]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/CodeGen/AtomicExpandPass.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / CodeGen / AtomicExpandPass.cpp
CommitLineData
1a4d82fc
JJ
1//===-- AtomicExpandPass.cpp - Expand atomic instructions -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a pass (at IR level) to replace atomic instructions with
11// either (intrinsic-based) load-linked/store-conditional loops or AtomicCmpXchg.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/Passes.h"
16#include "llvm/IR/Function.h"
17#include "llvm/IR/IRBuilder.h"
18#include "llvm/IR/InstIterator.h"
19#include "llvm/IR/Instructions.h"
20#include "llvm/IR/Intrinsics.h"
21#include "llvm/IR/Module.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetSubtargetInfo.h"
26
27using namespace llvm;
28
29#define DEBUG_TYPE "atomic-expand"
30
31namespace {
32 class AtomicExpand: public FunctionPass {
33 const TargetMachine *TM;
34 public:
35 static char ID; // Pass identification, replacement for typeid
36 explicit AtomicExpand(const TargetMachine *TM = nullptr)
37 : FunctionPass(ID), TM(TM) {
38 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
39 }
40
41 bool runOnFunction(Function &F) override;
42
43 private:
44 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order,
45 bool IsStore, bool IsLoad);
46 bool expandAtomicLoad(LoadInst *LI);
47 bool expandAtomicLoadToLL(LoadInst *LI);
48 bool expandAtomicLoadToCmpXchg(LoadInst *LI);
49 bool expandAtomicStore(StoreInst *SI);
50 bool expandAtomicRMW(AtomicRMWInst *AI);
51 bool expandAtomicRMWToLLSC(AtomicRMWInst *AI);
52 bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI);
53 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
54 bool isIdempotentRMW(AtomicRMWInst *AI);
55 bool simplifyIdempotentRMW(AtomicRMWInst *AI);
56 };
57}
58
59char AtomicExpand::ID = 0;
60char &llvm::AtomicExpandID = AtomicExpand::ID;
61INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand",
62 "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg",
63 false, false)
64
65FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) {
66 return new AtomicExpand(TM);
67}
68
69bool AtomicExpand::runOnFunction(Function &F) {
70 if (!TM || !TM->getSubtargetImpl()->enableAtomicExpand())
71 return false;
72 auto TargetLowering = TM->getSubtargetImpl()->getTargetLowering();
73
74 SmallVector<Instruction *, 1> AtomicInsts;
75
76 // Changing control-flow while iterating through it is a bad idea, so gather a
77 // list of all atomic instructions before we start.
78 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
79 if (I->isAtomic())
80 AtomicInsts.push_back(&*I);
81 }
82
83 bool MadeChange = false;
84 for (auto I : AtomicInsts) {
85 auto LI = dyn_cast<LoadInst>(I);
86 auto SI = dyn_cast<StoreInst>(I);
87 auto RMWI = dyn_cast<AtomicRMWInst>(I);
88 auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
89 assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) &&
90 "Unknown atomic instruction");
91
92 auto FenceOrdering = Monotonic;
93 bool IsStore, IsLoad;
94 if (TargetLowering->getInsertFencesForAtomic()) {
95 if (LI && isAtLeastAcquire(LI->getOrdering())) {
96 FenceOrdering = LI->getOrdering();
97 LI->setOrdering(Monotonic);
98 IsStore = false;
99 IsLoad = true;
100 } else if (SI && isAtLeastRelease(SI->getOrdering())) {
101 FenceOrdering = SI->getOrdering();
102 SI->setOrdering(Monotonic);
103 IsStore = true;
104 IsLoad = false;
105 } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) ||
106 isAtLeastAcquire(RMWI->getOrdering()))) {
107 FenceOrdering = RMWI->getOrdering();
108 RMWI->setOrdering(Monotonic);
109 IsStore = IsLoad = true;
110 } else if (CASI && !TargetLowering->hasLoadLinkedStoreConditional() &&
111 (isAtLeastRelease(CASI->getSuccessOrdering()) ||
112 isAtLeastAcquire(CASI->getSuccessOrdering()))) {
113 // If a compare and swap is lowered to LL/SC, we can do smarter fence
114 // insertion, with a stronger one on the success path than on the
115 // failure path. As a result, fence insertion is directly done by
116 // expandAtomicCmpXchg in that case.
117 FenceOrdering = CASI->getSuccessOrdering();
118 CASI->setSuccessOrdering(Monotonic);
119 CASI->setFailureOrdering(Monotonic);
120 IsStore = IsLoad = true;
121 }
122
123 if (FenceOrdering != Monotonic) {
124 MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad);
125 }
126 }
127
128 if (LI && TargetLowering->shouldExpandAtomicLoadInIR(LI)) {
129 MadeChange |= expandAtomicLoad(LI);
130 } else if (SI && TargetLowering->shouldExpandAtomicStoreInIR(SI)) {
131 MadeChange |= expandAtomicStore(SI);
132 } else if (RMWI) {
133 // There are two different ways of expanding RMW instructions:
134 // - into a load if it is idempotent
135 // - into a Cmpxchg/LL-SC loop otherwise
136 // we try them in that order.
137 MadeChange |= (isIdempotentRMW(RMWI) &&
138 simplifyIdempotentRMW(RMWI)) ||
139 (TargetLowering->shouldExpandAtomicRMWInIR(RMWI) &&
140 expandAtomicRMW(RMWI));
141 } else if (CASI && TargetLowering->hasLoadLinkedStoreConditional()) {
142 MadeChange |= expandAtomicCmpXchg(CASI);
143 }
144 }
145 return MadeChange;
146}
147
148bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order,
149 bool IsStore, bool IsLoad) {
150 IRBuilder<> Builder(I);
151
152 auto LeadingFence =
153 TM->getSubtargetImpl()->getTargetLowering()->emitLeadingFence(
154 Builder, Order, IsStore, IsLoad);
155
156 auto TrailingFence =
157 TM->getSubtargetImpl()->getTargetLowering()->emitTrailingFence(
158 Builder, Order, IsStore, IsLoad);
159 // The trailing fence is emitted before the instruction instead of after
160 // because there is no easy way of setting Builder insertion point after
161 // an instruction. So we must erase it from the BB, and insert it back
162 // in the right place.
163 // We have a guard here because not every atomic operation generates a
164 // trailing fence.
165 if (TrailingFence) {
166 TrailingFence->removeFromParent();
167 TrailingFence->insertAfter(I);
168 }
169
170 return (LeadingFence || TrailingFence);
171}
172
173bool AtomicExpand::expandAtomicLoad(LoadInst *LI) {
174 if (TM->getSubtargetImpl()
175 ->getTargetLowering()
176 ->hasLoadLinkedStoreConditional())
177 return expandAtomicLoadToLL(LI);
178 else
179 return expandAtomicLoadToCmpXchg(LI);
180}
181
182bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
183 auto TLI = TM->getSubtargetImpl()->getTargetLowering();
184 IRBuilder<> Builder(LI);
185
186 // On some architectures, load-linked instructions are atomic for larger
187 // sizes than normal loads. For example, the only 64-bit load guaranteed
188 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
189 Value *Val =
190 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
191
192 LI->replaceAllUsesWith(Val);
193 LI->eraseFromParent();
194
195 return true;
196}
197
198bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
199 IRBuilder<> Builder(LI);
200 AtomicOrdering Order = LI->getOrdering();
201 Value *Addr = LI->getPointerOperand();
202 Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
203 Constant *DummyVal = Constant::getNullValue(Ty);
204
205 Value *Pair = Builder.CreateAtomicCmpXchg(
206 Addr, DummyVal, DummyVal, Order,
207 AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
208 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
209
210 LI->replaceAllUsesWith(Loaded);
211 LI->eraseFromParent();
212
213 return true;
214}
215
216bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
217 // This function is only called on atomic stores that are too large to be
218 // atomic if implemented as a native store. So we replace them by an
219 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
220 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
221 // It is the responsibility of the target to only return true in
222 // shouldExpandAtomicRMW in cases where this is required and possible.
223 IRBuilder<> Builder(SI);
224 AtomicRMWInst *AI =
225 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
226 SI->getValueOperand(), SI->getOrdering());
227 SI->eraseFromParent();
228
229 // Now we have an appropriate swap instruction, lower it as usual.
230 return expandAtomicRMW(AI);
231}
232
233bool AtomicExpand::expandAtomicRMW(AtomicRMWInst *AI) {
234 if (TM->getSubtargetImpl()
235 ->getTargetLowering()
236 ->hasLoadLinkedStoreConditional())
237 return expandAtomicRMWToLLSC(AI);
238 else
239 return expandAtomicRMWToCmpXchg(AI);
240}
241
242/// Emit IR to implement the given atomicrmw operation on values in registers,
243/// returning the new value.
244static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
245 Value *Loaded, Value *Inc) {
246 Value *NewVal;
247 switch (Op) {
248 case AtomicRMWInst::Xchg:
249 return Inc;
250 case AtomicRMWInst::Add:
251 return Builder.CreateAdd(Loaded, Inc, "new");
252 case AtomicRMWInst::Sub:
253 return Builder.CreateSub(Loaded, Inc, "new");
254 case AtomicRMWInst::And:
255 return Builder.CreateAnd(Loaded, Inc, "new");
256 case AtomicRMWInst::Nand:
257 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
258 case AtomicRMWInst::Or:
259 return Builder.CreateOr(Loaded, Inc, "new");
260 case AtomicRMWInst::Xor:
261 return Builder.CreateXor(Loaded, Inc, "new");
262 case AtomicRMWInst::Max:
263 NewVal = Builder.CreateICmpSGT(Loaded, Inc);
264 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
265 case AtomicRMWInst::Min:
266 NewVal = Builder.CreateICmpSLE(Loaded, Inc);
267 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
268 case AtomicRMWInst::UMax:
269 NewVal = Builder.CreateICmpUGT(Loaded, Inc);
270 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
271 case AtomicRMWInst::UMin:
272 NewVal = Builder.CreateICmpULE(Loaded, Inc);
273 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
274 default:
275 llvm_unreachable("Unknown atomic op");
276 }
277}
278
279bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) {
280 auto TLI = TM->getSubtargetImpl()->getTargetLowering();
281 AtomicOrdering MemOpOrder = AI->getOrdering();
282 Value *Addr = AI->getPointerOperand();
283 BasicBlock *BB = AI->getParent();
284 Function *F = BB->getParent();
285 LLVMContext &Ctx = F->getContext();
286
287 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
288 //
289 // The standard expansion we produce is:
290 // [...]
291 // fence?
292 // atomicrmw.start:
293 // %loaded = @load.linked(%addr)
294 // %new = some_op iN %loaded, %incr
295 // %stored = @store_conditional(%new, %addr)
296 // %try_again = icmp i32 ne %stored, 0
297 // br i1 %try_again, label %loop, label %atomicrmw.end
298 // atomicrmw.end:
299 // fence?
300 // [...]
301 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
302 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
303
304 // This grabs the DebugLoc from AI.
305 IRBuilder<> Builder(AI);
306
307 // The split call above "helpfully" added a branch at the end of BB (to the
308 // wrong place), but we might want a fence too. It's easiest to just remove
309 // the branch entirely.
310 std::prev(BB->end())->eraseFromParent();
311 Builder.SetInsertPoint(BB);
312 Builder.CreateBr(LoopBB);
313
314 // Start the main loop block now that we've taken care of the preliminaries.
315 Builder.SetInsertPoint(LoopBB);
316 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
317
318 Value *NewVal =
319 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
320
321 Value *StoreSuccess =
322 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
323 Value *TryAgain = Builder.CreateICmpNE(
324 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
325 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
326
327 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
328
329 AI->replaceAllUsesWith(Loaded);
330 AI->eraseFromParent();
331
332 return true;
333}
334
335bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) {
336 AtomicOrdering MemOpOrder =
337 AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering();
338 Value *Addr = AI->getPointerOperand();
339 BasicBlock *BB = AI->getParent();
340 Function *F = BB->getParent();
341 LLVMContext &Ctx = F->getContext();
342
343 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
344 //
345 // The standard expansion we produce is:
346 // [...]
347 // %init_loaded = load atomic iN* %addr
348 // br label %loop
349 // loop:
350 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
351 // %new = some_op iN %loaded, %incr
352 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
353 // %new_loaded = extractvalue { iN, i1 } %pair, 0
354 // %success = extractvalue { iN, i1 } %pair, 1
355 // br i1 %success, label %atomicrmw.end, label %loop
356 // atomicrmw.end:
357 // [...]
358 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
359 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
360
361 // This grabs the DebugLoc from AI.
362 IRBuilder<> Builder(AI);
363
364 // The split call above "helpfully" added a branch at the end of BB (to the
365 // wrong place), but we want a load. It's easiest to just remove
366 // the branch entirely.
367 std::prev(BB->end())->eraseFromParent();
368 Builder.SetInsertPoint(BB);
369 LoadInst *InitLoaded = Builder.CreateLoad(Addr);
370 // Atomics require at least natural alignment.
371 InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits());
372 Builder.CreateBr(LoopBB);
373
374 // Start the main loop block now that we've taken care of the preliminaries.
375 Builder.SetInsertPoint(LoopBB);
376 PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded");
377 Loaded->addIncoming(InitLoaded, BB);
378
379 Value *NewVal =
380 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
381
382 Value *Pair = Builder.CreateAtomicCmpXchg(
383 Addr, Loaded, NewVal, MemOpOrder,
384 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
385 Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
386 Loaded->addIncoming(NewLoaded, LoopBB);
387
388 Value *Success = Builder.CreateExtractValue(Pair, 1, "success");
389 Builder.CreateCondBr(Success, ExitBB, LoopBB);
390
391 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
392
393 AI->replaceAllUsesWith(NewLoaded);
394 AI->eraseFromParent();
395
396 return true;
397}
398
399bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
400 auto TLI = TM->getSubtargetImpl()->getTargetLowering();
401 AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
402 AtomicOrdering FailureOrder = CI->getFailureOrdering();
403 Value *Addr = CI->getPointerOperand();
404 BasicBlock *BB = CI->getParent();
405 Function *F = BB->getParent();
406 LLVMContext &Ctx = F->getContext();
407 // If getInsertFencesForAtomic() returns true, then the target does not want
408 // to deal with memory orders, and emitLeading/TrailingFence should take care
409 // of everything. Otherwise, emitLeading/TrailingFence are no-op and we
410 // should preserve the ordering.
411 AtomicOrdering MemOpOrder =
412 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder;
413
414 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
415 //
416 // The full expansion we produce is:
417 // [...]
418 // fence?
419 // cmpxchg.start:
420 // %loaded = @load.linked(%addr)
421 // %should_store = icmp eq %loaded, %desired
422 // br i1 %should_store, label %cmpxchg.trystore,
423 // label %cmpxchg.failure
424 // cmpxchg.trystore:
425 // %stored = @store_conditional(%new, %addr)
426 // %success = icmp eq i32 %stored, 0
427 // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure
428 // cmpxchg.success:
429 // fence?
430 // br label %cmpxchg.end
431 // cmpxchg.failure:
432 // fence?
433 // br label %cmpxchg.end
434 // cmpxchg.end:
435 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
436 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
437 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
438 // [...]
439 BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
440 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
441 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB);
442 auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB);
443 auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
444
445 // This grabs the DebugLoc from CI
446 IRBuilder<> Builder(CI);
447
448 // The split call above "helpfully" added a branch at the end of BB (to the
449 // wrong place), but we might want a fence too. It's easiest to just remove
450 // the branch entirely.
451 std::prev(BB->end())->eraseFromParent();
452 Builder.SetInsertPoint(BB);
453 TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true,
454 /*IsLoad=*/true);
455 Builder.CreateBr(LoopBB);
456
457 // Start the main loop block now that we've taken care of the preliminaries.
458 Builder.SetInsertPoint(LoopBB);
459 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
460 Value *ShouldStore =
461 Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
462
463 // If the the cmpxchg doesn't actually need any ordering when it fails, we can
464 // jump straight past that fence instruction (if it exists).
465 Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
466
467 Builder.SetInsertPoint(TryStoreBB);
468 Value *StoreSuccess = TLI->emitStoreConditional(
469 Builder, CI->getNewValOperand(), Addr, MemOpOrder);
470 StoreSuccess = Builder.CreateICmpEQ(
471 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
472 Builder.CreateCondBr(StoreSuccess, SuccessBB,
473 CI->isWeak() ? FailureBB : LoopBB);
474
475 // Make sure later instructions don't get reordered with a fence if necessary.
476 Builder.SetInsertPoint(SuccessBB);
477 TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true,
478 /*IsLoad=*/true);
479 Builder.CreateBr(ExitBB);
480
481 Builder.SetInsertPoint(FailureBB);
482 TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true,
483 /*IsLoad=*/true);
484 Builder.CreateBr(ExitBB);
485
486 // Finally, we have control-flow based knowledge of whether the cmpxchg
487 // succeeded or not. We expose this to later passes by converting any
488 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI.
489
490 // Setup the builder so we can create any PHIs we need.
491 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
492 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
493 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
494 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
495
496 // Look for any users of the cmpxchg that are just comparing the loaded value
497 // against the desired one, and replace them with the CFG-derived version.
498 SmallVector<ExtractValueInst *, 2> PrunedInsts;
499 for (auto User : CI->users()) {
500 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
501 if (!EV)
502 continue;
503
504 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
505 "weird extraction from { iN, i1 }");
506
507 if (EV->getIndices()[0] == 0)
508 EV->replaceAllUsesWith(Loaded);
509 else
510 EV->replaceAllUsesWith(Success);
511
512 PrunedInsts.push_back(EV);
513 }
514
515 // We can remove the instructions now we're no longer iterating through them.
516 for (auto EV : PrunedInsts)
517 EV->eraseFromParent();
518
519 if (!CI->use_empty()) {
520 // Some use of the full struct return that we don't understand has happened,
521 // so we've got to reconstruct it properly.
522 Value *Res;
523 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
524 Res = Builder.CreateInsertValue(Res, Success, 1);
525
526 CI->replaceAllUsesWith(Res);
527 }
528
529 CI->eraseFromParent();
530 return true;
531}
532
533bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
534 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
535 if(!C)
536 return false;
537
538 AtomicRMWInst::BinOp Op = RMWI->getOperation();
539 switch(Op) {
540 case AtomicRMWInst::Add:
541 case AtomicRMWInst::Sub:
542 case AtomicRMWInst::Or:
543 case AtomicRMWInst::Xor:
544 return C->isZero();
545 case AtomicRMWInst::And:
546 return C->isMinusOne();
547 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
548 default:
549 return false;
550 }
551}
552
553bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
554 auto TLI = TM->getSubtargetImpl()->getTargetLowering();
555
556 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
557 if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad))
558 expandAtomicLoad(ResultingLoad);
559 return true;
560 }
561
562 return false;
563}