanning the set, to avoid invalidating the
1552 // 'ReverseDeps' reference.
1553 while (!ReverseDepsToAdd.empty()) {
1554 ReverseLocalDeps[ReverseDepsToAdd.back().first]
1555 .insert(ReverseDepsToAdd.back().second);
1556 ReverseDepsToAdd.pop_back();
1557 }
1558 }
1a4d82fc 1559
223e47cc
LB
1560 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1561 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1a4d82fc
JJ
1562 for (Instruction *I : ReverseDepIt->second) {
1563 assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1564
1565 PerInstNLInfo &INLD = NonLocalDeps[I];
223e47cc
LB
1566 // The information is now dirty!
1567 INLD.second = true;
1a4d82fc
JJ
1568
1569 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
223e47cc
LB
1570 DE = INLD.first.end(); DI != DE; ++DI) {
1571 if (DI->getResult().getInst() != RemInst) continue;
1a4d82fc 1572
223e47cc
LB
1573 // Convert to a dirty entry for the subsequent instruction.
1574 DI->setResult(NewDirtyVal);
1a4d82fc 1575
223e47cc 1576 if (Instruction *NextI = NewDirtyVal.getInst())
1a4d82fc 1577 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
223e47cc
LB
1578 }
1579 }
1580
1581 ReverseNonLocalDeps.erase(ReverseDepIt);
1582
1583 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1584 while (!ReverseDepsToAdd.empty()) {
1585 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1586 .insert(ReverseDepsToAdd.back().second);
1587 ReverseDepsToAdd.pop_back();
1588 }
1589 }
1a4d82fc 1590
223e47cc
LB
1591 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1592 // value in the NonLocalPointerDeps info.
1593 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1594 ReverseNonLocalPtrDeps.find(RemInst);
1595 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
223e47cc 1596 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1a4d82fc
JJ
1597
1598 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
223e47cc
LB
1599 assert(P.getPointer() != RemInst &&
1600 "Already removed NonLocalPointerDeps info for RemInst");
1a4d82fc 1601
223e47cc 1602 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1a4d82fc 1603
223e47cc
LB
1604 // The cache is not valid for any specific block anymore.
1605 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1a4d82fc 1606
223e47cc
LB
1607 // Update any entries for RemInst to use the instruction after it.
1608 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1609 DI != DE; ++DI) {
1610 if (DI->getResult().getInst() != RemInst) continue;
1a4d82fc 1611
223e47cc
LB
1612 // Convert to a dirty entry for the subsequent instruction.
1613 DI->setResult(NewDirtyVal);
1a4d82fc 1614
223e47cc
LB
1615 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1616 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1617 }
1a4d82fc 1618
223e47cc
LB
1619 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1620 // subsequent value may invalidate the sortedness.
1621 std::sort(NLPDI.begin(), NLPDI.end());
1622 }
1a4d82fc 1623
223e47cc 1624 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1a4d82fc 1625
223e47cc
LB
1626 while (!ReversePtrDepsToAdd.empty()) {
1627 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1628 .insert(ReversePtrDepsToAdd.back().second);
1629 ReversePtrDepsToAdd.pop_back();
1630 }
1631 }
1a4d82fc
JJ
1632
1633
223e47cc
LB
1634 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1635 AA->deleteValue(RemInst);
1636 DEBUG(verifyRemoved(RemInst));
1637}
1638/// verifyRemoved - Verify that the specified instruction does not occur
1a4d82fc
JJ
1639/// in our internal data structures. This function verifies by asserting in
1640/// debug builds.
223e47cc 1641void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1a4d82fc 1642#ifndef NDEBUG
223e47cc
LB
1643 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1644 E = LocalDeps.end(); I != E; ++I) {
1645 assert(I->first != D && "Inst occurs in data structures");
1646 assert(I->second.getInst() != D &&
1647 "Inst occurs in data structures");
1648 }
1a4d82fc 1649
223e47cc
LB
1650 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1651 E = NonLocalPointerDeps.end(); I != E; ++I) {
1652 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1653 const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1654 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1655 II != E; ++II)
1656 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1657 }
1a4d82fc 1658
223e47cc
LB
1659 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1660 E = NonLocalDeps.end(); I != E; ++I) {
1661 assert(I->first != D && "Inst occurs in data structures");
1662 const PerInstNLInfo &INLD = I->second;
1663 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1664 EE = INLD.first.end(); II != EE; ++II)
1665 assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1666 }
1a4d82fc 1667
223e47cc
LB
1668 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1669 E = ReverseLocalDeps.end(); I != E; ++I) {
1670 assert(I->first != D && "Inst occurs in data structures");
1a4d82fc
JJ
1671 for (Instruction *Inst : I->second)
1672 assert(Inst != D && "Inst occurs in data structures");
223e47cc 1673 }
1a4d82fc 1674
223e47cc
LB
1675 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1676 E = ReverseNonLocalDeps.end();
1677 I != E; ++I) {
1678 assert(I->first != D && "Inst occurs in data structures");
1a4d82fc
JJ
1679 for (Instruction *Inst : I->second)
1680 assert(Inst != D && "Inst occurs in data structures");
223e47cc 1681 }
1a4d82fc 1682
223e47cc
LB
1683 for (ReverseNonLocalPtrDepTy::const_iterator
1684 I = ReverseNonLocalPtrDeps.begin(),
1685 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1686 assert(I->first != D && "Inst occurs in rev NLPD map");
1a4d82fc
JJ
1687
1688 for (ValueIsLoadPair P : I->second)
1689 assert(P != ValueIsLoadPair(D, false) &&
1690 P != ValueIsLoadPair(D, true) &&
223e47cc
LB
1691 "Inst occurs in ReverseNonLocalPtrDeps map");
1692 }
1a4d82fc 1693#endif
223e47cc 1694}