]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/CodeGen/RegAllocGreedy.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / CodeGen / RegAllocGreedy.cpp
CommitLineData
223e47cc
LB
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
970d7e83 15#include "llvm/CodeGen/Passes.h"
223e47cc
LB
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
223e47cc 19#include "RegAllocBase.h"
223e47cc 20#include "SpillPlacement.h"
970d7e83 21#include "Spiller.h"
223e47cc 22#include "SplitKit.h"
223e47cc
LB
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/AliasAnalysis.h"
223e47cc
LB
25#include "llvm/CodeGen/CalcSpillWeights.h"
26#include "llvm/CodeGen/EdgeBundles.h"
27#include "llvm/CodeGen/LiveIntervalAnalysis.h"
28#include "llvm/CodeGen/LiveRangeEdit.h"
970d7e83 29#include "llvm/CodeGen/LiveRegMatrix.h"
223e47cc 30#include "llvm/CodeGen/LiveStackAnalysis.h"
1a4d82fc 31#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
223e47cc
LB
32#include "llvm/CodeGen/MachineDominators.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
223e47cc 36#include "llvm/CodeGen/RegAllocRegistry.h"
1a4d82fc 37#include "llvm/CodeGen/RegisterClassInfo.h"
970d7e83 38#include "llvm/CodeGen/VirtRegMap.h"
1a4d82fc 39#include "llvm/IR/LLVMContext.h"
970d7e83 40#include "llvm/PassAnalysisSupport.h"
1a4d82fc 41#include "llvm/Support/BranchProbability.h"
223e47cc
LB
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
223e47cc 45#include "llvm/Support/Timer.h"
970d7e83 46#include "llvm/Support/raw_ostream.h"
1a4d82fc 47#include "llvm/Target/TargetSubtargetInfo.h"
223e47cc
LB
48#include <queue>
49
50using namespace llvm;
51
1a4d82fc
JJ
52#define DEBUG_TYPE "regalloc"
53
223e47cc
LB
54STATISTIC(NumGlobalSplits, "Number of split global live ranges");
55STATISTIC(NumLocalSplits, "Number of split local live ranges");
56STATISTIC(NumEvicted, "Number of interferences evicted");
57
58static cl::opt<SplitEditor::ComplementSpillMode>
59SplitSpillMode("split-spill-mode", cl::Hidden,
60 cl::desc("Spill mode for splitting live ranges"),
61 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
62 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
63 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
64 clEnumValEnd),
65 cl::init(SplitEditor::SM_Partition));
66
1a4d82fc
JJ
67static cl::opt<unsigned>
68LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
69 cl::desc("Last chance recoloring max depth"),
70 cl::init(5));
71
72static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
73 "lcr-max-interf", cl::Hidden,
74 cl::desc("Last chance recoloring maximum number of considered"
75 " interference at a time"),
76 cl::init(8));
77
78static cl::opt<bool>
79ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
80 cl::desc("Exhaustive Search for registers bypassing the depth "
81 "and interference cutoffs of last chance recoloring"));
82
83static cl::opt<bool> EnableLocalReassignment(
84 "enable-local-reassign", cl::Hidden,
85 cl::desc("Local reassignment can yield better allocation decisions, but "
86 "may be compile time intensive"),
87 cl::init(false));
88
89// FIXME: Find a good default for this flag and remove the flag.
90static cl::opt<unsigned>
91CSRFirstTimeCost("regalloc-csr-first-time-cost",
92 cl::desc("Cost for first time use of callee-saved register."),
93 cl::init(0), cl::Hidden);
94
223e47cc
LB
95static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
96 createGreedyRegisterAllocator);
97
98namespace {
99class RAGreedy : public MachineFunctionPass,
100 public RegAllocBase,
101 private LiveRangeEdit::Delegate {
1a4d82fc
JJ
102 // Convenient shortcuts.
103 typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
104 typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
105 typedef SmallSet<unsigned, 16> SmallVirtRegSet;
223e47cc
LB
106
107 // context
108 MachineFunction *MF;
109
1a4d82fc
JJ
110 // Shortcuts to some useful interface.
111 const TargetInstrInfo *TII;
112 const TargetRegisterInfo *TRI;
113 RegisterClassInfo RCI;
114
223e47cc
LB
115 // analyses
116 SlotIndexes *Indexes;
1a4d82fc 117 MachineBlockFrequencyInfo *MBFI;
223e47cc
LB
118 MachineDominatorTree *DomTree;
119 MachineLoopInfo *Loops;
120 EdgeBundles *Bundles;
121 SpillPlacement *SpillPlacer;
122 LiveDebugVariables *DebugVars;
123
124 // state
1a4d82fc
JJ
125 std::unique_ptr<Spiller> SpillerInstance;
126 PQueue Queue;
223e47cc
LB
127 unsigned NextCascade;
128
129 // Live ranges pass through a number of stages as we try to allocate them.
130 // Some of the stages may also create new live ranges:
131 //
132 // - Region splitting.
133 // - Per-block splitting.
134 // - Local splitting.
135 // - Spilling.
136 //
137 // Ranges produced by one of the stages skip the previous stages when they are
138 // dequeued. This improves performance because we can skip interference checks
139 // that are unlikely to give any results. It also guarantees that the live
140 // range splitting algorithm terminates, something that is otherwise hard to
141 // ensure.
142 enum LiveRangeStage {
143 /// Newly created live range that has never been queued.
144 RS_New,
145
146 /// Only attempt assignment and eviction. Then requeue as RS_Split.
147 RS_Assign,
148
149 /// Attempt live range splitting if assignment is impossible.
150 RS_Split,
151
152 /// Attempt more aggressive live range splitting that is guaranteed to make
153 /// progress. This is used for split products that may not be making
154 /// progress.
155 RS_Split2,
156
157 /// Live range will be spilled. No more splitting will be attempted.
158 RS_Spill,
159
160 /// There is nothing more we can do to this live range. Abort compilation
161 /// if it can't be assigned.
162 RS_Done
163 };
164
1a4d82fc
JJ
165 // Enum CutOffStage to keep a track whether the register allocation failed
166 // because of the cutoffs encountered in last chance recoloring.
167 // Note: This is used as bitmask. New value should be next power of 2.
168 enum CutOffStage {
169 // No cutoffs encountered
170 CO_None = 0,
171
172 // lcr-max-depth cutoff encountered
173 CO_Depth = 1,
174
175 // lcr-max-interf cutoff encountered
176 CO_Interf = 2
177 };
178
179 uint8_t CutOffInfo;
180
181#ifndef NDEBUG
223e47cc 182 static const char *const StageName[];
1a4d82fc 183#endif
223e47cc
LB
184
185 // RegInfo - Keep additional information about each live range.
186 struct RegInfo {
187 LiveRangeStage Stage;
188
189 // Cascade - Eviction loop prevention. See canEvictInterference().
190 unsigned Cascade;
191
192 RegInfo() : Stage(RS_New), Cascade(0) {}
193 };
194
195 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
196
197 LiveRangeStage getStage(const LiveInterval &VirtReg) const {
198 return ExtraRegInfo[VirtReg.reg].Stage;
199 }
200
201 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
202 ExtraRegInfo.resize(MRI->getNumVirtRegs());
203 ExtraRegInfo[VirtReg.reg].Stage = Stage;
204 }
205
206 template<typename Iterator>
207 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
208 ExtraRegInfo.resize(MRI->getNumVirtRegs());
209 for (;Begin != End; ++Begin) {
1a4d82fc 210 unsigned Reg = *Begin;
223e47cc
LB
211 if (ExtraRegInfo[Reg].Stage == RS_New)
212 ExtraRegInfo[Reg].Stage = NewStage;
213 }
214 }
215
216 /// Cost of evicting interference.
217 struct EvictionCost {
218 unsigned BrokenHints; ///< Total number of broken hints.
219 float MaxWeight; ///< Maximum spill weight evicted.
220
1a4d82fc
JJ
221 EvictionCost(): BrokenHints(0), MaxWeight(0) {}
222
223 bool isMax() const { return BrokenHints == ~0u; }
224
225 void setMax() { BrokenHints = ~0u; }
226
227 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
223e47cc
LB
228
229 bool operator<(const EvictionCost &O) const {
1a4d82fc
JJ
230 return std::tie(BrokenHints, MaxWeight) <
231 std::tie(O.BrokenHints, O.MaxWeight);
223e47cc
LB
232 }
233 };
234
235 // splitting state.
1a4d82fc
JJ
236 std::unique_ptr<SplitAnalysis> SA;
237 std::unique_ptr<SplitEditor> SE;
223e47cc
LB
238
239 /// Cached per-block interference maps
240 InterferenceCache IntfCache;
241
242 /// All basic blocks where the current register has uses.
243 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
244
245 /// Global live range splitting candidate info.
246 struct GlobalSplitCandidate {
247 // Register intended for assignment, or 0.
248 unsigned PhysReg;
249
250 // SplitKit interval index for this candidate.
251 unsigned IntvIdx;
252
253 // Interference for PhysReg.
254 InterferenceCache::Cursor Intf;
255
256 // Bundles where this candidate should be live.
257 BitVector LiveBundles;
258 SmallVector<unsigned, 8> ActiveBlocks;
259
260 void reset(InterferenceCache &Cache, unsigned Reg) {
261 PhysReg = Reg;
262 IntvIdx = 0;
263 Intf.setPhysReg(Cache, Reg);
264 LiveBundles.clear();
265 ActiveBlocks.clear();
266 }
267
268 // Set B[i] = C for every live bundle where B[i] was NoCand.
269 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
270 unsigned Count = 0;
271 for (int i = LiveBundles.find_first(); i >= 0;
272 i = LiveBundles.find_next(i))
273 if (B[i] == NoCand) {
274 B[i] = C;
275 Count++;
276 }
277 return Count;
278 }
279 };
280
1a4d82fc 281 /// Candidate info for each PhysReg in AllocationOrder.
223e47cc
LB
282 /// This vector never shrinks, but grows to the size of the largest register
283 /// class.
284 SmallVector<GlobalSplitCandidate, 32> GlobalCand;
285
1a4d82fc 286 enum : unsigned { NoCand = ~0u };
223e47cc
LB
287
288 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
289 /// NoCand which indicates the stack interval.
290 SmallVector<unsigned, 32> BundleCand;
291
1a4d82fc
JJ
292 /// Callee-save register cost, calculated once per machine function.
293 BlockFrequency CSRCost;
294
295 /// Run or not the local reassignment heuristic. This information is
296 /// obtained from the TargetSubtargetInfo.
297 bool EnableLocalReassign;
298
85aaf69f
SL
299 /// Set of broken hints that may be reconciled later because of eviction.
300 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
301
223e47cc
LB
302public:
303 RAGreedy();
304
305 /// Return the pass name.
1a4d82fc 306 const char* getPassName() const override {
223e47cc
LB
307 return "Greedy Register Allocator";
308 }
309
310 /// RAGreedy analysis usage.
1a4d82fc
JJ
311 void getAnalysisUsage(AnalysisUsage &AU) const override;
312 void releaseMemory() override;
313 Spiller &spiller() override { return *SpillerInstance; }
314 void enqueue(LiveInterval *LI) override;
315 LiveInterval *dequeue() override;
316 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
85aaf69f 317 void aboutToRemoveInterval(LiveInterval &) override;
223e47cc
LB
318
319 /// Perform register allocation.
1a4d82fc 320 bool runOnMachineFunction(MachineFunction &mf) override;
223e47cc
LB
321
322 static char ID;
323
324private:
1a4d82fc
JJ
325 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
326 SmallVirtRegSet &, unsigned = 0);
327
328 bool LRE_CanEraseVirtReg(unsigned) override;
329 void LRE_WillShrinkVirtReg(unsigned) override;
330 void LRE_DidCloneVirtReg(unsigned, unsigned) override;
331 void enqueue(PQueue &CurQueue, LiveInterval *LI);
332 LiveInterval *dequeue(PQueue &CurQueue);
223e47cc 333
1a4d82fc
JJ
334 BlockFrequency calcSpillCost();
335 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
223e47cc
LB
336 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
337 void growRegion(GlobalSplitCandidate &Cand);
1a4d82fc 338 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
223e47cc
LB
339 bool calcCompactRegion(GlobalSplitCandidate&);
340 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
341 void calcGapWeights(unsigned, SmallVectorImpl<float>&);
1a4d82fc 342 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
223e47cc
LB
343 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
344 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
345 void evictInterference(LiveInterval&, unsigned,
1a4d82fc
JJ
346 SmallVectorImpl<unsigned>&);
347 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
348 SmallLISet &RecoloringCandidates,
349 const SmallVirtRegSet &FixedRegisters);
223e47cc
LB
350
351 unsigned tryAssign(LiveInterval&, AllocationOrder&,
1a4d82fc 352 SmallVectorImpl<unsigned>&);
223e47cc 353 unsigned tryEvict(LiveInterval&, AllocationOrder&,
1a4d82fc 354 SmallVectorImpl<unsigned>&, unsigned = ~0u);
223e47cc 355 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
1a4d82fc
JJ
356 SmallVectorImpl<unsigned>&);
357 /// Calculate cost of region splitting.
358 unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
359 AllocationOrder &Order,
360 BlockFrequency &BestCost,
361 unsigned &NumCands, bool IgnoreCSR);
362 /// Perform region splitting.
363 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
364 bool HasCompact,
365 SmallVectorImpl<unsigned> &NewVRegs);
366 /// Check other options before using a callee-saved register for the first
367 /// time.
368 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
369 unsigned PhysReg, unsigned &CostPerUseLimit,
370 SmallVectorImpl<unsigned> &NewVRegs);
371 void initializeCSRCost();
223e47cc 372 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
1a4d82fc 373 SmallVectorImpl<unsigned>&);
223e47cc 374 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
1a4d82fc 375 SmallVectorImpl<unsigned>&);
223e47cc 376 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
1a4d82fc 377 SmallVectorImpl<unsigned>&);
223e47cc 378 unsigned trySplit(LiveInterval&, AllocationOrder&,
1a4d82fc
JJ
379 SmallVectorImpl<unsigned>&);
380 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
381 SmallVectorImpl<unsigned> &,
382 SmallVirtRegSet &, unsigned);
383 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
384 SmallVirtRegSet &, unsigned);
85aaf69f
SL
385 void tryHintRecoloring(LiveInterval &);
386 void tryHintsRecoloring();
387
388 /// Model the information carried by one end of a copy.
389 struct HintInfo {
390 /// The frequency of the copy.
391 BlockFrequency Freq;
392 /// The virtual register or physical register.
393 unsigned Reg;
394 /// Its currently assigned register.
395 /// In case of a physical register Reg == PhysReg.
396 unsigned PhysReg;
397 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
398 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
399 };
400 typedef SmallVector<HintInfo, 4> HintsInfo;
401 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
402 void collectHintInfo(unsigned, HintsInfo &);
223e47cc
LB
403};
404} // end anonymous namespace
405
406char RAGreedy::ID = 0;
407
408#ifndef NDEBUG
409const char *const RAGreedy::StageName[] = {
410 "RS_New",
411 "RS_Assign",
412 "RS_Split",
413 "RS_Split2",
414 "RS_Spill",
415 "RS_Done"
416};
417#endif
418
419// Hysteresis to use when comparing floats.
420// This helps stabilize decisions based on float comparisons.
1a4d82fc 421const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
223e47cc
LB
422
423
424FunctionPass* llvm::createGreedyRegisterAllocator() {
425 return new RAGreedy();
426}
427
428RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
429 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
430 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
431 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
432 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
433 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
434 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
223e47cc
LB
435 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
436 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
437 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
438 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
439 initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
440 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
441 initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
442}
443
444void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
445 AU.setPreservesCFG();
1a4d82fc
JJ
446 AU.addRequired<MachineBlockFrequencyInfo>();
447 AU.addPreserved<MachineBlockFrequencyInfo>();
223e47cc
LB
448 AU.addRequired<AliasAnalysis>();
449 AU.addPreserved<AliasAnalysis>();
450 AU.addRequired<LiveIntervals>();
451 AU.addPreserved<LiveIntervals>();
452 AU.addRequired<SlotIndexes>();
453 AU.addPreserved<SlotIndexes>();
454 AU.addRequired<LiveDebugVariables>();
455 AU.addPreserved<LiveDebugVariables>();
456 AU.addRequired<LiveStacks>();
457 AU.addPreserved<LiveStacks>();
223e47cc
LB
458 AU.addRequired<MachineDominatorTree>();
459 AU.addPreserved<MachineDominatorTree>();
460 AU.addRequired<MachineLoopInfo>();
461 AU.addPreserved<MachineLoopInfo>();
462 AU.addRequired<VirtRegMap>();
463 AU.addPreserved<VirtRegMap>();
464 AU.addRequired<LiveRegMatrix>();
465 AU.addPreserved<LiveRegMatrix>();
466 AU.addRequired<EdgeBundles>();
467 AU.addRequired<SpillPlacement>();
468 MachineFunctionPass::getAnalysisUsage(AU);
469}
470
471
472//===----------------------------------------------------------------------===//
473// LiveRangeEdit delegate methods
474//===----------------------------------------------------------------------===//
475
476bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
477 if (VRM->hasPhys(VirtReg)) {
85aaf69f
SL
478 LiveInterval &LI = LIS->getInterval(VirtReg);
479 Matrix->unassign(LI);
480 aboutToRemoveInterval(LI);
223e47cc
LB
481 return true;
482 }
483 // Unassigned virtreg is probably in the priority queue.
484 // RegAllocBase will erase it after dequeueing.
485 return false;
486}
487
488void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
489 if (!VRM->hasPhys(VirtReg))
490 return;
491
492 // Register is assigned, put it back on the queue for reassignment.
493 LiveInterval &LI = LIS->getInterval(VirtReg);
494 Matrix->unassign(LI);
495 enqueue(&LI);
496}
497
498void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
499 // Cloning a register we haven't even heard about yet? Just ignore it.
500 if (!ExtraRegInfo.inBounds(Old))
501 return;
502
503 // LRE may clone a virtual register because dead code elimination causes it to
504 // be split into connected components. The new components are much smaller
505 // than the original, so they should get a new chance at being assigned.
506 // same stage as the parent.
507 ExtraRegInfo[Old].Stage = RS_Assign;
508 ExtraRegInfo.grow(New);
509 ExtraRegInfo[New] = ExtraRegInfo[Old];
510}
511
512void RAGreedy::releaseMemory() {
1a4d82fc 513 SpillerInstance.reset();
223e47cc
LB
514 ExtraRegInfo.clear();
515 GlobalCand.clear();
516}
517
1a4d82fc
JJ
518void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
519
520void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
223e47cc
LB
521 // Prioritize live ranges by size, assigning larger ranges first.
522 // The queue holds (size, reg) pairs.
523 const unsigned Size = LI->getSize();
524 const unsigned Reg = LI->reg;
525 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
526 "Can only enqueue virtual registers");
527 unsigned Prio;
528
529 ExtraRegInfo.grow(Reg);
530 if (ExtraRegInfo[Reg].Stage == RS_New)
531 ExtraRegInfo[Reg].Stage = RS_Assign;
532
533 if (ExtraRegInfo[Reg].Stage == RS_Split) {
534 // Unsplit ranges that couldn't be allocated immediately are deferred until
535 // everything else has been allocated.
536 Prio = Size;
537 } else {
1a4d82fc
JJ
538 // Giant live ranges fall back to the global assignment heuristic, which
539 // prevents excessive spilling in pathological cases.
540 bool ReverseLocal = TRI->reverseLocalAssignment();
85aaf69f 541 bool ForceGlobal = !ReverseLocal &&
1a4d82fc
JJ
542 (Size / SlotIndex::InstrDist) > (2 * MRI->getRegClass(Reg)->getNumRegs());
543
544 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
545 LIS->intervalIsInOneMBB(*LI)) {
546 // Allocate original local ranges in linear instruction order. Since they
547 // are singly defined, this produces optimal coloring in the absence of
548 // global interference and other constraints.
549 if (!ReverseLocal)
550 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
551 else {
552 // Allocating bottom up may allow many short LRGs to be assigned first
553 // to one of the cheap registers. This could be much faster for very
554 // large blocks on targets with many physical registers.
555 Prio = Indexes->getZeroIndex().getInstrDistance(LI->beginIndex());
556 }
557 }
558 else {
559 // Allocate global and split ranges in long->short order. Long ranges that
560 // don't fit should be spilled (or split) ASAP so they don't create
561 // interference. Mark a bit to prioritize global above local ranges.
562 Prio = (1u << 29) + Size;
563 }
564 // Mark a higher bit to prioritize global and local above RS_Split.
565 Prio |= (1u << 31);
223e47cc
LB
566
567 // Boost ranges that have a physical register hint.
970d7e83 568 if (VRM->hasKnownPreference(Reg))
223e47cc
LB
569 Prio |= (1u << 30);
570 }
1a4d82fc
JJ
571 // The virtual register number is a tie breaker for same-sized ranges.
572 // Give lower vreg numbers higher priority to assign them first.
573 CurQueue.push(std::make_pair(Prio, ~Reg));
223e47cc
LB
574}
575
1a4d82fc
JJ
576LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
577
578LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
579 if (CurQueue.empty())
580 return nullptr;
581 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
582 CurQueue.pop();
223e47cc
LB
583 return LI;
584}
585
586
587//===----------------------------------------------------------------------===//
588// Direct Assignment
589//===----------------------------------------------------------------------===//
590
591/// tryAssign - Try to assign VirtReg to an available register.
592unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
593 AllocationOrder &Order,
1a4d82fc 594 SmallVectorImpl<unsigned> &NewVRegs) {
223e47cc
LB
595 Order.rewind();
596 unsigned PhysReg;
597 while ((PhysReg = Order.next()))
598 if (!Matrix->checkInterference(VirtReg, PhysReg))
599 break;
970d7e83 600 if (!PhysReg || Order.isHint())
223e47cc
LB
601 return PhysReg;
602
603 // PhysReg is available, but there may be a better choice.
604
605 // If we missed a simple hint, try to cheaply evict interference from the
606 // preferred register.
607 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
608 if (Order.isHint(Hint)) {
609 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
1a4d82fc
JJ
610 EvictionCost MaxCost;
611 MaxCost.setBrokenHints(1);
223e47cc
LB
612 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
613 evictInterference(VirtReg, Hint, NewVRegs);
614 return Hint;
615 }
616 }
617
618 // Try to evict interference from a cheaper alternative.
619 unsigned Cost = TRI->getCostPerUse(PhysReg);
620
621 // Most registers have 0 additional cost.
622 if (!Cost)
623 return PhysReg;
624
625 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
626 << '\n');
627 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
628 return CheapReg ? CheapReg : PhysReg;
629}
630
631
632//===----------------------------------------------------------------------===//
633// Interference eviction
634//===----------------------------------------------------------------------===//
635
1a4d82fc
JJ
636unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
637 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
638 unsigned PhysReg;
639 while ((PhysReg = Order.next())) {
640 if (PhysReg == PrevReg)
641 continue;
642
643 MCRegUnitIterator Units(PhysReg, TRI);
644 for (; Units.isValid(); ++Units) {
645 // Instantiate a "subquery", not to be confused with the Queries array.
646 LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
647 if (subQ.checkInterference())
648 break;
649 }
650 // If no units have interference, break out with the current PhysReg.
651 if (!Units.isValid())
652 break;
653 }
654 if (PhysReg)
655 DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
656 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
657 << '\n');
658 return PhysReg;
659}
660
223e47cc
LB
661/// shouldEvict - determine if A should evict the assigned live range B. The
662/// eviction policy defined by this function together with the allocation order
663/// defined by enqueue() decides which registers ultimately end up being split
664/// and spilled.
665///
666/// Cascade numbers are used to prevent infinite loops if this function is a
667/// cyclic relation.
668///
669/// @param A The live range to be assigned.
670/// @param IsHint True when A is about to be assigned to its preferred
671/// register.
672/// @param B The live range to be evicted.
673/// @param BreaksHint True when B is already assigned to its preferred register.
674bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
675 LiveInterval &B, bool BreaksHint) {
676 bool CanSplit = getStage(B) < RS_Spill;
677
678 // Be fairly aggressive about following hints as long as the evictee can be
679 // split.
680 if (CanSplit && IsHint && !BreaksHint)
681 return true;
682
1a4d82fc
JJ
683 if (A.weight > B.weight) {
684 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
685 return true;
686 }
687 return false;
223e47cc
LB
688}
689
690/// canEvictInterference - Return true if all interferences between VirtReg and
1a4d82fc 691/// PhysReg can be evicted.
223e47cc
LB
692///
693/// @param VirtReg Live range that is about to be assigned.
694/// @param PhysReg Desired register for assignment.
695/// @param IsHint True when PhysReg is VirtReg's preferred register.
696/// @param MaxCost Only look for cheaper candidates and update with new cost
697/// when returning true.
698/// @returns True when interference can be evicted cheaper than MaxCost.
699bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
700 bool IsHint, EvictionCost &MaxCost) {
701 // It is only possible to evict virtual register interference.
702 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
703 return false;
704
1a4d82fc
JJ
705 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
706
223e47cc
LB
707 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
708 // involved in an eviction before. If a cascade number was assigned, deny
709 // evicting anything with the same or a newer cascade number. This prevents
710 // infinite eviction loops.
711 //
712 // This works out so a register without a cascade number is allowed to evict
713 // anything, and it can be evicted by anything.
714 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
715 if (!Cascade)
716 Cascade = NextCascade;
717
718 EvictionCost Cost;
719 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
720 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
721 // If there is 10 or more interferences, chances are one is heavier.
722 if (Q.collectInterferingVRegs(10) >= 10)
723 return false;
724
725 // Check if any interfering live range is heavier than MaxWeight.
726 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
727 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
728 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
729 "Only expecting virtual register interference from query");
730 // Never evict spill products. They cannot split or spill.
731 if (getStage(*Intf) == RS_Done)
732 return false;
733 // Once a live range becomes small enough, it is urgent that we find a
734 // register for it. This is indicated by an infinite spill weight. These
735 // urgent live ranges get to evict almost anything.
736 //
737 // Also allow urgent evictions of unspillable ranges from a strictly
738 // larger allocation order.
739 bool Urgent = !VirtReg.isSpillable() &&
740 (Intf->isSpillable() ||
741 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
742 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
743 // Only evict older cascades or live ranges without a cascade.
744 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
745 if (Cascade <= IntfCascade) {
746 if (!Urgent)
747 return false;
748 // We permit breaking cascades for urgent evictions. It should be the
749 // last resort, though, so make it really expensive.
750 Cost.BrokenHints += 10;
751 }
752 // Would this break a satisfied hint?
753 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
754 // Update eviction cost.
755 Cost.BrokenHints += BreaksHint;
756 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
757 // Abort if this would be too expensive.
758 if (!(Cost < MaxCost))
759 return false;
1a4d82fc
JJ
760 if (Urgent)
761 continue;
762 // Apply the eviction policy for non-urgent evictions.
763 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
764 return false;
765 // If !MaxCost.isMax(), then we're just looking for a cheap register.
766 // Evicting another local live range in this case could lead to suboptimal
767 // coloring.
768 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
769 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
223e47cc 770 return false;
1a4d82fc 771 }
223e47cc
LB
772 }
773 }
774 MaxCost = Cost;
775 return true;
776}
777
778/// evictInterference - Evict any interferring registers that prevent VirtReg
779/// from being assigned to Physreg. This assumes that canEvictInterference
780/// returned true.
781void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
1a4d82fc 782 SmallVectorImpl<unsigned> &NewVRegs) {
223e47cc
LB
783 // Make sure that VirtReg has a cascade number, and assign that cascade
784 // number to every evicted register. These live ranges than then only be
785 // evicted by a newer cascade, preventing infinite loops.
786 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
787 if (!Cascade)
788 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
789
790 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
791 << " interference: Cascade " << Cascade << '\n');
792
793 // Collect all interfering virtregs first.
794 SmallVector<LiveInterval*, 8> Intfs;
795 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
796 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
797 assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
798 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
799 Intfs.append(IVR.begin(), IVR.end());
800 }
801
802 // Evict them second. This will invalidate the queries.
803 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
804 LiveInterval *Intf = Intfs[i];
805 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
806 if (!VRM->hasPhys(Intf->reg))
807 continue;
808 Matrix->unassign(*Intf);
809 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
810 VirtReg.isSpillable() < Intf->isSpillable()) &&
811 "Cannot decrease cascade number, illegal eviction");
812 ExtraRegInfo[Intf->reg].Cascade = Cascade;
813 ++NumEvicted;
1a4d82fc 814 NewVRegs.push_back(Intf->reg);
223e47cc
LB
815 }
816}
817
818/// tryEvict - Try to evict all interferences for a physreg.
819/// @param VirtReg Currently unassigned virtual register.
820/// @param Order Physregs to try.
821/// @return Physreg to assign VirtReg, or 0.
822unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
823 AllocationOrder &Order,
1a4d82fc 824 SmallVectorImpl<unsigned> &NewVRegs,
223e47cc
LB
825 unsigned CostPerUseLimit) {
826 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
827
828 // Keep track of the cheapest interference seen so far.
1a4d82fc
JJ
829 EvictionCost BestCost;
830 BestCost.setMax();
223e47cc 831 unsigned BestPhys = 0;
970d7e83 832 unsigned OrderLimit = Order.getOrder().size();
223e47cc
LB
833
834 // When we are just looking for a reduced cost per use, don't break any
835 // hints, and only evict smaller spill weights.
836 if (CostPerUseLimit < ~0u) {
837 BestCost.BrokenHints = 0;
838 BestCost.MaxWeight = VirtReg.weight;
970d7e83
LB
839
840 // Check of any registers in RC are below CostPerUseLimit.
841 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
842 unsigned MinCost = RegClassInfo.getMinCost(RC);
843 if (MinCost >= CostPerUseLimit) {
85aaf69f 844 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
970d7e83
LB
845 << ", no cheaper registers to be found.\n");
846 return 0;
847 }
848
849 // It is normal for register classes to have a long tail of registers with
850 // the same cost. We don't need to look at them if they're too expensive.
851 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
852 OrderLimit = RegClassInfo.getLastCostChange(RC);
853 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
854 }
223e47cc
LB
855 }
856
857 Order.rewind();
1a4d82fc 858 while (unsigned PhysReg = Order.next(OrderLimit)) {
223e47cc
LB
859 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
860 continue;
861 // The first use of a callee-saved register in a function has cost 1.
862 // Don't start using a CSR when the CostPerUseLimit is low.
863 if (CostPerUseLimit == 1)
864 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
865 if (!MRI->isPhysRegUsed(CSR)) {
866 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
867 << PrintReg(CSR, TRI) << '\n');
868 continue;
869 }
870
871 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
872 continue;
873
874 // Best so far.
875 BestPhys = PhysReg;
876
877 // Stop if the hint can be used.
970d7e83 878 if (Order.isHint())
223e47cc
LB
879 break;
880 }
881
882 if (!BestPhys)
883 return 0;
884
885 evictInterference(VirtReg, BestPhys, NewVRegs);
886 return BestPhys;
887}
888
889
890//===----------------------------------------------------------------------===//
891// Region Splitting
892//===----------------------------------------------------------------------===//
893
894/// addSplitConstraints - Fill out the SplitConstraints vector based on the
895/// interference pattern in Physreg and its aliases. Add the constraints to
896/// SpillPlacement and return the static cost of this split in Cost, assuming
897/// that all preferences in SplitConstraints are met.
898/// Return false if there are no bundles with positive bias.
899bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1a4d82fc 900 BlockFrequency &Cost) {
223e47cc
LB
901 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
902
903 // Reset interference dependent info.
904 SplitConstraints.resize(UseBlocks.size());
1a4d82fc 905 BlockFrequency StaticCost = 0;
223e47cc
LB
906 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
907 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
908 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
909
910 BC.Number = BI.MBB->getNumber();
911 Intf.moveToBlock(BC.Number);
912 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
913 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1a4d82fc 914 BC.ChangesValue = BI.FirstDef.isValid();
223e47cc
LB
915
916 if (!Intf.hasInterference())
917 continue;
918
919 // Number of spill code instructions to insert.
920 unsigned Ins = 0;
921
922 // Interference for the live-in value.
923 if (BI.LiveIn) {
924 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
925 BC.Entry = SpillPlacement::MustSpill, ++Ins;
926 else if (Intf.first() < BI.FirstInstr)
927 BC.Entry = SpillPlacement::PrefSpill, ++Ins;
928 else if (Intf.first() < BI.LastInstr)
929 ++Ins;
930 }
931
932 // Interference for the live-out value.
933 if (BI.LiveOut) {
934 if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
935 BC.Exit = SpillPlacement::MustSpill, ++Ins;
936 else if (Intf.last() > BI.LastInstr)
937 BC.Exit = SpillPlacement::PrefSpill, ++Ins;
938 else if (Intf.last() > BI.FirstInstr)
939 ++Ins;
940 }
941
942 // Accumulate the total frequency of inserted spill code.
1a4d82fc
JJ
943 while (Ins--)
944 StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
223e47cc
LB
945 }
946 Cost = StaticCost;
947
948 // Add constraints for use-blocks. Note that these are the only constraints
949 // that may add a positive bias, it is downhill from here.
950 SpillPlacer->addConstraints(SplitConstraints);
951 return SpillPlacer->scanActiveBundles();
952}
953
954
955/// addThroughConstraints - Add constraints and links to SpillPlacer from the
956/// live-through blocks in Blocks.
957void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
958 ArrayRef<unsigned> Blocks) {
959 const unsigned GroupSize = 8;
960 SpillPlacement::BlockConstraint BCS[GroupSize];
961 unsigned TBS[GroupSize];
962 unsigned B = 0, T = 0;
963
964 for (unsigned i = 0; i != Blocks.size(); ++i) {
965 unsigned Number = Blocks[i];
966 Intf.moveToBlock(Number);
967
968 if (!Intf.hasInterference()) {
969 assert(T < GroupSize && "Array overflow");
970 TBS[T] = Number;
971 if (++T == GroupSize) {
972 SpillPlacer->addLinks(makeArrayRef(TBS, T));
973 T = 0;
974 }
975 continue;
976 }
977
978 assert(B < GroupSize && "Array overflow");
979 BCS[B].Number = Number;
980
981 // Interference for the live-in value.
982 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
983 BCS[B].Entry = SpillPlacement::MustSpill;
984 else
985 BCS[B].Entry = SpillPlacement::PrefSpill;
986
987 // Interference for the live-out value.
988 if (Intf.last() >= SA->getLastSplitPoint(Number))
989 BCS[B].Exit = SpillPlacement::MustSpill;
990 else
991 BCS[B].Exit = SpillPlacement::PrefSpill;
992
993 if (++B == GroupSize) {
1a4d82fc 994 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
223e47cc
LB
995 B = 0;
996 }
997 }
998
1a4d82fc 999 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
223e47cc
LB
1000 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1001}
1002
1003void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1004 // Keep track of through blocks that have not been added to SpillPlacer.
1005 BitVector Todo = SA->getThroughBlocks();
1006 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1007 unsigned AddedTo = 0;
1008#ifndef NDEBUG
1009 unsigned Visited = 0;
1010#endif
1011
1012 for (;;) {
1013 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1014 // Find new through blocks in the periphery of PrefRegBundles.
1015 for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1016 unsigned Bundle = NewBundles[i];
1017 // Look at all blocks connected to Bundle in the full graph.
1018 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1019 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1020 I != E; ++I) {
1021 unsigned Block = *I;
1022 if (!Todo.test(Block))
1023 continue;
1024 Todo.reset(Block);
1025 // This is a new through block. Add it to SpillPlacer later.
1026 ActiveBlocks.push_back(Block);
1027#ifndef NDEBUG
1028 ++Visited;
1029#endif
1030 }
1031 }
1032 // Any new blocks to add?
1033 if (ActiveBlocks.size() == AddedTo)
1034 break;
1035
1036 // Compute through constraints from the interference, or assume that all
1037 // through blocks prefer spilling when forming compact regions.
1a4d82fc 1038 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
223e47cc
LB
1039 if (Cand.PhysReg)
1040 addThroughConstraints(Cand.Intf, NewBlocks);
1041 else
1042 // Provide a strong negative bias on through blocks to prevent unwanted
1043 // liveness on loop backedges.
1044 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1045 AddedTo = ActiveBlocks.size();
1046
1047 // Perhaps iterating can enable more bundles?
1048 SpillPlacer->iterate();
1049 }
1050 DEBUG(dbgs() << ", v=" << Visited);
1051}
1052
1053/// calcCompactRegion - Compute the set of edge bundles that should be live
1054/// when splitting the current live range into compact regions. Compact
1055/// regions can be computed without looking at interference. They are the
1056/// regions formed by removing all the live-through blocks from the live range.
1057///
1058/// Returns false if the current live range is already compact, or if the
1059/// compact regions would form single block regions anyway.
1060bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1061 // Without any through blocks, the live range is already compact.
1062 if (!SA->getNumThroughBlocks())
1063 return false;
1064
1065 // Compact regions don't correspond to any physreg.
1066 Cand.reset(IntfCache, 0);
1067
1068 DEBUG(dbgs() << "Compact region bundles");
1069
1070 // Use the spill placer to determine the live bundles. GrowRegion pretends
1071 // that all the through blocks have interference when PhysReg is unset.
1072 SpillPlacer->prepare(Cand.LiveBundles);
1073
1074 // The static split cost will be zero since Cand.Intf reports no interference.
1a4d82fc 1075 BlockFrequency Cost;
223e47cc
LB
1076 if (!addSplitConstraints(Cand.Intf, Cost)) {
1077 DEBUG(dbgs() << ", none.\n");
1078 return false;
1079 }
1080
1081 growRegion(Cand);
1082 SpillPlacer->finish();
1083
1084 if (!Cand.LiveBundles.any()) {
1085 DEBUG(dbgs() << ", none.\n");
1086 return false;
1087 }
1088
1089 DEBUG({
1090 for (int i = Cand.LiveBundles.find_first(); i>=0;
1091 i = Cand.LiveBundles.find_next(i))
1092 dbgs() << " EB#" << i;
1093 dbgs() << ".\n";
1094 });
1095 return true;
1096}
1097
1098/// calcSpillCost - Compute how expensive it would be to split the live range in
1099/// SA around all use blocks instead of forming bundle regions.
1a4d82fc
JJ
1100BlockFrequency RAGreedy::calcSpillCost() {
1101 BlockFrequency Cost = 0;
223e47cc
LB
1102 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1103 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1104 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1105 unsigned Number = BI.MBB->getNumber();
1106 // We normally only need one spill instruction - a load or a store.
1107 Cost += SpillPlacer->getBlockFrequency(Number);
1108
1109 // Unless the value is redefined in the block.
1110 if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1111 Cost += SpillPlacer->getBlockFrequency(Number);
1112 }
1113 return Cost;
1114}
1115
1116/// calcGlobalSplitCost - Return the global split cost of following the split
1117/// pattern in LiveBundles. This cost should be added to the local cost of the
1118/// interference pattern in SplitConstraints.
1119///
1a4d82fc
JJ
1120BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
1121 BlockFrequency GlobalCost = 0;
223e47cc
LB
1122 const BitVector &LiveBundles = Cand.LiveBundles;
1123 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1124 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1125 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1126 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1127 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
1128 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
1129 unsigned Ins = 0;
1130
1131 if (BI.LiveIn)
1132 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1133 if (BI.LiveOut)
1134 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1a4d82fc
JJ
1135 while (Ins--)
1136 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
223e47cc
LB
1137 }
1138
1139 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1140 unsigned Number = Cand.ActiveBlocks[i];
1141 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
1142 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1143 if (!RegIn && !RegOut)
1144 continue;
1145 if (RegIn && RegOut) {
1146 // We need double spill code if this block has interference.
1147 Cand.Intf.moveToBlock(Number);
1a4d82fc
JJ
1148 if (Cand.Intf.hasInterference()) {
1149 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1150 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1151 }
223e47cc
LB
1152 continue;
1153 }
1154 // live-in / stack-out or stack-in live-out.
1155 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1156 }
1157 return GlobalCost;
1158}
1159
1160/// splitAroundRegion - Split the current live range around the regions
1161/// determined by BundleCand and GlobalCand.
1162///
1163/// Before calling this function, GlobalCand and BundleCand must be initialized
1164/// so each bundle is assigned to a valid candidate, or NoCand for the
1165/// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1166/// objects must be initialized for the current live range, and intervals
1167/// created for the used candidates.
1168///
1169/// @param LREdit The LiveRangeEdit object handling the current split.
1170/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1171/// must appear in this list.
1172void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1173 ArrayRef<unsigned> UsedCands) {
1174 // These are the intervals created for new global ranges. We may create more
1175 // intervals for local ranges.
1176 const unsigned NumGlobalIntvs = LREdit.size();
1177 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1178 assert(NumGlobalIntvs && "No global intervals configured");
1179
1180 // Isolate even single instructions when dealing with a proper sub-class.
1181 // That guarantees register class inflation for the stack interval because it
1182 // is all copies.
1183 unsigned Reg = SA->getParent().reg;
1184 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1185
1186 // First handle all the blocks with uses.
1187 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1188 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1189 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1190 unsigned Number = BI.MBB->getNumber();
1191 unsigned IntvIn = 0, IntvOut = 0;
1192 SlotIndex IntfIn, IntfOut;
1193 if (BI.LiveIn) {
1194 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1195 if (CandIn != NoCand) {
1196 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1197 IntvIn = Cand.IntvIdx;
1198 Cand.Intf.moveToBlock(Number);
1199 IntfIn = Cand.Intf.first();
1200 }
1201 }
1202 if (BI.LiveOut) {
1203 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1204 if (CandOut != NoCand) {
1205 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1206 IntvOut = Cand.IntvIdx;
1207 Cand.Intf.moveToBlock(Number);
1208 IntfOut = Cand.Intf.last();
1209 }
1210 }
1211
1212 // Create separate intervals for isolated blocks with multiple uses.
1213 if (!IntvIn && !IntvOut) {
1214 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1215 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1216 SE->splitSingleBlock(BI);
1217 continue;
1218 }
1219
1220 if (IntvIn && IntvOut)
1221 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1222 else if (IntvIn)
1223 SE->splitRegInBlock(BI, IntvIn, IntfIn);
1224 else
1225 SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1226 }
1227
1228 // Handle live-through blocks. The relevant live-through blocks are stored in
1229 // the ActiveBlocks list with each candidate. We need to filter out
1230 // duplicates.
1231 BitVector Todo = SA->getThroughBlocks();
1232 for (unsigned c = 0; c != UsedCands.size(); ++c) {
1233 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1234 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1235 unsigned Number = Blocks[i];
1236 if (!Todo.test(Number))
1237 continue;
1238 Todo.reset(Number);
1239
1240 unsigned IntvIn = 0, IntvOut = 0;
1241 SlotIndex IntfIn, IntfOut;
1242
1243 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1244 if (CandIn != NoCand) {
1245 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1246 IntvIn = Cand.IntvIdx;
1247 Cand.Intf.moveToBlock(Number);
1248 IntfIn = Cand.Intf.first();
1249 }
1250
1251 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1252 if (CandOut != NoCand) {
1253 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1254 IntvOut = Cand.IntvIdx;
1255 Cand.Intf.moveToBlock(Number);
1256 IntfOut = Cand.Intf.last();
1257 }
1258 if (!IntvIn && !IntvOut)
1259 continue;
1260 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1261 }
1262 }
1263
1264 ++NumGlobalSplits;
1265
1266 SmallVector<unsigned, 8> IntvMap;
1267 SE->finish(&IntvMap);
1a4d82fc 1268 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
223e47cc
LB
1269
1270 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1271 unsigned OrigBlocks = SA->getNumLiveBlocks();
1272
1273 // Sort out the new intervals created by splitting. We get four kinds:
1274 // - Remainder intervals should not be split again.
1275 // - Candidate intervals can be assigned to Cand.PhysReg.
1276 // - Block-local splits are candidates for local splitting.
1277 // - DCE leftovers should go back on the queue.
1278 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1a4d82fc 1279 LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
223e47cc
LB
1280
1281 // Ignore old intervals from DCE.
1282 if (getStage(Reg) != RS_New)
1283 continue;
1284
1285 // Remainder interval. Don't try splitting again, spill if it doesn't
1286 // allocate.
1287 if (IntvMap[i] == 0) {
1288 setStage(Reg, RS_Spill);
1289 continue;
1290 }
1291
1292 // Global intervals. Allow repeated splitting as long as the number of live
1293 // blocks is strictly decreasing.
1294 if (IntvMap[i] < NumGlobalIntvs) {
1295 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1296 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1297 << " blocks as original.\n");
1298 // Don't allow repeated splitting as a safe guard against looping.
1299 setStage(Reg, RS_Split2);
1300 }
1301 continue;
1302 }
1303
1304 // Other intervals are treated as new. This includes local intervals created
1305 // for blocks with multiple uses, and anything created by DCE.
1306 }
1307
1308 if (VerifyEnabled)
1309 MF->verify(this, "After splitting live range around region");
1310}
1311
1312unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1a4d82fc 1313 SmallVectorImpl<unsigned> &NewVRegs) {
223e47cc 1314 unsigned NumCands = 0;
1a4d82fc 1315 BlockFrequency BestCost;
223e47cc
LB
1316
1317 // Check if we can split this live range around a compact region.
1318 bool HasCompact = calcCompactRegion(GlobalCand.front());
1319 if (HasCompact) {
1320 // Yes, keep GlobalCand[0] as the compact region candidate.
1321 NumCands = 1;
1a4d82fc 1322 BestCost = BlockFrequency::getMaxFrequency();
223e47cc
LB
1323 } else {
1324 // No benefit from the compact region, our fallback will be per-block
1325 // splitting. Make sure we find a solution that is cheaper than spilling.
1a4d82fc
JJ
1326 BestCost = calcSpillCost();
1327 DEBUG(dbgs() << "Cost of isolating all blocks = ";
1328 MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
223e47cc
LB
1329 }
1330
1a4d82fc
JJ
1331 unsigned BestCand =
1332 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1333 false/*IgnoreCSR*/);
1334
1335 // No solutions found, fall back to single block splitting.
1336 if (!HasCompact && BestCand == NoCand)
1337 return 0;
1338
1339 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1340}
1341
1342unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1343 AllocationOrder &Order,
1344 BlockFrequency &BestCost,
1345 unsigned &NumCands,
1346 bool IgnoreCSR) {
1347 unsigned BestCand = NoCand;
223e47cc
LB
1348 Order.rewind();
1349 while (unsigned PhysReg = Order.next()) {
1a4d82fc
JJ
1350 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
1351 if (IgnoreCSR && !MRI->isPhysRegUsed(CSR))
1352 continue;
1353
223e47cc
LB
1354 // Discard bad candidates before we run out of interference cache cursors.
1355 // This will only affect register classes with a lot of registers (>32).
1356 if (NumCands == IntfCache.getMaxCursors()) {
1357 unsigned WorstCount = ~0u;
1358 unsigned Worst = 0;
1359 for (unsigned i = 0; i != NumCands; ++i) {
1360 if (i == BestCand || !GlobalCand[i].PhysReg)
1361 continue;
1362 unsigned Count = GlobalCand[i].LiveBundles.count();
1363 if (Count < WorstCount)
1364 Worst = i, WorstCount = Count;
1365 }
1366 --NumCands;
1367 GlobalCand[Worst] = GlobalCand[NumCands];
1368 if (BestCand == NumCands)
1369 BestCand = Worst;
1370 }
1371
1372 if (GlobalCand.size() <= NumCands)
1373 GlobalCand.resize(NumCands+1);
1374 GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1375 Cand.reset(IntfCache, PhysReg);
1376
1377 SpillPlacer->prepare(Cand.LiveBundles);
1a4d82fc 1378 BlockFrequency Cost;
223e47cc
LB
1379 if (!addSplitConstraints(Cand.Intf, Cost)) {
1380 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1381 continue;
1382 }
1a4d82fc
JJ
1383 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
1384 MBFI->printBlockFreq(dbgs(), Cost));
223e47cc
LB
1385 if (Cost >= BestCost) {
1386 DEBUG({
1387 if (BestCand == NoCand)
1388 dbgs() << " worse than no bundles\n";
1389 else
1390 dbgs() << " worse than "
1391 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1392 });
1393 continue;
1394 }
1395 growRegion(Cand);
1396
1397 SpillPlacer->finish();
1398
1399 // No live bundles, defer to splitSingleBlocks().
1400 if (!Cand.LiveBundles.any()) {
1401 DEBUG(dbgs() << " no bundles.\n");
1402 continue;
1403 }
1404
1405 Cost += calcGlobalSplitCost(Cand);
1406 DEBUG({
1a4d82fc
JJ
1407 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
1408 << " with bundles";
223e47cc
LB
1409 for (int i = Cand.LiveBundles.find_first(); i>=0;
1410 i = Cand.LiveBundles.find_next(i))
1411 dbgs() << " EB#" << i;
1412 dbgs() << ".\n";
1413 });
1414 if (Cost < BestCost) {
1415 BestCand = NumCands;
1a4d82fc 1416 BestCost = Cost;
223e47cc
LB
1417 }
1418 ++NumCands;
1419 }
1a4d82fc
JJ
1420 return BestCand;
1421}
223e47cc 1422
1a4d82fc
JJ
1423unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1424 bool HasCompact,
1425 SmallVectorImpl<unsigned> &NewVRegs) {
1426 SmallVector<unsigned, 8> UsedCands;
223e47cc
LB
1427 // Prepare split editor.
1428 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1429 SE->reset(LREdit, SplitSpillMode);
1430
1431 // Assign all edge bundles to the preferred candidate, or NoCand.
1432 BundleCand.assign(Bundles->getNumBundles(), NoCand);
1433
1434 // Assign bundles for the best candidate region.
1435 if (BestCand != NoCand) {
1436 GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1437 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1438 UsedCands.push_back(BestCand);
1439 Cand.IntvIdx = SE->openIntv();
1440 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1441 << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1442 (void)B;
1443 }
1444 }
1445
1446 // Assign bundles for the compact region.
1447 if (HasCompact) {
1448 GlobalSplitCandidate &Cand = GlobalCand.front();
1449 assert(!Cand.PhysReg && "Compact region has no physreg");
1450 if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1451 UsedCands.push_back(0);
1452 Cand.IntvIdx = SE->openIntv();
1453 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1454 << Cand.IntvIdx << ".\n");
1455 (void)B;
1456 }
1457 }
1458
1459 splitAroundRegion(LREdit, UsedCands);
1460 return 0;
1461}
1462
1463
1464//===----------------------------------------------------------------------===//
1465// Per-Block Splitting
1466//===----------------------------------------------------------------------===//
1467
1468/// tryBlockSplit - Split a global live range around every block with uses. This
1469/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1470/// they don't allocate.
1471unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1a4d82fc 1472 SmallVectorImpl<unsigned> &NewVRegs) {
223e47cc
LB
1473 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1474 unsigned Reg = VirtReg.reg;
1475 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1476 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1477 SE->reset(LREdit, SplitSpillMode);
1478 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1479 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1480 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1481 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1482 SE->splitSingleBlock(BI);
1483 }
1484 // No blocks were split.
1485 if (LREdit.empty())
1486 return 0;
1487
1488 // We did split for some blocks.
1489 SmallVector<unsigned, 8> IntvMap;
1490 SE->finish(&IntvMap);
1491
1492 // Tell LiveDebugVariables about the new ranges.
1a4d82fc 1493 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
223e47cc
LB
1494
1495 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1496
1497 // Sort out the new intervals created by splitting. The remainder interval
1498 // goes straight to spilling, the new local ranges get to stay RS_New.
1499 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1a4d82fc 1500 LiveInterval &LI = LIS->getInterval(LREdit.get(i));
223e47cc
LB
1501 if (getStage(LI) == RS_New && IntvMap[i] == 0)
1502 setStage(LI, RS_Spill);
1503 }
1504
1505 if (VerifyEnabled)
1506 MF->verify(this, "After splitting live range around basic blocks");
1507 return 0;
1508}
1509
1510
1511//===----------------------------------------------------------------------===//
1512// Per-Instruction Splitting
1513//===----------------------------------------------------------------------===//
1514
1a4d82fc
JJ
1515/// Get the number of allocatable registers that match the constraints of \p Reg
1516/// on \p MI and that are also in \p SuperRC.
1517static unsigned getNumAllocatableRegsForConstraints(
1518 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
1519 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1520 const RegisterClassInfo &RCI) {
1521 assert(SuperRC && "Invalid register class");
1522
1523 const TargetRegisterClass *ConstrainedRC =
1524 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1525 /* ExploreBundle */ true);
1526 if (!ConstrainedRC)
1527 return 0;
1528 return RCI.getNumAllocatableRegs(ConstrainedRC);
1529}
1530
223e47cc
LB
1531/// tryInstructionSplit - Split a live range around individual instructions.
1532/// This is normally not worthwhile since the spiller is doing essentially the
1533/// same thing. However, when the live range is in a constrained register
1534/// class, it may help to insert copies such that parts of the live range can
1535/// be moved to a larger register class.
1536///
1537/// This is similar to spilling to a larger register class.
1538unsigned
1539RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1a4d82fc
JJ
1540 SmallVectorImpl<unsigned> &NewVRegs) {
1541 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
223e47cc 1542 // There is no point to this if there are no larger sub-classes.
1a4d82fc 1543 if (!RegClassInfo.isProperSubClass(CurRC))
223e47cc
LB
1544 return 0;
1545
1546 // Always enable split spill mode, since we're effectively spilling to a
1547 // register.
1548 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1549 SE->reset(LREdit, SplitEditor::SM_Size);
1550
1551 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1552 if (Uses.size() <= 1)
1553 return 0;
1554
1555 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1556
1a4d82fc
JJ
1557 const TargetRegisterClass *SuperRC = TRI->getLargestLegalSuperClass(CurRC);
1558 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1559 // Split around every non-copy instruction if this split will relax
1560 // the constraints on the virtual register.
1561 // Otherwise, splitting just inserts uncoalescable copies that do not help
1562 // the allocation.
223e47cc
LB
1563 for (unsigned i = 0; i != Uses.size(); ++i) {
1564 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1a4d82fc
JJ
1565 if (MI->isFullCopy() ||
1566 SuperRCNumAllocatableRegs ==
1567 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
1568 TRI, RCI)) {
223e47cc
LB
1569 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
1570 continue;
1571 }
1572 SE->openIntv();
1573 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1574 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
1575 SE->useIntv(SegStart, SegStop);
1576 }
1577
1578 if (LREdit.empty()) {
1579 DEBUG(dbgs() << "All uses were copies.\n");
1580 return 0;
1581 }
1582
1583 SmallVector<unsigned, 8> IntvMap;
1584 SE->finish(&IntvMap);
1a4d82fc 1585 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
223e47cc
LB
1586 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1587
1588 // Assign all new registers to RS_Spill. This was the last chance.
1589 setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1590 return 0;
1591}
1592
1593
1594//===----------------------------------------------------------------------===//
1595// Local Splitting
1596//===----------------------------------------------------------------------===//
1597
1598
1599/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1600/// in order to use PhysReg between two entries in SA->UseSlots.
1601///
1602/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1603///
1604void RAGreedy::calcGapWeights(unsigned PhysReg,
1605 SmallVectorImpl<float> &GapWeight) {
1606 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1607 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1608 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1609 const unsigned NumGaps = Uses.size()-1;
1610
1611 // Start and end points for the interference check.
1612 SlotIndex StartIdx =
1613 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1614 SlotIndex StopIdx =
1615 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1616
1617 GapWeight.assign(NumGaps, 0.0f);
1618
1619 // Add interference from each overlapping register.
1620 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1621 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1622 .checkInterference())
1623 continue;
1624
1625 // We know that VirtReg is a continuous interval from FirstInstr to
1626 // LastInstr, so we don't need InterferenceQuery.
1627 //
1628 // Interference that overlaps an instruction is counted in both gaps
1629 // surrounding the instruction. The exception is interference before
1630 // StartIdx and after StopIdx.
1631 //
1632 LiveIntervalUnion::SegmentIter IntI =
1633 Matrix->getLiveUnions()[*Units] .find(StartIdx);
1634 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1635 // Skip the gaps before IntI.
1636 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1637 if (++Gap == NumGaps)
1638 break;
1639 if (Gap == NumGaps)
1640 break;
1641
1642 // Update the gaps covered by IntI.
1643 const float weight = IntI.value()->weight;
1644 for (; Gap != NumGaps; ++Gap) {
1645 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1646 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1647 break;
1648 }
1649 if (Gap == NumGaps)
1650 break;
1651 }
1652 }
1653
1654 // Add fixed interference.
1655 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1a4d82fc
JJ
1656 const LiveRange &LR = LIS->getRegUnit(*Units);
1657 LiveRange::const_iterator I = LR.find(StartIdx);
1658 LiveRange::const_iterator E = LR.end();
223e47cc
LB
1659
1660 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1661 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1662 while (Uses[Gap+1].getBoundaryIndex() < I->start)
1663 if (++Gap == NumGaps)
1664 break;
1665 if (Gap == NumGaps)
1666 break;
1667
1668 for (; Gap != NumGaps; ++Gap) {
1a4d82fc 1669 GapWeight[Gap] = llvm::huge_valf;
223e47cc
LB
1670 if (Uses[Gap+1].getBaseIndex() >= I->end)
1671 break;
1672 }
1673 if (Gap == NumGaps)
1674 break;
1675 }
1676 }
1677}
1678
1679/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1680/// basic block.
1681///
1682unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1a4d82fc 1683 SmallVectorImpl<unsigned> &NewVRegs) {
223e47cc
LB
1684 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1685 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1686
1687 // Note that it is possible to have an interval that is live-in or live-out
1688 // while only covering a single block - A phi-def can use undef values from
1689 // predecessors, and the block could be a single-block loop.
1690 // We don't bother doing anything clever about such a case, we simply assume
1691 // that the interval is continuous from FirstInstr to LastInstr. We should
1692 // make sure that we don't do anything illegal to such an interval, though.
1693
1694 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1695 if (Uses.size() <= 2)
1696 return 0;
1697 const unsigned NumGaps = Uses.size()-1;
1698
1699 DEBUG({
1700 dbgs() << "tryLocalSplit: ";
1701 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1702 dbgs() << ' ' << Uses[i];
1703 dbgs() << '\n';
1704 });
1705
1706 // If VirtReg is live across any register mask operands, compute a list of
1707 // gaps with register masks.
1708 SmallVector<unsigned, 8> RegMaskGaps;
1709 if (Matrix->checkRegMaskInterference(VirtReg)) {
1710 // Get regmask slots for the whole block.
1711 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1712 DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1713 // Constrain to VirtReg's live range.
1714 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1715 Uses.front().getRegSlot()) - RMS.begin();
1716 unsigned re = RMS.size();
1717 for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1718 // Look for Uses[i] <= RMS <= Uses[i+1].
1719 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1720 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1721 continue;
1722 // Skip a regmask on the same instruction as the last use. It doesn't
1723 // overlap the live range.
1724 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1725 break;
1726 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1727 RegMaskGaps.push_back(i);
1728 // Advance ri to the next gap. A regmask on one of the uses counts in
1729 // both gaps.
1730 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1731 ++ri;
1732 }
1733 DEBUG(dbgs() << '\n');
1734 }
1735
1736 // Since we allow local split results to be split again, there is a risk of
1737 // creating infinite loops. It is tempting to require that the new live
1738 // ranges have less instructions than the original. That would guarantee
1739 // convergence, but it is too strict. A live range with 3 instructions can be
1740 // split 2+3 (including the COPY), and we want to allow that.
1741 //
1742 // Instead we use these rules:
1743 //
1744 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1745 // noop split, of course).
1746 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1747 // the new ranges must have fewer instructions than before the split.
1748 // 3. New ranges with the same number of instructions are marked RS_Split2,
1749 // smaller ranges are marked RS_New.
1750 //
1751 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1752 // excessive splitting and infinite loops.
1753 //
1754 bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1755
1756 // Best split candidate.
1757 unsigned BestBefore = NumGaps;
1758 unsigned BestAfter = 0;
1759 float BestDiff = 0;
1760
1a4d82fc
JJ
1761 const float blockFreq =
1762 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1763 (1.0f / MBFI->getEntryFreq());
223e47cc
LB
1764 SmallVector<float, 8> GapWeight;
1765
1766 Order.rewind();
1767 while (unsigned PhysReg = Order.next()) {
1768 // Keep track of the largest spill weight that would need to be evicted in
1769 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1770 calcGapWeights(PhysReg, GapWeight);
1771
1772 // Remove any gaps with regmask clobbers.
1773 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1774 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1a4d82fc 1775 GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
223e47cc
LB
1776
1777 // Try to find the best sequence of gaps to close.
1778 // The new spill weight must be larger than any gap interference.
1779
1780 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1781 unsigned SplitBefore = 0, SplitAfter = 1;
1782
1783 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1784 // It is the spill weight that needs to be evicted.
1785 float MaxGap = GapWeight[0];
1786
1787 for (;;) {
1788 // Live before/after split?
1789 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1790 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1791
1792 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1793 << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1794 << " i=" << MaxGap);
1795
1796 // Stop before the interval gets so big we wouldn't be making progress.
1797 if (!LiveBefore && !LiveAfter) {
1798 DEBUG(dbgs() << " all\n");
1799 break;
1800 }
1801 // Should the interval be extended or shrunk?
1802 bool Shrink = true;
1803
1804 // How many gaps would the new range have?
1805 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1806
1807 // Legally, without causing looping?
1808 bool Legal = !ProgressRequired || NewGaps < NumGaps;
1809
1a4d82fc 1810 if (Legal && MaxGap < llvm::huge_valf) {
223e47cc
LB
1811 // Estimate the new spill weight. Each instruction reads or writes the
1812 // register. Conservatively assume there are no read-modify-write
1813 // instructions.
1814 //
1815 // Try to guess the size of the new interval.
85aaf69f
SL
1816 const float EstWeight = normalizeSpillWeight(
1817 blockFreq * (NewGaps + 1),
1818 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1819 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1820 1);
223e47cc
LB
1821 // Would this split be possible to allocate?
1822 // Never allocate all gaps, we wouldn't be making progress.
1823 DEBUG(dbgs() << " w=" << EstWeight);
1824 if (EstWeight * Hysteresis >= MaxGap) {
1825 Shrink = false;
1826 float Diff = EstWeight - MaxGap;
1827 if (Diff > BestDiff) {
1828 DEBUG(dbgs() << " (best)");
1829 BestDiff = Hysteresis * Diff;
1830 BestBefore = SplitBefore;
1831 BestAfter = SplitAfter;
1832 }
1833 }
1834 }
1835
1836 // Try to shrink.
1837 if (Shrink) {
1838 if (++SplitBefore < SplitAfter) {
1839 DEBUG(dbgs() << " shrink\n");
1840 // Recompute the max when necessary.
1841 if (GapWeight[SplitBefore - 1] >= MaxGap) {
1842 MaxGap = GapWeight[SplitBefore];
1843 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1844 MaxGap = std::max(MaxGap, GapWeight[i]);
1845 }
1846 continue;
1847 }
1848 MaxGap = 0;
1849 }
1850
1851 // Try to extend the interval.
1852 if (SplitAfter >= NumGaps) {
1853 DEBUG(dbgs() << " end\n");
1854 break;
1855 }
1856
1857 DEBUG(dbgs() << " extend\n");
1858 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1859 }
1860 }
1861
1862 // Didn't find any candidates?
1863 if (BestBefore == NumGaps)
1864 return 0;
1865
1866 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1867 << '-' << Uses[BestAfter] << ", " << BestDiff
1868 << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1869
1870 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1871 SE->reset(LREdit);
1872
1873 SE->openIntv();
1874 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1875 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
1876 SE->useIntv(SegStart, SegStop);
1877 SmallVector<unsigned, 8> IntvMap;
1878 SE->finish(&IntvMap);
1a4d82fc 1879 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
223e47cc
LB
1880
1881 // If the new range has the same number of instructions as before, mark it as
1882 // RS_Split2 so the next split will be forced to make progress. Otherwise,
1883 // leave the new intervals as RS_New so they can compete.
1884 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1885 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1886 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1887 if (NewGaps >= NumGaps) {
1888 DEBUG(dbgs() << "Tagging non-progress ranges: ");
1889 assert(!ProgressRequired && "Didn't make progress when it was required.");
1890 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1891 if (IntvMap[i] == 1) {
1a4d82fc
JJ
1892 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1893 DEBUG(dbgs() << PrintReg(LREdit.get(i)));
223e47cc
LB
1894 }
1895 DEBUG(dbgs() << '\n');
1896 }
1897 ++NumLocalSplits;
1898
1899 return 0;
1900}
1901
1902//===----------------------------------------------------------------------===//
1903// Live Range Splitting
1904//===----------------------------------------------------------------------===//
1905
1906/// trySplit - Try to split VirtReg or one of its interferences, making it
1907/// assignable.
1908/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1909unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1a4d82fc 1910 SmallVectorImpl<unsigned>&NewVRegs) {
223e47cc
LB
1911 // Ranges must be Split2 or less.
1912 if (getStage(VirtReg) >= RS_Spill)
1913 return 0;
1914
1915 // Local intervals are handled separately.
1916 if (LIS->intervalIsInOneMBB(VirtReg)) {
1917 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1918 SA->analyze(&VirtReg);
1919 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1920 if (PhysReg || !NewVRegs.empty())
1921 return PhysReg;
1922 return tryInstructionSplit(VirtReg, Order, NewVRegs);
1923 }
1924
1925 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1926
1927 SA->analyze(&VirtReg);
1928
1929 // FIXME: SplitAnalysis may repair broken live ranges coming from the
1930 // coalescer. That may cause the range to become allocatable which means that
1931 // tryRegionSplit won't be making progress. This check should be replaced with
1932 // an assertion when the coalescer is fixed.
1933 if (SA->didRepairRange()) {
1934 // VirtReg has changed, so all cached queries are invalid.
1935 Matrix->invalidateVirtRegs();
1936 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1937 return PhysReg;
1938 }
1939
1940 // First try to split around a region spanning multiple blocks. RS_Split2
1941 // ranges already made dubious progress with region splitting, so they go
1942 // straight to single block splitting.
1943 if (getStage(VirtReg) < RS_Split2) {
1944 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1945 if (PhysReg || !NewVRegs.empty())
1946 return PhysReg;
1947 }
1948
1949 // Then isolate blocks.
1950 return tryBlockSplit(VirtReg, Order, NewVRegs);
1951}
1952
1a4d82fc
JJ
1953//===----------------------------------------------------------------------===//
1954// Last Chance Recoloring
1955//===----------------------------------------------------------------------===//
1956
1957/// mayRecolorAllInterferences - Check if the virtual registers that
1958/// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1959/// recolored to free \p PhysReg.
1960/// When true is returned, \p RecoloringCandidates has been augmented with all
1961/// the live intervals that need to be recolored in order to free \p PhysReg
1962/// for \p VirtReg.
1963/// \p FixedRegisters contains all the virtual registers that cannot be
1964/// recolored.
1965bool
1966RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
1967 SmallLISet &RecoloringCandidates,
1968 const SmallVirtRegSet &FixedRegisters) {
1969 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
1970
1971 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1972 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1973 // If there is LastChanceRecoloringMaxInterference or more interferences,
1974 // chances are one would not be recolorable.
1975 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
1976 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
1977 DEBUG(dbgs() << "Early abort: too many interferences.\n");
1978 CutOffInfo |= CO_Interf;
1979 return false;
1980 }
1981 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
1982 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
1983 // If Intf is done and sit on the same register class as VirtReg,
1984 // it would not be recolorable as it is in the same state as VirtReg.
1985 if ((getStage(*Intf) == RS_Done &&
1986 MRI->getRegClass(Intf->reg) == CurRC) ||
1987 FixedRegisters.count(Intf->reg)) {
1988 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
1989 return false;
1990 }
1991 RecoloringCandidates.insert(Intf);
1992 }
1993 }
1994 return true;
1995}
1996
1997/// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1998/// its interferences.
1999/// Last chance recoloring chooses a color for \p VirtReg and recolors every
2000/// virtual register that was using it. The recoloring process may recursively
2001/// use the last chance recoloring. Therefore, when a virtual register has been
2002/// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2003/// be last-chance-recolored again during this recoloring "session".
2004/// E.g.,
2005/// Let
2006/// vA can use {R1, R2 }
2007/// vB can use { R2, R3}
2008/// vC can use {R1 }
2009/// Where vA, vB, and vC cannot be split anymore (they are reloads for
2010/// instance) and they all interfere.
2011///
2012/// vA is assigned R1
2013/// vB is assigned R2
2014/// vC tries to evict vA but vA is already done.
2015/// Regular register allocation fails.
2016///
2017/// Last chance recoloring kicks in:
2018/// vC does as if vA was evicted => vC uses R1.
2019/// vC is marked as fixed.
2020/// vA needs to find a color.
2021/// None are available.
2022/// vA cannot evict vC: vC is a fixed virtual register now.
2023/// vA does as if vB was evicted => vA uses R2.
2024/// vB needs to find a color.
2025/// R3 is available.
2026/// Recoloring => vC = R1, vA = R2, vB = R3
2027///
2028/// \p Order defines the preferred allocation order for \p VirtReg.
2029/// \p NewRegs will contain any new virtual register that have been created
2030/// (split, spill) during the process and that must be assigned.
2031/// \p FixedRegisters contains all the virtual registers that cannot be
2032/// recolored.
2033/// \p Depth gives the current depth of the last chance recoloring.
2034/// \return a physical register that can be used for VirtReg or ~0u if none
2035/// exists.
2036unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2037 AllocationOrder &Order,
2038 SmallVectorImpl<unsigned> &NewVRegs,
2039 SmallVirtRegSet &FixedRegisters,
2040 unsigned Depth) {
2041 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2042 // Ranges must be Done.
2043 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2044 "Last chance recoloring should really be last chance");
2045 // Set the max depth to LastChanceRecoloringMaxDepth.
2046 // We may want to reconsider that if we end up with a too large search space
2047 // for target with hundreds of registers.
2048 // Indeed, in that case we may want to cut the search space earlier.
2049 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2050 DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2051 CutOffInfo |= CO_Depth;
2052 return ~0u;
2053 }
2054
2055 // Set of Live intervals that will need to be recolored.
2056 SmallLISet RecoloringCandidates;
2057 // Record the original mapping virtual register to physical register in case
2058 // the recoloring fails.
2059 DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2060 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2061 // this recoloring "session".
2062 FixedRegisters.insert(VirtReg.reg);
2063
2064 Order.rewind();
2065 while (unsigned PhysReg = Order.next()) {
2066 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2067 << PrintReg(PhysReg, TRI) << '\n');
2068 RecoloringCandidates.clear();
2069 VirtRegToPhysReg.clear();
2070
2071 // It is only possible to recolor virtual register interference.
2072 if (Matrix->checkInterference(VirtReg, PhysReg) >
2073 LiveRegMatrix::IK_VirtReg) {
2074 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
2075
2076 continue;
2077 }
2078
2079 // Early give up on this PhysReg if it is obvious we cannot recolor all
2080 // the interferences.
2081 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2082 FixedRegisters)) {
2083 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
2084 continue;
2085 }
2086
2087 // RecoloringCandidates contains all the virtual registers that interfer
2088 // with VirtReg on PhysReg (or one of its aliases).
2089 // Enqueue them for recoloring and perform the actual recoloring.
2090 PQueue RecoloringQueue;
2091 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2092 EndIt = RecoloringCandidates.end();
2093 It != EndIt; ++It) {
2094 unsigned ItVirtReg = (*It)->reg;
2095 enqueue(RecoloringQueue, *It);
2096 assert(VRM->hasPhys(ItVirtReg) &&
2097 "Interferences are supposed to be with allocated vairables");
2098
2099 // Record the current allocation.
2100 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2101 // unset the related struct.
2102 Matrix->unassign(**It);
2103 }
2104
2105 // Do as if VirtReg was assigned to PhysReg so that the underlying
2106 // recoloring has the right information about the interferes and
2107 // available colors.
2108 Matrix->assign(VirtReg, PhysReg);
2109
2110 // Save the current recoloring state.
2111 // If we cannot recolor all the interferences, we will have to start again
2112 // at this point for the next physical register.
2113 SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2114 if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
2115 Depth)) {
2116 // Do not mess up with the global assignment process.
2117 // I.e., VirtReg must be unassigned.
2118 Matrix->unassign(VirtReg);
2119 return PhysReg;
2120 }
2121
2122 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2123 << PrintReg(PhysReg, TRI) << '\n');
2124
2125 // The recoloring attempt failed, undo the changes.
2126 FixedRegisters = SaveFixedRegisters;
2127 Matrix->unassign(VirtReg);
2128
2129 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2130 EndIt = RecoloringCandidates.end();
2131 It != EndIt; ++It) {
2132 unsigned ItVirtReg = (*It)->reg;
2133 if (VRM->hasPhys(ItVirtReg))
2134 Matrix->unassign(**It);
2135 Matrix->assign(**It, VirtRegToPhysReg[ItVirtReg]);
2136 }
2137 }
2138
2139 // Last chance recoloring did not worked either, give up.
2140 return ~0u;
2141}
2142
2143/// tryRecoloringCandidates - Try to assign a new color to every register
2144/// in \RecoloringQueue.
2145/// \p NewRegs will contain any new virtual register created during the
2146/// recoloring process.
2147/// \p FixedRegisters[in/out] contains all the registers that have been
2148/// recolored.
2149/// \return true if all virtual registers in RecoloringQueue were successfully
2150/// recolored, false otherwise.
2151bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2152 SmallVectorImpl<unsigned> &NewVRegs,
2153 SmallVirtRegSet &FixedRegisters,
2154 unsigned Depth) {
2155 while (!RecoloringQueue.empty()) {
2156 LiveInterval *LI = dequeue(RecoloringQueue);
2157 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2158 unsigned PhysReg;
2159 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2160 if (PhysReg == ~0u || !PhysReg)
2161 return false;
2162 DEBUG(dbgs() << "Recoloring of " << *LI
2163 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
2164 Matrix->assign(*LI, PhysReg);
2165 FixedRegisters.insert(LI->reg);
2166 }
2167 return true;
2168}
223e47cc
LB
2169
2170//===----------------------------------------------------------------------===//
2171// Main Entry Point
2172//===----------------------------------------------------------------------===//
2173
2174unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1a4d82fc
JJ
2175 SmallVectorImpl<unsigned> &NewVRegs) {
2176 CutOffInfo = CO_None;
2177 LLVMContext &Ctx = MF->getFunction()->getContext();
2178 SmallVirtRegSet FixedRegisters;
2179 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2180 if (Reg == ~0U && (CutOffInfo != CO_None)) {
2181 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2182 if (CutOffEncountered == CO_Depth)
2183 Ctx.emitError("register allocation failed: maximum depth for recoloring "
2184 "reached. Use -fexhaustive-register-search to skip "
2185 "cutoffs");
2186 else if (CutOffEncountered == CO_Interf)
2187 Ctx.emitError("register allocation failed: maximum interference for "
2188 "recoloring reached. Use -fexhaustive-register-search "
2189 "to skip cutoffs");
2190 else if (CutOffEncountered == (CO_Depth | CO_Interf))
2191 Ctx.emitError("register allocation failed: maximum interference and "
2192 "depth for recoloring reached. Use "
2193 "-fexhaustive-register-search to skip cutoffs");
2194 }
2195 return Reg;
2196}
2197
2198/// Using a CSR for the first time has a cost because it causes push|pop
2199/// to be added to prologue|epilogue. Splitting a cold section of the live
2200/// range can have lower cost than using the CSR for the first time;
2201/// Spilling a live range in the cold path can have lower cost than using
2202/// the CSR for the first time. Returns the physical register if we decide
2203/// to use the CSR; otherwise return 0.
2204unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2205 AllocationOrder &Order,
2206 unsigned PhysReg,
2207 unsigned &CostPerUseLimit,
2208 SmallVectorImpl<unsigned> &NewVRegs) {
2209 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2210 // We choose spill over using the CSR for the first time if the spill cost
2211 // is lower than CSRCost.
2212 SA->analyze(&VirtReg);
2213 if (calcSpillCost() >= CSRCost)
2214 return PhysReg;
2215
2216 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2217 // we will not use a callee-saved register in tryEvict.
2218 CostPerUseLimit = 1;
2219 return 0;
2220 }
2221 if (getStage(VirtReg) < RS_Split) {
2222 // We choose pre-splitting over using the CSR for the first time if
2223 // the cost of splitting is lower than CSRCost.
2224 SA->analyze(&VirtReg);
2225 unsigned NumCands = 0;
2226 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2227 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2228 NumCands, true /*IgnoreCSR*/);
2229 if (BestCand == NoCand)
2230 // Use the CSR if we can't find a region split below CSRCost.
2231 return PhysReg;
2232
2233 // Perform the actual pre-splitting.
2234 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2235 return 0;
2236 }
2237 return PhysReg;
2238}
2239
85aaf69f
SL
2240void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2241 // Do not keep invalid information around.
2242 SetOfBrokenHints.remove(&LI);
2243}
2244
1a4d82fc
JJ
2245void RAGreedy::initializeCSRCost() {
2246 // We use the larger one out of the command-line option and the value report
2247 // by TRI.
2248 CSRCost = BlockFrequency(
2249 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2250 if (!CSRCost.getFrequency())
2251 return;
2252
2253 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2254 uint64_t ActualEntry = MBFI->getEntryFreq();
2255 if (!ActualEntry) {
2256 CSRCost = 0;
2257 return;
2258 }
2259 uint64_t FixedEntry = 1 << 14;
2260 if (ActualEntry < FixedEntry)
2261 CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2262 else if (ActualEntry <= UINT32_MAX)
2263 // Invert the fraction and divide.
2264 CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2265 else
2266 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2267 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2268}
2269
85aaf69f
SL
2270/// \brief Collect the hint info for \p Reg.
2271/// The results are stored into \p Out.
2272/// \p Out is not cleared before being populated.
2273void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2274 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2275 if (!Instr.isFullCopy())
2276 continue;
2277 // Look for the other end of the copy.
2278 unsigned OtherReg = Instr.getOperand(0).getReg();
2279 if (OtherReg == Reg) {
2280 OtherReg = Instr.getOperand(1).getReg();
2281 if (OtherReg == Reg)
2282 continue;
2283 }
2284 // Get the current assignment.
2285 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2286 ? OtherReg
2287 : VRM->getPhys(OtherReg);
2288 // Push the collected information.
2289 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2290 OtherPhysReg));
2291 }
2292}
2293
2294/// \brief Using the given \p List, compute the cost of the broken hints if
2295/// \p PhysReg was used.
2296/// \return The cost of \p List for \p PhysReg.
2297BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2298 unsigned PhysReg) {
2299 BlockFrequency Cost = 0;
2300 for (const HintInfo &Info : List) {
2301 if (Info.PhysReg != PhysReg)
2302 Cost += Info.Freq;
2303 }
2304 return Cost;
2305}
2306
2307/// \brief Using the register assigned to \p VirtReg, try to recolor
2308/// all the live ranges that are copy-related with \p VirtReg.
2309/// The recoloring is then propagated to all the live-ranges that have
2310/// been recolored and so on, until no more copies can be coalesced or
2311/// it is not profitable.
2312/// For a given live range, profitability is determined by the sum of the
2313/// frequencies of the non-identity copies it would introduce with the old
2314/// and new register.
2315void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2316 // We have a broken hint, check if it is possible to fix it by
2317 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2318 // some register and PhysReg may be available for the other live-ranges.
2319 SmallSet<unsigned, 4> Visited;
2320 SmallVector<unsigned, 2> RecoloringCandidates;
2321 HintsInfo Info;
2322 unsigned Reg = VirtReg.reg;
2323 unsigned PhysReg = VRM->getPhys(Reg);
2324 // Start the recoloring algorithm from the input live-interval, then
2325 // it will propagate to the ones that are copy-related with it.
2326 Visited.insert(Reg);
2327 RecoloringCandidates.push_back(Reg);
2328
2329 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
2330 << PrintReg(PhysReg, TRI) << ")\n");
2331
2332 do {
2333 Reg = RecoloringCandidates.pop_back_val();
2334
2335 // We cannot recolor physcal register.
2336 if (TargetRegisterInfo::isPhysicalRegister(Reg))
2337 continue;
2338
2339 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2340
2341 // Get the live interval mapped with this virtual register to be able
2342 // to check for the interference with the new color.
2343 LiveInterval &LI = LIS->getInterval(Reg);
2344 unsigned CurrPhys = VRM->getPhys(Reg);
2345 // Check that the new color matches the register class constraints and
2346 // that it is free for this live range.
2347 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2348 Matrix->checkInterference(LI, PhysReg)))
2349 continue;
2350
2351 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
2352 << ") is recolorable.\n");
2353
2354 // Gather the hint info.
2355 Info.clear();
2356 collectHintInfo(Reg, Info);
2357 // Check if recoloring the live-range will increase the cost of the
2358 // non-identity copies.
2359 if (CurrPhys != PhysReg) {
2360 DEBUG(dbgs() << "Checking profitability:\n");
2361 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2362 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2363 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2364 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
2365 if (OldCopiesCost < NewCopiesCost) {
2366 DEBUG(dbgs() << "=> Not profitable.\n");
2367 continue;
2368 }
2369 // At this point, the cost is either cheaper or equal. If it is
2370 // equal, we consider this is profitable because it may expose
2371 // more recoloring opportunities.
2372 DEBUG(dbgs() << "=> Profitable.\n");
2373 // Recolor the live-range.
2374 Matrix->unassign(LI);
2375 Matrix->assign(LI, PhysReg);
2376 }
2377 // Push all copy-related live-ranges to keep reconciling the broken
2378 // hints.
2379 for (const HintInfo &HI : Info) {
2380 if (Visited.insert(HI.Reg).second)
2381 RecoloringCandidates.push_back(HI.Reg);
2382 }
2383 } while (!RecoloringCandidates.empty());
2384}
2385
2386/// \brief Try to recolor broken hints.
2387/// Broken hints may be repaired by recoloring when an evicted variable
2388/// freed up a register for a larger live-range.
2389/// Consider the following example:
2390/// BB1:
2391/// a =
2392/// b =
2393/// BB2:
2394/// ...
2395/// = b
2396/// = a
2397/// Let us assume b gets split:
2398/// BB1:
2399/// a =
2400/// b =
2401/// BB2:
2402/// c = b
2403/// ...
2404/// d = c
2405/// = d
2406/// = a
2407/// Because of how the allocation work, b, c, and d may be assigned different
2408/// colors. Now, if a gets evicted later:
2409/// BB1:
2410/// a =
2411/// st a, SpillSlot
2412/// b =
2413/// BB2:
2414/// c = b
2415/// ...
2416/// d = c
2417/// = d
2418/// e = ld SpillSlot
2419/// = e
2420/// This is likely that we can assign the same register for b, c, and d,
2421/// getting rid of 2 copies.
2422void RAGreedy::tryHintsRecoloring() {
2423 for (LiveInterval *LI : SetOfBrokenHints) {
2424 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
2425 "Recoloring is possible only for virtual registers");
2426 // Some dead defs may be around (e.g., because of debug uses).
2427 // Ignore those.
2428 if (!VRM->hasPhys(LI->reg))
2429 continue;
2430 tryHintRecoloring(*LI);
2431 }
2432}
2433
1a4d82fc
JJ
2434unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2435 SmallVectorImpl<unsigned> &NewVRegs,
2436 SmallVirtRegSet &FixedRegisters,
2437 unsigned Depth) {
2438 unsigned CostPerUseLimit = ~0u;
223e47cc
LB
2439 // First try assigning a free register.
2440 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1a4d82fc
JJ
2441 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
2442 // We check other options if we are using a CSR for the first time.
2443 bool CSRFirstUse = false;
2444 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
2445 if (!MRI->isPhysRegUsed(CSR))
2446 CSRFirstUse = true;
2447
2448 // When NewVRegs is not empty, we may have made decisions such as evicting
2449 // a virtual register, go with the earlier decisions and use the physical
2450 // register.
2451 if (CSRCost.getFrequency() && CSRFirstUse && NewVRegs.empty()) {
2452 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2453 CostPerUseLimit, NewVRegs);
2454 if (CSRReg || !NewVRegs.empty())
2455 // Return now if we decide to use a CSR or create new vregs due to
2456 // pre-splitting.
2457 return CSRReg;
2458 } else
2459 return PhysReg;
2460 }
223e47cc
LB
2461
2462 LiveRangeStage Stage = getStage(VirtReg);
2463 DEBUG(dbgs() << StageName[Stage]
2464 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
2465
2466 // Try to evict a less worthy live range, but only for ranges from the primary
2467 // queue. The RS_Split ranges already failed to do this, and they should not
2468 // get a second chance until they have been split.
2469 if (Stage != RS_Split)
85aaf69f
SL
2470 if (unsigned PhysReg =
2471 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
2472 unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
2473 // If VirtReg has a hint and that hint is broken record this
2474 // virtual register as a recoloring candidate for broken hint.
2475 // Indeed, since we evicted a variable in its neighborhood it is
2476 // likely we can at least partially recolor some of the
2477 // copy-related live-ranges.
2478 if (Hint && Hint != PhysReg)
2479 SetOfBrokenHints.insert(&VirtReg);
223e47cc 2480 return PhysReg;
85aaf69f 2481 }
223e47cc
LB
2482
2483 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
2484
2485 // The first time we see a live range, don't try to split or spill.
2486 // Wait until the second time, when all smaller ranges have been allocated.
2487 // This gives a better picture of the interference to split around.
2488 if (Stage < RS_Split) {
2489 setStage(VirtReg, RS_Split);
2490 DEBUG(dbgs() << "wait for second round\n");
1a4d82fc 2491 NewVRegs.push_back(VirtReg.reg);
223e47cc
LB
2492 return 0;
2493 }
2494
2495 // If we couldn't allocate a register from spilling, there is probably some
2496 // invalid inline assembly. The base class wil report it.
2497 if (Stage >= RS_Done || !VirtReg.isSpillable())
1a4d82fc
JJ
2498 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2499 Depth);
223e47cc
LB
2500
2501 // Try splitting VirtReg or interferences.
2502 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
2503 if (PhysReg || !NewVRegs.empty())
2504 return PhysReg;
2505
2506 // Finally spill VirtReg itself.
2507 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
2508 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
2509 spiller().spill(LRE);
2510 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2511
2512 if (VerifyEnabled)
2513 MF->verify(this, "After spilling");
2514
2515 // The live virtual register requesting allocation was spilled, so tell
2516 // the caller not to allocate anything during this round.
2517 return 0;
2518}
2519
2520bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2521 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2522 << "********** Function: " << mf.getName() << '\n');
2523
2524 MF = &mf;
85aaf69f
SL
2525 TRI = MF->getSubtarget().getRegisterInfo();
2526 TII = MF->getSubtarget().getInstrInfo();
1a4d82fc
JJ
2527 RCI.runOnMachineFunction(mf);
2528
2529 EnableLocalReassign = EnableLocalReassignment ||
85aaf69f
SL
2530 MF->getSubtarget().enableRALocalReassignment(
2531 MF->getTarget().getOptLevel());
1a4d82fc 2532
223e47cc
LB
2533 if (VerifyEnabled)
2534 MF->verify(this, "Before greedy register allocator");
2535
2536 RegAllocBase::init(getAnalysis<VirtRegMap>(),
2537 getAnalysis<LiveIntervals>(),
2538 getAnalysis<LiveRegMatrix>());
2539 Indexes = &getAnalysis<SlotIndexes>();
1a4d82fc 2540 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
223e47cc
LB
2541 DomTree = &getAnalysis<MachineDominatorTree>();
2542 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
2543 Loops = &getAnalysis<MachineLoopInfo>();
2544 Bundles = &getAnalysis<EdgeBundles>();
2545 SpillPlacer = &getAnalysis<SpillPlacement>();
2546 DebugVars = &getAnalysis<LiveDebugVariables>();
2547
1a4d82fc
JJ
2548 initializeCSRCost();
2549
2550 calculateSpillWeightsAndHints(*LIS, mf, *Loops, *MBFI);
2551
2552 DEBUG(LIS->dump());
2553
223e47cc 2554 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1a4d82fc 2555 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
223e47cc
LB
2556 ExtraRegInfo.clear();
2557 ExtraRegInfo.resize(MRI->getNumVirtRegs());
2558 NextCascade = 1;
2559 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2560 GlobalCand.resize(32); // This will grow as needed.
85aaf69f 2561 SetOfBrokenHints.clear();
223e47cc
LB
2562
2563 allocatePhysRegs();
85aaf69f 2564 tryHintsRecoloring();
223e47cc
LB
2565 releaseMemory();
2566 return true;
2567}