]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
CommitLineData
223e47cc
LB
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
970d7e83 14#include "llvm/CodeGen/SelectionDAG.h"
1a4d82fc 15#include "llvm/ADT/SetVector.h"
970d7e83 16#include "llvm/ADT/SmallPtrSet.h"
1a4d82fc 17#include "llvm/ADT/SmallSet.h"
970d7e83
LB
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/Triple.h"
223e47cc
LB
20#include "llvm/CodeGen/Analysis.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineJumpTableInfo.h"
970d7e83
LB
23#include "llvm/IR/CallingConv.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
1a4d82fc 26#include "llvm/IR/DebugInfo.h"
970d7e83
LB
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
223e47cc
LB
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
970d7e83
LB
34#include "llvm/Target/TargetFrameLowering.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
1a4d82fc 37#include "llvm/Target/TargetSubtargetInfo.h"
223e47cc
LB
38using namespace llvm;
39
1a4d82fc
JJ
40#define DEBUG_TYPE "legalizedag"
41
223e47cc 42//===----------------------------------------------------------------------===//
85aaf69f 43/// This takes an arbitrary SelectionDAG as input and
223e47cc
LB
44/// hacks on it until the target machine can handle it. This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing. For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
1a4d82fc 55class SelectionDAGLegalize {
223e47cc
LB
56 const TargetMachine &TM;
57 const TargetLowering &TLI;
58 SelectionDAG &DAG;
59
1a4d82fc
JJ
60 /// \brief The set of nodes which have already been legalized. We hold a
61 /// reference to it in order to update as necessary on node deletion.
62 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
223e47cc 63
1a4d82fc
JJ
64 /// \brief A set of all the nodes updated during legalization.
65 SmallSetVector<SDNode *, 16> *UpdatedNodes;
66
67 EVT getSetCCResultType(EVT VT) const {
68 return TLI.getSetCCResultType(*DAG.getContext(), VT);
69 }
223e47cc
LB
70
71 // Libcall insertion helpers.
72
73public:
1a4d82fc
JJ
74 SelectionDAGLegalize(SelectionDAG &DAG,
75 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
76 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
77 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
78 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
223e47cc 79
1a4d82fc 80 /// \brief Legalizes the given operation.
223e47cc
LB
81 void LegalizeOp(SDNode *Node);
82
1a4d82fc 83private:
223e47cc
LB
84 SDValue OptimizeFloatStore(StoreSDNode *ST);
85
86 void LegalizeLoadOps(SDNode *Node);
87 void LegalizeStoreOps(SDNode *Node);
88
85aaf69f 89 /// Some targets cannot handle a variable
223e47cc
LB
90 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
91 /// is necessary to spill the vector being inserted into to memory, perform
92 /// the insert there, and then read the result back.
93 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
1a4d82fc 94 SDValue Idx, SDLoc dl);
223e47cc 95 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
1a4d82fc 96 SDValue Idx, SDLoc dl);
223e47cc 97
85aaf69f 98 /// Return a vector shuffle operation which
223e47cc
LB
99 /// performs the same shuffe in terms of order or result bytes, but on a type
100 /// whose vector element type is narrower than the original shuffle type.
101 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
1a4d82fc 102 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
223e47cc
LB
103 SDValue N1, SDValue N2,
104 ArrayRef<int> Mask) const;
105
1a4d82fc
JJ
106 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
107 bool &NeedInvert, SDLoc dl);
223e47cc
LB
108
109 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
110 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
1a4d82fc 111 unsigned NumOps, bool isSigned, SDLoc dl);
223e47cc
LB
112
113 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
114 SDNode *Node, bool isSigned);
115 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
116 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
970d7e83 117 RTLIB::Libcall Call_F128,
223e47cc
LB
118 RTLIB::Libcall Call_PPCF128);
119 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
120 RTLIB::Libcall Call_I8,
121 RTLIB::Libcall Call_I16,
122 RTLIB::Libcall Call_I32,
123 RTLIB::Libcall Call_I64,
124 RTLIB::Libcall Call_I128);
125 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
970d7e83 126 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
223e47cc 127
1a4d82fc 128 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl);
223e47cc
LB
129 SDValue ExpandBUILD_VECTOR(SDNode *Node);
130 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
131 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
132 SmallVectorImpl<SDValue> &Results);
133 SDValue ExpandFCOPYSIGN(SDNode *Node);
134 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
1a4d82fc 135 SDLoc dl);
223e47cc 136 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
1a4d82fc 137 SDLoc dl);
223e47cc 138 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
1a4d82fc 139 SDLoc dl);
223e47cc 140
1a4d82fc
JJ
141 SDValue ExpandBSWAP(SDValue Op, SDLoc dl);
142 SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl);
223e47cc
LB
143
144 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
145 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
146 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
147
148 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
149
150 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
151
152 void ExpandNode(SDNode *Node);
153 void PromoteNode(SDNode *Node);
154
223e47cc 155public:
223e47cc
LB
156 // Node replacement helpers
157 void ReplacedNode(SDNode *N) {
1a4d82fc
JJ
158 LegalizedNodes.erase(N);
159 if (UpdatedNodes)
160 UpdatedNodes->insert(N);
223e47cc
LB
161 }
162 void ReplaceNode(SDNode *Old, SDNode *New) {
1a4d82fc
JJ
163 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
164 dbgs() << " with: "; New->dump(&DAG));
165
166 assert(Old->getNumValues() == New->getNumValues() &&
167 "Replacing one node with another that produces a different number "
168 "of values!");
223e47cc 169 DAG.ReplaceAllUsesWith(Old, New);
1a4d82fc
JJ
170 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
171 DAG.TransferDbgValues(SDValue(Old, i), SDValue(New, i));
172 if (UpdatedNodes)
173 UpdatedNodes->insert(New);
223e47cc
LB
174 ReplacedNode(Old);
175 }
176 void ReplaceNode(SDValue Old, SDValue New) {
1a4d82fc
JJ
177 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
178 dbgs() << " with: "; New->dump(&DAG));
179
223e47cc 180 DAG.ReplaceAllUsesWith(Old, New);
1a4d82fc
JJ
181 DAG.TransferDbgValues(Old, New);
182 if (UpdatedNodes)
183 UpdatedNodes->insert(New.getNode());
223e47cc
LB
184 ReplacedNode(Old.getNode());
185 }
186 void ReplaceNode(SDNode *Old, const SDValue *New) {
1a4d82fc
JJ
187 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
188
223e47cc 189 DAG.ReplaceAllUsesWith(Old, New);
1a4d82fc
JJ
190 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
191 DEBUG(dbgs() << (i == 0 ? " with: "
192 : " and: ");
193 New[i]->dump(&DAG));
194 DAG.TransferDbgValues(SDValue(Old, i), New[i]);
195 if (UpdatedNodes)
196 UpdatedNodes->insert(New[i].getNode());
197 }
223e47cc
LB
198 ReplacedNode(Old);
199 }
200};
201}
202
85aaf69f 203/// Return a vector shuffle operation which
223e47cc
LB
204/// performs the same shuffe in terms of order or result bytes, but on a type
205/// whose vector element type is narrower than the original shuffle type.
206/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
207SDValue
1a4d82fc 208SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
223e47cc
LB
209 SDValue N1, SDValue N2,
210 ArrayRef<int> Mask) const {
211 unsigned NumMaskElts = VT.getVectorNumElements();
212 unsigned NumDestElts = NVT.getVectorNumElements();
213 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
214
215 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
216
217 if (NumEltsGrowth == 1)
218 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
219
220 SmallVector<int, 8> NewMask;
221 for (unsigned i = 0; i != NumMaskElts; ++i) {
222 int Idx = Mask[i];
223 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
224 if (Idx < 0)
225 NewMask.push_back(-1);
226 else
227 NewMask.push_back(Idx * NumEltsGrowth + j);
228 }
229 }
230 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
231 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
232 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
233}
234
85aaf69f 235/// Expands the ConstantFP node to an integer constant or
223e47cc
LB
236/// a load from the constant pool.
237SDValue
238SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
239 bool Extend = false;
1a4d82fc 240 SDLoc dl(CFP);
223e47cc
LB
241
242 // If a FP immediate is precise when represented as a float and if the
243 // target can do an extending load from float to double, we put it into
244 // the constant pool as a float, even if it's is statically typed as a
245 // double. This shrinks FP constants and canonicalizes them for targets where
246 // an FP extending load is the same cost as a normal load (such as on the x87
247 // fp stack or PPC FP unit).
248 EVT VT = CFP->getValueType(0);
249 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
250 if (!UseCP) {
251 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
252 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
253 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
254 }
255
256 EVT OrigVT = VT;
257 EVT SVT = VT;
1a4d82fc 258 while (SVT != MVT::f32 && SVT != MVT::f16) {
223e47cc
LB
259 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
260 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
261 // Only do this if the target has a native EXTLOAD instruction from
262 // smaller type.
85aaf69f 263 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
223e47cc
LB
264 TLI.ShouldShrinkFPConstant(OrigVT)) {
265 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
266 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
267 VT = SVT;
268 Extend = true;
269 }
270 }
271
272 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
273 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
274 if (Extend) {
275 SDValue Result =
276 DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
277 DAG.getEntryNode(),
278 CPIdx, MachinePointerInfo::getConstantPool(),
1a4d82fc 279 VT, false, false, false, Alignment);
223e47cc
LB
280 return Result;
281 }
282 SDValue Result =
283 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
284 MachinePointerInfo::getConstantPool(), false, false, false,
285 Alignment);
286 return Result;
287}
288
85aaf69f 289/// Expands an unaligned store to 2 half-size stores.
223e47cc
LB
290static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
291 const TargetLowering &TLI,
292 SelectionDAGLegalize *DAGLegalize) {
293 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
294 "unaligned indexed stores not implemented!");
295 SDValue Chain = ST->getChain();
296 SDValue Ptr = ST->getBasePtr();
297 SDValue Val = ST->getValue();
298 EVT VT = Val.getValueType();
299 int Alignment = ST->getAlignment();
1a4d82fc
JJ
300 unsigned AS = ST->getAddressSpace();
301
302 SDLoc dl(ST);
223e47cc
LB
303 if (ST->getMemoryVT().isFloatingPoint() ||
304 ST->getMemoryVT().isVector()) {
305 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
306 if (TLI.isTypeLegal(intVT)) {
307 // Expand to a bitconvert of the value to the integer type of the
308 // same size, then a (misaligned) int store.
309 // FIXME: Does not handle truncating floating point stores!
310 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
311 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
312 ST->isVolatile(), ST->isNonTemporal(), Alignment);
313 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
314 return;
315 }
316 // Do a (aligned) store to a stack slot, then copy from the stack slot
317 // to the final destination using (unaligned) integer loads and stores.
318 EVT StoredVT = ST->getMemoryVT();
970d7e83 319 MVT RegVT =
223e47cc
LB
320 TLI.getRegisterType(*DAG.getContext(),
321 EVT::getIntegerVT(*DAG.getContext(),
322 StoredVT.getSizeInBits()));
323 unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
324 unsigned RegBytes = RegVT.getSizeInBits() / 8;
325 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
326
327 // Make sure the stack slot is also aligned for the register type.
328 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
329
330 // Perform the original store, only redirected to the stack slot.
331 SDValue Store = DAG.getTruncStore(Chain, dl,
332 Val, StackPtr, MachinePointerInfo(),
333 StoredVT, false, false, 0);
1a4d82fc 334 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy(AS));
223e47cc
LB
335 SmallVector<SDValue, 8> Stores;
336 unsigned Offset = 0;
337
338 // Do all but one copies using the full register width.
339 for (unsigned i = 1; i < NumRegs; i++) {
340 // Load one integer register's worth from the stack slot.
341 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
342 MachinePointerInfo(),
343 false, false, false, 0);
344 // Store it to the final location. Remember the store.
345 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
346 ST->getPointerInfo().getWithOffset(Offset),
347 ST->isVolatile(), ST->isNonTemporal(),
348 MinAlign(ST->getAlignment(), Offset)));
349 // Increment the pointers.
350 Offset += RegBytes;
351 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
352 Increment);
353 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
354 }
355
356 // The last store may be partial. Do a truncating store. On big-endian
357 // machines this requires an extending load from the stack slot to ensure
358 // that the bits are in the right place.
359 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
360 8 * (StoredBytes - Offset));
361
362 // Load from the stack slot.
363 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
364 MachinePointerInfo(),
1a4d82fc 365 MemVT, false, false, false, 0);
223e47cc
LB
366
367 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
368 ST->getPointerInfo()
369 .getWithOffset(Offset),
370 MemVT, ST->isVolatile(),
371 ST->isNonTemporal(),
1a4d82fc
JJ
372 MinAlign(ST->getAlignment(), Offset),
373 ST->getAAInfo()));
223e47cc 374 // The order of the stores doesn't matter - say it with a TokenFactor.
1a4d82fc 375 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
223e47cc
LB
376 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
377 return;
378 }
379 assert(ST->getMemoryVT().isInteger() &&
380 !ST->getMemoryVT().isVector() &&
381 "Unaligned store of unknown type.");
382 // Get the half-size VT
383 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
384 int NumBits = NewStoredVT.getSizeInBits();
385 int IncrementSize = NumBits / 8;
386
387 // Divide the stored value in two parts.
388 SDValue ShiftAmount = DAG.getConstant(NumBits,
389 TLI.getShiftAmountTy(Val.getValueType()));
390 SDValue Lo = Val;
391 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
392
393 // Store the two parts
394 SDValue Store1, Store2;
395 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
396 ST->getPointerInfo(), NewStoredVT,
397 ST->isVolatile(), ST->isNonTemporal(), Alignment);
1a4d82fc 398
223e47cc 399 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1a4d82fc 400 DAG.getConstant(IncrementSize, TLI.getPointerTy(AS)));
223e47cc
LB
401 Alignment = MinAlign(Alignment, IncrementSize);
402 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
403 ST->getPointerInfo().getWithOffset(IncrementSize),
404 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
1a4d82fc 405 Alignment, ST->getAAInfo());
223e47cc
LB
406
407 SDValue Result =
408 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
409 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
410}
411
85aaf69f 412/// Expands an unaligned load to 2 half-size loads.
223e47cc
LB
413static void
414ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
415 const TargetLowering &TLI,
416 SDValue &ValResult, SDValue &ChainResult) {
417 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
418 "unaligned indexed loads not implemented!");
419 SDValue Chain = LD->getChain();
420 SDValue Ptr = LD->getBasePtr();
421 EVT VT = LD->getValueType(0);
422 EVT LoadedVT = LD->getMemoryVT();
1a4d82fc 423 SDLoc dl(LD);
223e47cc
LB
424 if (VT.isFloatingPoint() || VT.isVector()) {
425 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
426 if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
427 // Expand to a (misaligned) integer load of the same size,
428 // then bitconvert to floating point or vector.
1a4d82fc
JJ
429 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
430 LD->getMemOperand());
223e47cc
LB
431 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
432 if (LoadedVT != VT)
433 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
434 ISD::ANY_EXTEND, dl, VT, Result);
435
436 ValResult = Result;
437 ChainResult = Chain;
438 return;
439 }
440
441 // Copy the value to a (aligned) stack slot using (unaligned) integer
442 // loads and stores, then do a (aligned) load from the stack slot.
970d7e83 443 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
223e47cc
LB
444 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
445 unsigned RegBytes = RegVT.getSizeInBits() / 8;
446 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
447
448 // Make sure the stack slot is also aligned for the register type.
449 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
450
451 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
452 SmallVector<SDValue, 8> Stores;
453 SDValue StackPtr = StackBase;
454 unsigned Offset = 0;
455
456 // Do all but one copies using the full register width.
457 for (unsigned i = 1; i < NumRegs; i++) {
458 // Load one integer register's worth from the original location.
459 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
460 LD->getPointerInfo().getWithOffset(Offset),
461 LD->isVolatile(), LD->isNonTemporal(),
462 LD->isInvariant(),
1a4d82fc
JJ
463 MinAlign(LD->getAlignment(), Offset),
464 LD->getAAInfo());
223e47cc
LB
465 // Follow the load with a store to the stack slot. Remember the store.
466 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
467 MachinePointerInfo(), false, false, 0));
468 // Increment the pointers.
469 Offset += RegBytes;
470 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
471 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
472 Increment);
473 }
474
475 // The last copy may be partial. Do an extending load.
476 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
477 8 * (LoadedBytes - Offset));
478 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
479 LD->getPointerInfo().getWithOffset(Offset),
480 MemVT, LD->isVolatile(),
481 LD->isNonTemporal(),
1a4d82fc
JJ
482 LD->isInvariant(),
483 MinAlign(LD->getAlignment(), Offset),
484 LD->getAAInfo());
223e47cc
LB
485 // Follow the load with a store to the stack slot. Remember the store.
486 // On big-endian machines this requires a truncating store to ensure
487 // that the bits end up in the right place.
488 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
489 MachinePointerInfo(), MemVT,
490 false, false, 0));
491
492 // The order of the stores doesn't matter - say it with a TokenFactor.
1a4d82fc 493 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
223e47cc
LB
494
495 // Finally, perform the original load only redirected to the stack slot.
496 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
1a4d82fc
JJ
497 MachinePointerInfo(), LoadedVT, false,false, false,
498 0);
223e47cc
LB
499
500 // Callers expect a MERGE_VALUES node.
501 ValResult = Load;
502 ChainResult = TF;
503 return;
504 }
505 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
506 "Unaligned load of unsupported type.");
507
508 // Compute the new VT that is half the size of the old one. This is an
509 // integer MVT.
510 unsigned NumBits = LoadedVT.getSizeInBits();
511 EVT NewLoadedVT;
512 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
513 NumBits >>= 1;
514
515 unsigned Alignment = LD->getAlignment();
516 unsigned IncrementSize = NumBits / 8;
517 ISD::LoadExtType HiExtType = LD->getExtensionType();
518
519 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
520 if (HiExtType == ISD::NON_EXTLOAD)
521 HiExtType = ISD::ZEXTLOAD;
522
523 // Load the value in two parts
524 SDValue Lo, Hi;
525 if (TLI.isLittleEndian()) {
526 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
527 NewLoadedVT, LD->isVolatile(),
1a4d82fc
JJ
528 LD->isNonTemporal(), LD->isInvariant(), Alignment,
529 LD->getAAInfo());
223e47cc 530 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1a4d82fc 531 DAG.getConstant(IncrementSize, Ptr.getValueType()));
223e47cc
LB
532 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
533 LD->getPointerInfo().getWithOffset(IncrementSize),
534 NewLoadedVT, LD->isVolatile(),
1a4d82fc
JJ
535 LD->isNonTemporal(),LD->isInvariant(),
536 MinAlign(Alignment, IncrementSize), LD->getAAInfo());
223e47cc
LB
537 } else {
538 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
539 NewLoadedVT, LD->isVolatile(),
1a4d82fc
JJ
540 LD->isNonTemporal(), LD->isInvariant(), Alignment,
541 LD->getAAInfo());
223e47cc 542 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1a4d82fc 543 DAG.getConstant(IncrementSize, Ptr.getValueType()));
223e47cc
LB
544 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
545 LD->getPointerInfo().getWithOffset(IncrementSize),
546 NewLoadedVT, LD->isVolatile(),
1a4d82fc
JJ
547 LD->isNonTemporal(), LD->isInvariant(),
548 MinAlign(Alignment, IncrementSize), LD->getAAInfo());
223e47cc
LB
549 }
550
551 // aggregate the two parts
552 SDValue ShiftAmount = DAG.getConstant(NumBits,
553 TLI.getShiftAmountTy(Hi.getValueType()));
554 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
555 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
556
557 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
558 Hi.getValue(1));
559
560 ValResult = Result;
561 ChainResult = TF;
562}
563
85aaf69f
SL
564/// Some target cannot handle a variable insertion index for the
565/// INSERT_VECTOR_ELT instruction. In this case, it
223e47cc
LB
566/// is necessary to spill the vector being inserted into to memory, perform
567/// the insert there, and then read the result back.
568SDValue SelectionDAGLegalize::
569PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
1a4d82fc 570 SDLoc dl) {
223e47cc
LB
571 SDValue Tmp1 = Vec;
572 SDValue Tmp2 = Val;
573 SDValue Tmp3 = Idx;
574
575 // If the target doesn't support this, we have to spill the input vector
576 // to a temporary stack slot, update the element, then reload it. This is
577 // badness. We could also load the value into a vector register (either
578 // with a "move to register" or "extload into register" instruction, then
579 // permute it into place, if the idx is a constant and if the idx is
580 // supported by the target.
581 EVT VT = Tmp1.getValueType();
582 EVT EltVT = VT.getVectorElementType();
583 EVT IdxVT = Tmp3.getValueType();
584 EVT PtrVT = TLI.getPointerTy();
585 SDValue StackPtr = DAG.CreateStackTemporary(VT);
586
587 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
588
589 // Store the vector.
590 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
591 MachinePointerInfo::getFixedStack(SPFI),
592 false, false, 0);
593
594 // Truncate or zero extend offset to target pointer type.
595 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
596 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
597 // Add the offset to the index.
598 unsigned EltSize = EltVT.getSizeInBits()/8;
599 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
600 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
601 // Store the scalar value.
602 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
603 false, false, 0);
604 // Load the updated vector.
605 return DAG.getLoad(VT, dl, Ch, StackPtr,
1a4d82fc 606 MachinePointerInfo::getFixedStack(SPFI), false, false,
223e47cc
LB
607 false, 0);
608}
609
610
611SDValue SelectionDAGLegalize::
1a4d82fc 612ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) {
223e47cc
LB
613 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
614 // SCALAR_TO_VECTOR requires that the type of the value being inserted
615 // match the element type of the vector being created, except for
616 // integers in which case the inserted value can be over width.
617 EVT EltVT = Vec.getValueType().getVectorElementType();
618 if (Val.getValueType() == EltVT ||
619 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
620 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
621 Vec.getValueType(), Val);
622
623 unsigned NumElts = Vec.getValueType().getVectorNumElements();
624 // We generate a shuffle of InVec and ScVec, so the shuffle mask
625 // should be 0,1,2,3,4,5... with the appropriate element replaced with
626 // elt 0 of the RHS.
627 SmallVector<int, 8> ShufOps;
628 for (unsigned i = 0; i != NumElts; ++i)
629 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
630
631 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
632 &ShufOps[0]);
633 }
634 }
635 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
636}
637
638SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
639 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
640 // FIXME: We shouldn't do this for TargetConstantFP's.
641 // FIXME: move this to the DAG Combiner! Note that we can't regress due
642 // to phase ordering between legalized code and the dag combiner. This
643 // probably means that we need to integrate dag combiner and legalizer
644 // together.
645 // We generally can't do this one for long doubles.
646 SDValue Chain = ST->getChain();
647 SDValue Ptr = ST->getBasePtr();
648 unsigned Alignment = ST->getAlignment();
649 bool isVolatile = ST->isVolatile();
650 bool isNonTemporal = ST->isNonTemporal();
1a4d82fc
JJ
651 AAMDNodes AAInfo = ST->getAAInfo();
652 SDLoc dl(ST);
223e47cc
LB
653 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
654 if (CFP->getValueType(0) == MVT::f32 &&
655 TLI.isTypeLegal(MVT::i32)) {
656 SDValue Con = DAG.getConstant(CFP->getValueAPF().
657 bitcastToAPInt().zextOrTrunc(32),
658 MVT::i32);
659 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
1a4d82fc 660 isVolatile, isNonTemporal, Alignment, AAInfo);
223e47cc
LB
661 }
662
663 if (CFP->getValueType(0) == MVT::f64) {
664 // If this target supports 64-bit registers, do a single 64-bit store.
665 if (TLI.isTypeLegal(MVT::i64)) {
666 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
667 zextOrTrunc(64), MVT::i64);
668 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
1a4d82fc 669 isVolatile, isNonTemporal, Alignment, AAInfo);
223e47cc
LB
670 }
671
672 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
673 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
674 // stores. If the target supports neither 32- nor 64-bits, this
675 // xform is certainly not worth it.
676 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
677 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
678 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
679 if (TLI.isBigEndian()) std::swap(Lo, Hi);
680
681 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
1a4d82fc 682 isNonTemporal, Alignment, AAInfo);
223e47cc 683 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1a4d82fc 684 DAG.getConstant(4, Ptr.getValueType()));
223e47cc
LB
685 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
686 ST->getPointerInfo().getWithOffset(4),
1a4d82fc
JJ
687 isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
688 AAInfo);
223e47cc
LB
689
690 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
691 }
692 }
693 }
1a4d82fc 694 return SDValue(nullptr, 0);
223e47cc
LB
695}
696
697void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
698 StoreSDNode *ST = cast<StoreSDNode>(Node);
699 SDValue Chain = ST->getChain();
700 SDValue Ptr = ST->getBasePtr();
1a4d82fc 701 SDLoc dl(Node);
223e47cc
LB
702
703 unsigned Alignment = ST->getAlignment();
704 bool isVolatile = ST->isVolatile();
705 bool isNonTemporal = ST->isNonTemporal();
1a4d82fc 706 AAMDNodes AAInfo = ST->getAAInfo();
223e47cc
LB
707
708 if (!ST->isTruncatingStore()) {
709 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
710 ReplaceNode(ST, OptStore);
711 return;
712 }
713
714 {
715 SDValue Value = ST->getValue();
970d7e83 716 MVT VT = Value.getSimpleValueType();
223e47cc
LB
717 switch (TLI.getOperationAction(ISD::STORE, VT)) {
718 default: llvm_unreachable("This action is not supported yet!");
1a4d82fc 719 case TargetLowering::Legal: {
223e47cc
LB
720 // If this is an unaligned store and the target doesn't support it,
721 // expand it.
1a4d82fc
JJ
722 unsigned AS = ST->getAddressSpace();
723 unsigned Align = ST->getAlignment();
724 if (!TLI.allowsMisalignedMemoryAccesses(ST->getMemoryVT(), AS, Align)) {
223e47cc 725 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
970d7e83 726 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
1a4d82fc 727 if (Align < ABIAlignment)
85aaf69f 728 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
223e47cc
LB
729 }
730 break;
1a4d82fc 731 }
223e47cc
LB
732 case TargetLowering::Custom: {
733 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
734 if (Res.getNode())
735 ReplaceNode(SDValue(Node, 0), Res);
736 return;
737 }
738 case TargetLowering::Promote: {
970d7e83
LB
739 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
740 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
741 "Can only promote stores to same size type");
742 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
223e47cc
LB
743 SDValue Result =
744 DAG.getStore(Chain, dl, Value, Ptr,
745 ST->getPointerInfo(), isVolatile,
1a4d82fc 746 isNonTemporal, Alignment, AAInfo);
223e47cc
LB
747 ReplaceNode(SDValue(Node, 0), Result);
748 break;
749 }
750 }
751 return;
752 }
753 } else {
754 SDValue Value = ST->getValue();
755
756 EVT StVT = ST->getMemoryVT();
757 unsigned StWidth = StVT.getSizeInBits();
758
759 if (StWidth != StVT.getStoreSizeInBits()) {
760 // Promote to a byte-sized store with upper bits zero if not
761 // storing an integral number of bytes. For example, promote
762 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
763 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
764 StVT.getStoreSizeInBits());
765 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
766 SDValue Result =
767 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
85aaf69f 768 NVT, isVolatile, isNonTemporal, Alignment, AAInfo);
223e47cc
LB
769 ReplaceNode(SDValue(Node, 0), Result);
770 } else if (StWidth & (StWidth - 1)) {
771 // If not storing a power-of-2 number of bits, expand as two stores.
772 assert(!StVT.isVector() && "Unsupported truncstore!");
773 unsigned RoundWidth = 1 << Log2_32(StWidth);
774 assert(RoundWidth < StWidth);
775 unsigned ExtraWidth = StWidth - RoundWidth;
776 assert(ExtraWidth < RoundWidth);
777 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
778 "Store size not an integral number of bytes!");
779 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
780 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
781 SDValue Lo, Hi;
782 unsigned IncrementSize;
783
784 if (TLI.isLittleEndian()) {
785 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
786 // Store the bottom RoundWidth bits.
787 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
788 RoundVT,
1a4d82fc
JJ
789 isVolatile, isNonTemporal, Alignment,
790 AAInfo);
223e47cc
LB
791
792 // Store the remaining ExtraWidth bits.
793 IncrementSize = RoundWidth / 8;
794 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1a4d82fc 795 DAG.getConstant(IncrementSize, Ptr.getValueType()));
223e47cc
LB
796 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
797 DAG.getConstant(RoundWidth,
1a4d82fc 798 TLI.getShiftAmountTy(Value.getValueType())));
223e47cc
LB
799 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
800 ST->getPointerInfo().getWithOffset(IncrementSize),
801 ExtraVT, isVolatile, isNonTemporal,
1a4d82fc 802 MinAlign(Alignment, IncrementSize), AAInfo);
223e47cc
LB
803 } else {
804 // Big endian - avoid unaligned stores.
805 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
806 // Store the top RoundWidth bits.
807 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
808 DAG.getConstant(ExtraWidth,
1a4d82fc 809 TLI.getShiftAmountTy(Value.getValueType())));
223e47cc 810 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
1a4d82fc
JJ
811 RoundVT, isVolatile, isNonTemporal, Alignment,
812 AAInfo);
223e47cc
LB
813
814 // Store the remaining ExtraWidth bits.
815 IncrementSize = RoundWidth / 8;
816 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1a4d82fc 817 DAG.getConstant(IncrementSize, Ptr.getValueType()));
223e47cc
LB
818 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
819 ST->getPointerInfo().getWithOffset(IncrementSize),
820 ExtraVT, isVolatile, isNonTemporal,
1a4d82fc 821 MinAlign(Alignment, IncrementSize), AAInfo);
223e47cc
LB
822 }
823
824 // The order of the stores doesn't matter.
825 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
826 ReplaceNode(SDValue(Node, 0), Result);
827 } else {
970d7e83
LB
828 switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
829 StVT.getSimpleVT())) {
223e47cc 830 default: llvm_unreachable("This action is not supported yet!");
1a4d82fc
JJ
831 case TargetLowering::Legal: {
832 unsigned AS = ST->getAddressSpace();
833 unsigned Align = ST->getAlignment();
223e47cc
LB
834 // If this is an unaligned store and the target doesn't support it,
835 // expand it.
1a4d82fc 836 if (!TLI.allowsMisalignedMemoryAccesses(ST->getMemoryVT(), AS, Align)) {
223e47cc 837 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
970d7e83 838 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
1a4d82fc 839 if (Align < ABIAlignment)
223e47cc
LB
840 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
841 }
842 break;
1a4d82fc 843 }
223e47cc
LB
844 case TargetLowering::Custom: {
845 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
846 if (Res.getNode())
847 ReplaceNode(SDValue(Node, 0), Res);
848 return;
849 }
850 case TargetLowering::Expand:
851 assert(!StVT.isVector() &&
852 "Vector Stores are handled in LegalizeVectorOps");
853
854 // TRUNCSTORE:i16 i32 -> STORE i16
855 assert(TLI.isTypeLegal(StVT) &&
856 "Do not know how to expand this store!");
857 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
858 SDValue Result =
859 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
1a4d82fc 860 isVolatile, isNonTemporal, Alignment, AAInfo);
223e47cc
LB
861 ReplaceNode(SDValue(Node, 0), Result);
862 break;
863 }
864 }
865 }
866}
867
868void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
869 LoadSDNode *LD = cast<LoadSDNode>(Node);
870 SDValue Chain = LD->getChain(); // The chain.
871 SDValue Ptr = LD->getBasePtr(); // The base pointer.
872 SDValue Value; // The value returned by the load op.
1a4d82fc 873 SDLoc dl(Node);
223e47cc
LB
874
875 ISD::LoadExtType ExtType = LD->getExtensionType();
876 if (ExtType == ISD::NON_EXTLOAD) {
970d7e83 877 MVT VT = Node->getSimpleValueType(0);
223e47cc
LB
878 SDValue RVal = SDValue(Node, 0);
879 SDValue RChain = SDValue(Node, 1);
880
881 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
882 default: llvm_unreachable("This action is not supported yet!");
1a4d82fc
JJ
883 case TargetLowering::Legal: {
884 unsigned AS = LD->getAddressSpace();
885 unsigned Align = LD->getAlignment();
223e47cc
LB
886 // If this is an unaligned load and the target doesn't support it,
887 // expand it.
1a4d82fc 888 if (!TLI.allowsMisalignedMemoryAccesses(LD->getMemoryVT(), AS, Align)) {
223e47cc
LB
889 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
890 unsigned ABIAlignment =
970d7e83 891 TLI.getDataLayout()->getABITypeAlignment(Ty);
1a4d82fc 892 if (Align < ABIAlignment){
223e47cc
LB
893 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
894 }
895 }
896 break;
1a4d82fc 897 }
223e47cc
LB
898 case TargetLowering::Custom: {
899 SDValue Res = TLI.LowerOperation(RVal, DAG);
900 if (Res.getNode()) {
901 RVal = Res;
902 RChain = Res.getValue(1);
903 }
904 break;
905 }
906 case TargetLowering::Promote: {
970d7e83
LB
907 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
908 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
909 "Can only promote loads to same size type");
223e47cc 910
1a4d82fc 911 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
223e47cc
LB
912 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
913 RChain = Res.getValue(1);
914 break;
915 }
916 }
917 if (RChain.getNode() != Node) {
918 assert(RVal.getNode() != Node && "Load must be completely replaced");
919 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
920 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
1a4d82fc
JJ
921 if (UpdatedNodes) {
922 UpdatedNodes->insert(RVal.getNode());
923 UpdatedNodes->insert(RChain.getNode());
924 }
223e47cc
LB
925 ReplacedNode(Node);
926 }
927 return;
928 }
929
930 EVT SrcVT = LD->getMemoryVT();
931 unsigned SrcWidth = SrcVT.getSizeInBits();
932 unsigned Alignment = LD->getAlignment();
933 bool isVolatile = LD->isVolatile();
934 bool isNonTemporal = LD->isNonTemporal();
1a4d82fc
JJ
935 bool isInvariant = LD->isInvariant();
936 AAMDNodes AAInfo = LD->getAAInfo();
223e47cc
LB
937
938 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
939 // Some targets pretend to have an i1 loading operation, and actually
940 // load an i8. This trick is correct for ZEXTLOAD because the top 7
941 // bits are guaranteed to be zero; it helps the optimizers understand
942 // that these bits are zero. It is also useful for EXTLOAD, since it
943 // tells the optimizers that those bits are undefined. It would be
944 // nice to have an effective generic way of getting these benefits...
945 // Until such a way is found, don't insist on promoting i1 here.
946 (SrcVT != MVT::i1 ||
85aaf69f
SL
947 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
948 TargetLowering::Promote)) {
223e47cc
LB
949 // Promote to a byte-sized load if not loading an integral number of
950 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
951 unsigned NewWidth = SrcVT.getStoreSizeInBits();
952 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
953 SDValue Ch;
954
955 // The extra bits are guaranteed to be zero, since we stored them that
956 // way. A zext load from NVT thus automatically gives zext from SrcVT.
957
958 ISD::LoadExtType NewExtType =
959 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
960
961 SDValue Result =
962 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
963 Chain, Ptr, LD->getPointerInfo(),
1a4d82fc
JJ
964 NVT, isVolatile, isNonTemporal, isInvariant, Alignment,
965 AAInfo);
223e47cc
LB
966
967 Ch = Result.getValue(1); // The chain.
968
969 if (ExtType == ISD::SEXTLOAD)
970 // Having the top bits zero doesn't help when sign extending.
971 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
972 Result.getValueType(),
973 Result, DAG.getValueType(SrcVT));
974 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
975 // All the top bits are guaranteed to be zero - inform the optimizers.
976 Result = DAG.getNode(ISD::AssertZext, dl,
977 Result.getValueType(), Result,
978 DAG.getValueType(SrcVT));
979
980 Value = Result;
981 Chain = Ch;
982 } else if (SrcWidth & (SrcWidth - 1)) {
983 // If not loading a power-of-2 number of bits, expand as two loads.
984 assert(!SrcVT.isVector() && "Unsupported extload!");
985 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
986 assert(RoundWidth < SrcWidth);
987 unsigned ExtraWidth = SrcWidth - RoundWidth;
988 assert(ExtraWidth < RoundWidth);
989 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
990 "Load size not an integral number of bytes!");
991 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
992 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
993 SDValue Lo, Hi, Ch;
994 unsigned IncrementSize;
995
996 if (TLI.isLittleEndian()) {
997 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
998 // Load the bottom RoundWidth bits.
999 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1000 Chain, Ptr,
1001 LD->getPointerInfo(), RoundVT, isVolatile,
1a4d82fc 1002 isNonTemporal, isInvariant, Alignment, AAInfo);
223e47cc
LB
1003
1004 // Load the remaining ExtraWidth bits.
1005 IncrementSize = RoundWidth / 8;
1006 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1a4d82fc 1007 DAG.getConstant(IncrementSize, Ptr.getValueType()));
223e47cc
LB
1008 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1009 LD->getPointerInfo().getWithOffset(IncrementSize),
1a4d82fc
JJ
1010 ExtraVT, isVolatile, isNonTemporal, isInvariant,
1011 MinAlign(Alignment, IncrementSize), AAInfo);
223e47cc
LB
1012
1013 // Build a factor node to remember that this load is independent of
1014 // the other one.
1015 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1016 Hi.getValue(1));
1017
1018 // Move the top bits to the right place.
1019 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1020 DAG.getConstant(RoundWidth,
1a4d82fc 1021 TLI.getShiftAmountTy(Hi.getValueType())));
223e47cc
LB
1022
1023 // Join the hi and lo parts.
1024 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1025 } else {
1026 // Big endian - avoid unaligned loads.
1027 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1028 // Load the top RoundWidth bits.
1029 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1030 LD->getPointerInfo(), RoundVT, isVolatile,
1a4d82fc 1031 isNonTemporal, isInvariant, Alignment, AAInfo);
223e47cc
LB
1032
1033 // Load the remaining ExtraWidth bits.
1034 IncrementSize = RoundWidth / 8;
1035 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1a4d82fc 1036 DAG.getConstant(IncrementSize, Ptr.getValueType()));
223e47cc
LB
1037 Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1038 dl, Node->getValueType(0), Chain, Ptr,
1039 LD->getPointerInfo().getWithOffset(IncrementSize),
1a4d82fc
JJ
1040 ExtraVT, isVolatile, isNonTemporal, isInvariant,
1041 MinAlign(Alignment, IncrementSize), AAInfo);
223e47cc
LB
1042
1043 // Build a factor node to remember that this load is independent of
1044 // the other one.
1045 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1046 Hi.getValue(1));
1047
1048 // Move the top bits to the right place.
1049 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1050 DAG.getConstant(ExtraWidth,
1a4d82fc 1051 TLI.getShiftAmountTy(Hi.getValueType())));
223e47cc
LB
1052
1053 // Join the hi and lo parts.
1054 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1055 }
1056
1057 Chain = Ch;
1058 } else {
1059 bool isCustom = false;
85aaf69f
SL
1060 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
1061 SrcVT.getSimpleVT())) {
223e47cc
LB
1062 default: llvm_unreachable("This action is not supported yet!");
1063 case TargetLowering::Custom:
1a4d82fc
JJ
1064 isCustom = true;
1065 // FALLTHROUGH
223e47cc 1066 case TargetLowering::Legal: {
1a4d82fc
JJ
1067 Value = SDValue(Node, 0);
1068 Chain = SDValue(Node, 1);
1069
1070 if (isCustom) {
1071 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1072 if (Res.getNode()) {
1073 Value = Res;
1074 Chain = Res.getValue(1);
1075 }
1076 } else {
1077 // If this is an unaligned load and the target doesn't support
1078 // it, expand it.
1079 EVT MemVT = LD->getMemoryVT();
1080 unsigned AS = LD->getAddressSpace();
1081 unsigned Align = LD->getAlignment();
1082 if (!TLI.allowsMisalignedMemoryAccesses(MemVT, AS, Align)) {
85aaf69f
SL
1083 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1084 unsigned ABIAlignment = TLI.getDataLayout()->getABITypeAlignment(Ty);
1a4d82fc 1085 if (Align < ABIAlignment){
85aaf69f 1086 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, Value, Chain);
1a4d82fc
JJ
1087 }
1088 }
1089 }
1090 break;
223e47cc
LB
1091 }
1092 case TargetLowering::Expand:
85aaf69f
SL
1093 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, Node->getValueType(0), SrcVT)) {
1094 // If the source type is not legal, see if there is a legal extload to
1095 // an intermediate type that we can then extend further.
1096 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
1097 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
1098 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
1099 // If we are loading a legal type, this is a non-extload followed by a
1100 // full extend.
1101 ISD::LoadExtType MidExtType =
1102 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
1103
1104 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
1105 SrcVT, LD->getMemOperand());
1106 unsigned ExtendOp =
1107 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
1108 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1109 Chain = Load.getValue(1);
1a4d82fc 1110 break;
1a4d82fc 1111 }
1a4d82fc
JJ
1112 }
1113
1114 assert(!SrcVT.isVector() &&
1115 "Vector Loads are handled in LegalizeVectorOps");
1116
1117 // FIXME: This does not work for vectors on most targets. Sign-
1118 // and zero-extend operations are currently folded into extending
1119 // loads, whether they are legal or not, and then we end up here
1120 // without any support for legalizing them.
1121 assert(ExtType != ISD::EXTLOAD &&
1122 "EXTLOAD should always be supported!");
1123 // Turn the unsupported load into an EXTLOAD followed by an
1124 // explicit zero/sign extend inreg.
1125 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
1126 Node->getValueType(0),
1127 Chain, Ptr, SrcVT,
1128 LD->getMemOperand());
1129 SDValue ValRes;
1130 if (ExtType == ISD::SEXTLOAD)
1131 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1132 Result.getValueType(),
1133 Result, DAG.getValueType(SrcVT));
1134 else
85aaf69f 1135 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1a4d82fc
JJ
1136 Value = ValRes;
1137 Chain = Result.getValue(1);
1138 break;
223e47cc
LB
1139 }
1140 }
1141
1142 // Since loads produce two values, make sure to remember that we legalized
1143 // both of them.
1144 if (Chain.getNode() != Node) {
1145 assert(Value.getNode() != Node && "Load must be completely replaced");
1146 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1147 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1a4d82fc
JJ
1148 if (UpdatedNodes) {
1149 UpdatedNodes->insert(Value.getNode());
1150 UpdatedNodes->insert(Chain.getNode());
1151 }
223e47cc
LB
1152 ReplacedNode(Node);
1153 }
1154}
1155
85aaf69f 1156/// Return a legal replacement for the given operation, with all legal operands.
223e47cc 1157void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1a4d82fc
JJ
1158 DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
1159
223e47cc
LB
1160 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1161 return;
1162
1163 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1164 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1165 TargetLowering::TypeLegal &&
1166 "Unexpected illegal type!");
1167
1168 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1169 assert((TLI.getTypeAction(*DAG.getContext(),
1170 Node->getOperand(i).getValueType()) ==
1171 TargetLowering::TypeLegal ||
1172 Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
1173 "Unexpected illegal type!");
1174
1175 // Figure out the correct action; the way to query this varies by opcode
1176 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1177 bool SimpleFinishLegalizing = true;
1178 switch (Node->getOpcode()) {
1179 case ISD::INTRINSIC_W_CHAIN:
1180 case ISD::INTRINSIC_WO_CHAIN:
1181 case ISD::INTRINSIC_VOID:
1182 case ISD::STACKSAVE:
1183 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1184 break;
1185 case ISD::VAARG:
1186 Action = TLI.getOperationAction(Node->getOpcode(),
1187 Node->getValueType(0));
1188 if (Action != TargetLowering::Promote)
1189 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1190 break;
1a4d82fc 1191 case ISD::FP_TO_FP16:
223e47cc
LB
1192 case ISD::SINT_TO_FP:
1193 case ISD::UINT_TO_FP:
1194 case ISD::EXTRACT_VECTOR_ELT:
1195 Action = TLI.getOperationAction(Node->getOpcode(),
1196 Node->getOperand(0).getValueType());
1197 break;
1198 case ISD::FP_ROUND_INREG:
1199 case ISD::SIGN_EXTEND_INREG: {
1200 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1201 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1202 break;
1203 }
1204 case ISD::ATOMIC_STORE: {
1205 Action = TLI.getOperationAction(Node->getOpcode(),
1206 Node->getOperand(2).getValueType());
1207 break;
1208 }
1209 case ISD::SELECT_CC:
1210 case ISD::SETCC:
1211 case ISD::BR_CC: {
1212 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1213 Node->getOpcode() == ISD::SETCC ? 2 : 1;
1214 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
970d7e83 1215 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
223e47cc
LB
1216 ISD::CondCode CCCode =
1217 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1218 Action = TLI.getCondCodeAction(CCCode, OpVT);
1219 if (Action == TargetLowering::Legal) {
1220 if (Node->getOpcode() == ISD::SELECT_CC)
1221 Action = TLI.getOperationAction(Node->getOpcode(),
1222 Node->getValueType(0));
1223 else
1224 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1225 }
1226 break;
1227 }
1228 case ISD::LOAD:
1229 case ISD::STORE:
1230 // FIXME: Model these properly. LOAD and STORE are complicated, and
1231 // STORE expects the unlegalized operand in some cases.
1232 SimpleFinishLegalizing = false;
1233 break;
1234 case ISD::CALLSEQ_START:
1235 case ISD::CALLSEQ_END:
1236 // FIXME: This shouldn't be necessary. These nodes have special properties
1237 // dealing with the recursive nature of legalization. Removing this
1238 // special case should be done as part of making LegalizeDAG non-recursive.
1239 SimpleFinishLegalizing = false;
1240 break;
1241 case ISD::EXTRACT_ELEMENT:
1242 case ISD::FLT_ROUNDS_:
1243 case ISD::SADDO:
1244 case ISD::SSUBO:
1245 case ISD::UADDO:
1246 case ISD::USUBO:
1247 case ISD::SMULO:
1248 case ISD::UMULO:
1249 case ISD::FPOWI:
1250 case ISD::MERGE_VALUES:
1251 case ISD::EH_RETURN:
1252 case ISD::FRAME_TO_ARGS_OFFSET:
1253 case ISD::EH_SJLJ_SETJMP:
1254 case ISD::EH_SJLJ_LONGJMP:
1255 // These operations lie about being legal: when they claim to be legal,
1256 // they should actually be expanded.
1257 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1258 if (Action == TargetLowering::Legal)
1259 Action = TargetLowering::Expand;
1260 break;
1261 case ISD::INIT_TRAMPOLINE:
1262 case ISD::ADJUST_TRAMPOLINE:
1263 case ISD::FRAMEADDR:
1264 case ISD::RETURNADDR:
1265 // These operations lie about being legal: when they claim to be legal,
1266 // they should actually be custom-lowered.
1267 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1268 if (Action == TargetLowering::Legal)
1269 Action = TargetLowering::Custom;
1270 break;
1a4d82fc
JJ
1271 case ISD::READ_REGISTER:
1272 case ISD::WRITE_REGISTER:
1273 // Named register is legal in the DAG, but blocked by register name
1274 // selection if not implemented by target (to chose the correct register)
1275 // They'll be converted to Copy(To/From)Reg.
1276 Action = TargetLowering::Legal;
1277 break;
970d7e83
LB
1278 case ISD::DEBUGTRAP:
1279 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1280 if (Action == TargetLowering::Expand) {
1281 // replace ISD::DEBUGTRAP with ISD::TRAP
1282 SDValue NewVal;
1a4d82fc 1283 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
970d7e83
LB
1284 Node->getOperand(0));
1285 ReplaceNode(Node, NewVal.getNode());
1286 LegalizeOp(NewVal.getNode());
1287 return;
1288 }
1289 break;
1290
223e47cc
LB
1291 default:
1292 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1293 Action = TargetLowering::Legal;
1294 } else {
1295 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1296 }
1297 break;
1298 }
1299
1300 if (SimpleFinishLegalizing) {
1301 SDNode *NewNode = Node;
1302 switch (Node->getOpcode()) {
1303 default: break;
1304 case ISD::SHL:
1305 case ISD::SRL:
1306 case ISD::SRA:
1307 case ISD::ROTL:
1308 case ISD::ROTR:
1309 // Legalizing shifts/rotates requires adjusting the shift amount
1310 // to the appropriate width.
1311 if (!Node->getOperand(1).getValueType().isVector()) {
1312 SDValue SAO =
1313 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1314 Node->getOperand(1));
1315 HandleSDNode Handle(SAO);
1316 LegalizeOp(SAO.getNode());
1317 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1318 Handle.getValue());
1319 }
1320 break;
1321 case ISD::SRL_PARTS:
1322 case ISD::SRA_PARTS:
1323 case ISD::SHL_PARTS:
1324 // Legalizing shifts/rotates requires adjusting the shift amount
1325 // to the appropriate width.
1326 if (!Node->getOperand(2).getValueType().isVector()) {
1327 SDValue SAO =
1328 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1329 Node->getOperand(2));
1330 HandleSDNode Handle(SAO);
1331 LegalizeOp(SAO.getNode());
1332 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1333 Node->getOperand(1),
1334 Handle.getValue());
1335 }
1336 break;
1337 }
1338
1339 if (NewNode != Node) {
1a4d82fc 1340 ReplaceNode(Node, NewNode);
223e47cc
LB
1341 Node = NewNode;
1342 }
1343 switch (Action) {
1344 case TargetLowering::Legal:
1345 return;
1346 case TargetLowering::Custom: {
1347 // FIXME: The handling for custom lowering with multiple results is
1348 // a complete mess.
1349 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1350 if (Res.getNode()) {
1a4d82fc
JJ
1351 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1352 return;
1353
1354 if (Node->getNumValues() == 1) {
1355 // We can just directly replace this node with the lowered value.
1356 ReplaceNode(SDValue(Node, 0), Res);
1357 return;
223e47cc 1358 }
1a4d82fc
JJ
1359
1360 SmallVector<SDValue, 8> ResultVals;
1361 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1362 ResultVals.push_back(Res.getValue(i));
1363 ReplaceNode(Node, ResultVals.data());
223e47cc
LB
1364 return;
1365 }
1366 }
1367 // FALL THROUGH
1368 case TargetLowering::Expand:
1369 ExpandNode(Node);
1370 return;
1371 case TargetLowering::Promote:
1372 PromoteNode(Node);
1373 return;
1374 }
1375 }
1376
1377 switch (Node->getOpcode()) {
1378 default:
1379#ifndef NDEBUG
1380 dbgs() << "NODE: ";
1381 Node->dump( &DAG);
1382 dbgs() << "\n";
1383#endif
1384 llvm_unreachable("Do not know how to legalize this operator!");
1385
1386 case ISD::CALLSEQ_START:
1387 case ISD::CALLSEQ_END:
1388 break;
1389 case ISD::LOAD: {
1390 return LegalizeLoadOps(Node);
1391 }
1392 case ISD::STORE: {
1393 return LegalizeStoreOps(Node);
1394 }
1395 }
1396}
1397
1398SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1399 SDValue Vec = Op.getOperand(0);
1400 SDValue Idx = Op.getOperand(1);
1a4d82fc
JJ
1401 SDLoc dl(Op);
1402
1403 // Before we generate a new store to a temporary stack slot, see if there is
1404 // already one that we can use. There often is because when we scalarize
1405 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1406 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1407 // the vector. If all are expanded here, we don't want one store per vector
1408 // element.
1409 SDValue StackPtr, Ch;
1410 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1411 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1412 SDNode *User = *UI;
1413 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1414 if (ST->isIndexed() || ST->isTruncatingStore() ||
1415 ST->getValue() != Vec)
1416 continue;
1417
1418 // Make sure that nothing else could have stored into the destination of
1419 // this store.
1420 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1421 continue;
1422
1423 StackPtr = ST->getBasePtr();
1424 Ch = SDValue(ST, 0);
1425 break;
1426 }
1427 }
1428
1429 if (!Ch.getNode()) {
1430 // Store the value to a temporary stack slot, then LOAD the returned part.
1431 StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1432 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1433 MachinePointerInfo(), false, false, 0);
1434 }
223e47cc
LB
1435
1436 // Add the offset to the index.
1437 unsigned EltSize =
1438 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1439 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1440 DAG.getConstant(EltSize, Idx.getValueType()));
1441
1a4d82fc 1442 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
223e47cc
LB
1443 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1444
1445 if (Op.getValueType().isVector())
1446 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1447 false, false, false, 0);
1448 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1449 MachinePointerInfo(),
1450 Vec.getValueType().getVectorElementType(),
1a4d82fc 1451 false, false, false, 0);
223e47cc
LB
1452}
1453
1454SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1455 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1456
1457 SDValue Vec = Op.getOperand(0);
1458 SDValue Part = Op.getOperand(1);
1459 SDValue Idx = Op.getOperand(2);
1a4d82fc 1460 SDLoc dl(Op);
223e47cc
LB
1461
1462 // Store the value to a temporary stack slot, then LOAD the returned part.
1463
1464 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1465 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1466 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1467
1468 // First store the whole vector.
1469 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1470 false, false, 0);
1471
1472 // Then store the inserted part.
1473
1474 // Add the offset to the index.
1475 unsigned EltSize =
1476 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1477
1478 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1479 DAG.getConstant(EltSize, Idx.getValueType()));
1a4d82fc 1480 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
223e47cc
LB
1481
1482 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1483 StackPtr);
1484
1485 // Store the subvector.
85aaf69f 1486 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr,
223e47cc
LB
1487 MachinePointerInfo(), false, false, 0);
1488
1489 // Finally, load the updated vector.
1490 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1491 false, false, false, 0);
1492}
1493
1494SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1495 // We can't handle this case efficiently. Allocate a sufficiently
1496 // aligned object on the stack, store each element into it, then load
1497 // the result as a vector.
1498 // Create the stack frame object.
1499 EVT VT = Node->getValueType(0);
1500 EVT EltVT = VT.getVectorElementType();
1a4d82fc 1501 SDLoc dl(Node);
223e47cc
LB
1502 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1503 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1504 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1505
1506 // Emit a store of each element to the stack slot.
1507 SmallVector<SDValue, 8> Stores;
1508 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1509 // Store (in the right endianness) the elements to memory.
1510 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1511 // Ignore undef elements.
1512 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1513
1514 unsigned Offset = TypeByteSize*i;
1515
1516 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1517 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1518
1519 // If the destination vector element type is narrower than the source
1520 // element type, only store the bits necessary.
1521 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1522 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1523 Node->getOperand(i), Idx,
1524 PtrInfo.getWithOffset(Offset),
1525 EltVT, false, false, 0));
1526 } else
1527 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1528 Node->getOperand(i), Idx,
1529 PtrInfo.getWithOffset(Offset),
1530 false, false, 0));
1531 }
1532
1533 SDValue StoreChain;
1534 if (!Stores.empty()) // Not all undef elements?
1a4d82fc 1535 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
223e47cc
LB
1536 else
1537 StoreChain = DAG.getEntryNode();
1538
1539 // Result is a load from the stack slot.
1a4d82fc 1540 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
223e47cc
LB
1541 false, false, false, 0);
1542}
1543
1544SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1a4d82fc 1545 SDLoc dl(Node);
223e47cc
LB
1546 SDValue Tmp1 = Node->getOperand(0);
1547 SDValue Tmp2 = Node->getOperand(1);
1548
1549 // Get the sign bit of the RHS. First obtain a value that has the same
1550 // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1551 SDValue SignBit;
1552 EVT FloatVT = Tmp2.getValueType();
1553 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1554 if (TLI.isTypeLegal(IVT)) {
1555 // Convert to an integer with the same sign bit.
1556 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1557 } else {
1558 // Store the float to memory, then load the sign part out as an integer.
1559 MVT LoadTy = TLI.getPointerTy();
1560 // First create a temporary that is aligned for both the load and store.
1561 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1562 // Then store the float to it.
1563 SDValue Ch =
1564 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1565 false, false, 0);
1566 if (TLI.isBigEndian()) {
1567 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1568 // Load out a legal integer with the same sign bit as the float.
1569 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1570 false, false, false, 0);
1571 } else { // Little endian
1572 SDValue LoadPtr = StackPtr;
1573 // The float may be wider than the integer we are going to load. Advance
1574 // the pointer so that the loaded integer will contain the sign bit.
1575 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1576 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1a4d82fc
JJ
1577 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), LoadPtr,
1578 DAG.getConstant(ByteOffset, LoadPtr.getValueType()));
223e47cc
LB
1579 // Load a legal integer containing the sign bit.
1580 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1581 false, false, false, 0);
1582 // Move the sign bit to the top bit of the loaded integer.
1583 unsigned BitShift = LoadTy.getSizeInBits() -
1584 (FloatVT.getSizeInBits() - 8 * ByteOffset);
1585 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1586 if (BitShift)
1587 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1588 DAG.getConstant(BitShift,
1589 TLI.getShiftAmountTy(SignBit.getValueType())));
1590 }
1591 }
1592 // Now get the sign bit proper, by seeing whether the value is negative.
1a4d82fc 1593 SignBit = DAG.getSetCC(dl, getSetCCResultType(SignBit.getValueType()),
223e47cc
LB
1594 SignBit, DAG.getConstant(0, SignBit.getValueType()),
1595 ISD::SETLT);
1596 // Get the absolute value of the result.
1597 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1598 // Select between the nabs and abs value based on the sign bit of
1599 // the input.
1a4d82fc
JJ
1600 return DAG.getSelect(dl, AbsVal.getValueType(), SignBit,
1601 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1602 AbsVal);
223e47cc
LB
1603}
1604
1605void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1606 SmallVectorImpl<SDValue> &Results) {
1607 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1608 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1609 " not tell us which reg is the stack pointer!");
1a4d82fc 1610 SDLoc dl(Node);
223e47cc
LB
1611 EVT VT = Node->getValueType(0);
1612 SDValue Tmp1 = SDValue(Node, 0);
1613 SDValue Tmp2 = SDValue(Node, 1);
1614 SDValue Tmp3 = Node->getOperand(2);
1615 SDValue Chain = Tmp1.getOperand(0);
1616
1617 // Chain the dynamic stack allocation so that it doesn't modify the stack
1618 // pointer when other instructions are using the stack.
1a4d82fc
JJ
1619 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
1620 SDLoc(Node));
223e47cc
LB
1621
1622 SDValue Size = Tmp2.getOperand(1);
1623 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1624 Chain = SP.getValue(1);
1625 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1a4d82fc 1626 unsigned StackAlign =
85aaf69f 1627 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
223e47cc 1628 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1a4d82fc
JJ
1629 if (Align > StackAlign)
1630 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1631 DAG.getConstant(-(uint64_t)Align, VT));
223e47cc
LB
1632 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1633
1634 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1a4d82fc
JJ
1635 DAG.getIntPtrConstant(0, true), SDValue(),
1636 SDLoc(Node));
223e47cc
LB
1637
1638 Results.push_back(Tmp1);
1639 Results.push_back(Tmp2);
1640}
1641
85aaf69f
SL
1642/// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1643/// target.
1a4d82fc
JJ
1644///
1645/// If the SETCC has been legalized using AND / OR, then the legalized node
1646/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1647/// will be set to false.
1648///
1649/// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1650/// then the values of LHS and RHS will be swapped, CC will be set to the
1651/// new condition, and NeedInvert will be set to false.
1652///
1653/// If the SETCC has been legalized using the inverse condcode, then LHS and
1654/// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1655/// will be set to true. The caller must invert the result of the SETCC with
1656/// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1657/// of a true/false result.
1658///
1659/// \returns true if the SetCC has been legalized, false if it hasn't.
1660bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
223e47cc
LB
1661 SDValue &LHS, SDValue &RHS,
1662 SDValue &CC,
1a4d82fc
JJ
1663 bool &NeedInvert,
1664 SDLoc dl) {
970d7e83 1665 MVT OpVT = LHS.getSimpleValueType();
223e47cc 1666 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1a4d82fc 1667 NeedInvert = false;
223e47cc
LB
1668 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1669 default: llvm_unreachable("Unknown condition code action!");
1670 case TargetLowering::Legal:
1671 // Nothing to do.
1672 break;
1673 case TargetLowering::Expand: {
1a4d82fc
JJ
1674 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1675 if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1676 std::swap(LHS, RHS);
1677 CC = DAG.getCondCode(InvCC);
1678 return true;
1679 }
223e47cc
LB
1680 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1681 unsigned Opc = 0;
1682 switch (CCCode) {
1683 default: llvm_unreachable("Don't know how to expand this condition!");
1a4d82fc 1684 case ISD::SETO:
970d7e83
LB
1685 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1686 == TargetLowering::Legal
1687 && "If SETO is expanded, SETOEQ must be legal!");
1688 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1a4d82fc 1689 case ISD::SETUO:
970d7e83
LB
1690 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1691 == TargetLowering::Legal
1692 && "If SETUO is expanded, SETUNE must be legal!");
1693 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
1694 case ISD::SETOEQ:
1695 case ISD::SETOGT:
1696 case ISD::SETOGE:
1697 case ISD::SETOLT:
1698 case ISD::SETOLE:
1a4d82fc
JJ
1699 case ISD::SETONE:
1700 case ISD::SETUEQ:
1701 case ISD::SETUNE:
1702 case ISD::SETUGT:
1703 case ISD::SETUGE:
1704 case ISD::SETULT:
970d7e83
LB
1705 case ISD::SETULE:
1706 // If we are floating point, assign and break, otherwise fall through.
1707 if (!OpVT.isInteger()) {
1708 // We can use the 4th bit to tell if we are the unordered
1709 // or ordered version of the opcode.
1710 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1711 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1712 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1713 break;
1714 }
1715 // Fallthrough if we are unsigned integer.
1716 case ISD::SETLE:
1717 case ISD::SETGT:
1718 case ISD::SETGE:
1719 case ISD::SETLT:
1a4d82fc
JJ
1720 // We only support using the inverted operation, which is computed above
1721 // and not a different manner of supporting expanding these cases.
1722 llvm_unreachable("Don't know how to expand this condition!");
970d7e83
LB
1723 case ISD::SETNE:
1724 case ISD::SETEQ:
1a4d82fc
JJ
1725 // Try inverting the result of the inverse condition.
1726 InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ;
1727 if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1728 CC = DAG.getCondCode(InvCC);
1729 NeedInvert = true;
1730 return true;
970d7e83 1731 }
1a4d82fc
JJ
1732 // If inverting the condition didn't work then we have no means to expand
1733 // the condition.
1734 llvm_unreachable("Don't know how to expand this condition!");
970d7e83 1735 }
1a4d82fc 1736
970d7e83
LB
1737 SDValue SetCC1, SetCC2;
1738 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1739 // If we aren't the ordered or unorder operation,
1740 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1741 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1742 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1743 } else {
1744 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1745 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1746 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1747 }
223e47cc
LB
1748 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1749 RHS = SDValue();
1750 CC = SDValue();
1a4d82fc 1751 return true;
223e47cc
LB
1752 }
1753 }
1a4d82fc 1754 return false;
223e47cc
LB
1755}
1756
85aaf69f 1757/// Emit a store/load combination to the stack. This stores
223e47cc
LB
1758/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1759/// a load from the stack slot to DestVT, extending it if needed.
1760/// The resultant code need not be legal.
1761SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1762 EVT SlotVT,
1763 EVT DestVT,
1a4d82fc 1764 SDLoc dl) {
223e47cc
LB
1765 // Create the stack frame object.
1766 unsigned SrcAlign =
970d7e83 1767 TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
223e47cc
LB
1768 getTypeForEVT(*DAG.getContext()));
1769 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1770
1771 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1772 int SPFI = StackPtrFI->getIndex();
1773 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1774
1775 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1776 unsigned SlotSize = SlotVT.getSizeInBits();
1777 unsigned DestSize = DestVT.getSizeInBits();
1778 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
970d7e83 1779 unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
223e47cc
LB
1780
1781 // Emit a store to the stack slot. Use a truncstore if the input value is
1782 // later than DestVT.
1783 SDValue Store;
1784
1785 if (SrcSize > SlotSize)
1786 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1787 PtrInfo, SlotVT, false, false, SrcAlign);
1788 else {
1789 assert(SrcSize == SlotSize && "Invalid store");
1790 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1791 PtrInfo, false, false, SrcAlign);
1792 }
1793
1794 // Result is a load from the stack slot.
1795 if (SlotSize == DestSize)
1796 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1797 false, false, false, DestAlign);
1798
1799 assert(SlotSize < DestSize && "Unknown extension!");
1800 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1a4d82fc 1801 PtrInfo, SlotVT, false, false, false, DestAlign);
223e47cc
LB
1802}
1803
1804SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1a4d82fc 1805 SDLoc dl(Node);
223e47cc
LB
1806 // Create a vector sized/aligned stack slot, store the value to element #0,
1807 // then load the whole vector back out.
1808 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1809
1810 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1811 int SPFI = StackPtrFI->getIndex();
1812
1813 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1814 StackPtr,
1815 MachinePointerInfo::getFixedStack(SPFI),
1816 Node->getValueType(0).getVectorElementType(),
1817 false, false, 0);
1818 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1819 MachinePointerInfo::getFixedStack(SPFI),
1820 false, false, false, 0);
1821}
1822
1a4d82fc
JJ
1823static bool
1824ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1825 const TargetLowering &TLI, SDValue &Res) {
1826 unsigned NumElems = Node->getNumOperands();
1827 SDLoc dl(Node);
1828 EVT VT = Node->getValueType(0);
1829
1830 // Try to group the scalars into pairs, shuffle the pairs together, then
1831 // shuffle the pairs of pairs together, etc. until the vector has
1832 // been built. This will work only if all of the necessary shuffle masks
1833 // are legal.
1834
1835 // We do this in two phases; first to check the legality of the shuffles,
1836 // and next, assuming that all shuffles are legal, to create the new nodes.
1837 for (int Phase = 0; Phase < 2; ++Phase) {
1838 SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals,
1839 NewIntermedVals;
1840 for (unsigned i = 0; i < NumElems; ++i) {
1841 SDValue V = Node->getOperand(i);
1842 if (V.getOpcode() == ISD::UNDEF)
1843 continue;
1844
1845 SDValue Vec;
1846 if (Phase)
1847 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1848 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1849 }
1850
1851 while (IntermedVals.size() > 2) {
1852 NewIntermedVals.clear();
1853 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1854 // This vector and the next vector are shuffled together (simply to
1855 // append the one to the other).
1856 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1857
1858 SmallVector<int, 16> FinalIndices;
1859 FinalIndices.reserve(IntermedVals[i].second.size() +
1860 IntermedVals[i+1].second.size());
1861
1862 int k = 0;
1863 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1864 ++j, ++k) {
1865 ShuffleVec[k] = j;
1866 FinalIndices.push_back(IntermedVals[i].second[j]);
1867 }
1868 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1869 ++j, ++k) {
1870 ShuffleVec[k] = NumElems + j;
1871 FinalIndices.push_back(IntermedVals[i+1].second[j]);
1872 }
1873
1874 SDValue Shuffle;
1875 if (Phase)
1876 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1877 IntermedVals[i+1].first,
1878 ShuffleVec.data());
1879 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1880 return false;
85aaf69f
SL
1881 NewIntermedVals.push_back(
1882 std::make_pair(Shuffle, std::move(FinalIndices)));
1a4d82fc
JJ
1883 }
1884
1885 // If we had an odd number of defined values, then append the last
1886 // element to the array of new vectors.
1887 if ((IntermedVals.size() & 1) != 0)
1888 NewIntermedVals.push_back(IntermedVals.back());
1889
1890 IntermedVals.swap(NewIntermedVals);
1891 }
1892
1893 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1894 "Invalid number of intermediate vectors");
1895 SDValue Vec1 = IntermedVals[0].first;
1896 SDValue Vec2;
1897 if (IntermedVals.size() > 1)
1898 Vec2 = IntermedVals[1].first;
1899 else if (Phase)
1900 Vec2 = DAG.getUNDEF(VT);
1901
1902 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1903 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1904 ShuffleVec[IntermedVals[0].second[i]] = i;
1905 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1906 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1907
1908 if (Phase)
1909 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1910 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1911 return false;
1912 }
1913
1914 return true;
1915}
223e47cc 1916
85aaf69f 1917/// Expand a BUILD_VECTOR node on targets that don't
223e47cc
LB
1918/// support the operation, but do support the resultant vector type.
1919SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1920 unsigned NumElems = Node->getNumOperands();
1921 SDValue Value1, Value2;
1a4d82fc 1922 SDLoc dl(Node);
223e47cc
LB
1923 EVT VT = Node->getValueType(0);
1924 EVT OpVT = Node->getOperand(0).getValueType();
1925 EVT EltVT = VT.getVectorElementType();
1926
1927 // If the only non-undef value is the low element, turn this into a
1928 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1929 bool isOnlyLowElement = true;
1930 bool MoreThanTwoValues = false;
1931 bool isConstant = true;
1932 for (unsigned i = 0; i < NumElems; ++i) {
1933 SDValue V = Node->getOperand(i);
1934 if (V.getOpcode() == ISD::UNDEF)
1935 continue;
1936 if (i > 0)
1937 isOnlyLowElement = false;
1938 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1939 isConstant = false;
1940
1941 if (!Value1.getNode()) {
1942 Value1 = V;
1943 } else if (!Value2.getNode()) {
1944 if (V != Value1)
1945 Value2 = V;
1946 } else if (V != Value1 && V != Value2) {
1947 MoreThanTwoValues = true;
1948 }
1949 }
1950
1951 if (!Value1.getNode())
1952 return DAG.getUNDEF(VT);
1953
1954 if (isOnlyLowElement)
1955 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1956
1957 // If all elements are constants, create a load from the constant pool.
1958 if (isConstant) {
1959 SmallVector<Constant*, 16> CV;
1960 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1961 if (ConstantFPSDNode *V =
1962 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1963 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1964 } else if (ConstantSDNode *V =
1965 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1966 if (OpVT==EltVT)
1967 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1968 else {
1969 // If OpVT and EltVT don't match, EltVT is not legal and the
1970 // element values have been promoted/truncated earlier. Undo this;
1971 // we don't want a v16i8 to become a v16i32 for example.
1972 const ConstantInt *CI = V->getConstantIntValue();
1973 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1974 CI->getZExtValue()));
1975 }
1976 } else {
1977 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1978 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1979 CV.push_back(UndefValue::get(OpNTy));
1980 }
1981 }
1982 Constant *CP = ConstantVector::get(CV);
1983 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1984 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1985 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1986 MachinePointerInfo::getConstantPool(),
1987 false, false, false, Alignment);
1988 }
1989
1a4d82fc
JJ
1990 SmallSet<SDValue, 16> DefinedValues;
1991 for (unsigned i = 0; i < NumElems; ++i) {
1992 if (Node->getOperand(i).getOpcode() == ISD::UNDEF)
1993 continue;
1994 DefinedValues.insert(Node->getOperand(i));
1995 }
223e47cc 1996
1a4d82fc
JJ
1997 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1998 if (!MoreThanTwoValues) {
1999 SmallVector<int, 8> ShuffleVec(NumElems, -1);
2000 for (unsigned i = 0; i < NumElems; ++i) {
2001 SDValue V = Node->getOperand(i);
2002 if (V.getOpcode() == ISD::UNDEF)
2003 continue;
2004 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2005 }
2006 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2007 // Get the splatted value into the low element of a vector register.
2008 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2009 SDValue Vec2;
2010 if (Value2.getNode())
2011 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2012 else
2013 Vec2 = DAG.getUNDEF(VT);
2014
2015 // Return shuffle(LowValVec, undef, <0,0,0,0>)
2016 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2017 }
2018 } else {
2019 SDValue Res;
2020 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2021 return Res;
223e47cc
LB
2022 }
2023 }
2024
2025 // Otherwise, we can't handle this case efficiently.
2026 return ExpandVectorBuildThroughStack(Node);
2027}
2028
85aaf69f 2029// Expand a node into a call to a libcall. If the result value
223e47cc
LB
2030// does not fit into a register, return the lo part and set the hi part to the
2031// by-reg argument. If it does fit into a single register, return the result
2032// and leave the Hi part unset.
2033SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2034 bool isSigned) {
2035 TargetLowering::ArgListTy Args;
2036 TargetLowering::ArgListEntry Entry;
2037 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2038 EVT ArgVT = Node->getOperand(i).getValueType();
2039 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2040 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2041 Entry.isSExt = isSigned;
2042 Entry.isZExt = !isSigned;
2043 Args.push_back(Entry);
2044 }
2045 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2046 TLI.getPointerTy());
2047
2048 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2049
2050 // By default, the input chain to this libcall is the entry node of the
2051 // function. If the libcall is going to be emitted as a tail call then
2052 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2053 // node which is being folded has a non-entry input chain.
2054 SDValue InChain = DAG.getEntryNode();
2055
2056 // isTailCall may be true since the callee does not reference caller stack
2057 // frame. Check if it's in the right position.
2058 SDValue TCChain = InChain;
970d7e83 2059 bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
223e47cc
LB
2060 if (isTailCall)
2061 InChain = TCChain;
2062
1a4d82fc
JJ
2063 TargetLowering::CallLoweringInfo CLI(DAG);
2064 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
2065 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2066 .setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned);
223e47cc 2067
1a4d82fc 2068 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
223e47cc
LB
2069
2070 if (!CallInfo.second.getNode())
2071 // It's a tailcall, return the chain (which is the DAG root).
2072 return DAG.getRoot();
2073
2074 return CallInfo.first;
2075}
2076
85aaf69f 2077/// Generate a libcall taking the given operands as arguments
223e47cc
LB
2078/// and returning a result of type RetVT.
2079SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
2080 const SDValue *Ops, unsigned NumOps,
1a4d82fc 2081 bool isSigned, SDLoc dl) {
223e47cc
LB
2082 TargetLowering::ArgListTy Args;
2083 Args.reserve(NumOps);
2084
2085 TargetLowering::ArgListEntry Entry;
2086 for (unsigned i = 0; i != NumOps; ++i) {
2087 Entry.Node = Ops[i];
2088 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2089 Entry.isSExt = isSigned;
2090 Entry.isZExt = !isSigned;
2091 Args.push_back(Entry);
2092 }
2093 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2094 TLI.getPointerTy());
2095
2096 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1a4d82fc
JJ
2097
2098 TargetLowering::CallLoweringInfo CLI(DAG);
2099 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
2100 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2101 .setSExtResult(isSigned).setZExtResult(!isSigned);
2102
223e47cc
LB
2103 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
2104
2105 return CallInfo.first;
2106}
2107
85aaf69f 2108// Expand a node into a call to a libcall. Similar to
223e47cc
LB
2109// ExpandLibCall except that the first operand is the in-chain.
2110std::pair<SDValue, SDValue>
2111SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2112 SDNode *Node,
2113 bool isSigned) {
2114 SDValue InChain = Node->getOperand(0);
2115
2116 TargetLowering::ArgListTy Args;
2117 TargetLowering::ArgListEntry Entry;
2118 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2119 EVT ArgVT = Node->getOperand(i).getValueType();
2120 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2121 Entry.Node = Node->getOperand(i);
2122 Entry.Ty = ArgTy;
2123 Entry.isSExt = isSigned;
2124 Entry.isZExt = !isSigned;
2125 Args.push_back(Entry);
2126 }
2127 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2128 TLI.getPointerTy());
2129
2130 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1a4d82fc
JJ
2131
2132 TargetLowering::CallLoweringInfo CLI(DAG);
2133 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
2134 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2135 .setSExtResult(isSigned).setZExtResult(!isSigned);
2136
223e47cc
LB
2137 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2138
2139 return CallInfo;
2140}
2141
2142SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2143 RTLIB::Libcall Call_F32,
2144 RTLIB::Libcall Call_F64,
2145 RTLIB::Libcall Call_F80,
970d7e83 2146 RTLIB::Libcall Call_F128,
223e47cc
LB
2147 RTLIB::Libcall Call_PPCF128) {
2148 RTLIB::Libcall LC;
1a4d82fc 2149 switch (Node->getSimpleValueType(0).SimpleTy) {
223e47cc
LB
2150 default: llvm_unreachable("Unexpected request for libcall!");
2151 case MVT::f32: LC = Call_F32; break;
2152 case MVT::f64: LC = Call_F64; break;
2153 case MVT::f80: LC = Call_F80; break;
970d7e83 2154 case MVT::f128: LC = Call_F128; break;
223e47cc
LB
2155 case MVT::ppcf128: LC = Call_PPCF128; break;
2156 }
2157 return ExpandLibCall(LC, Node, false);
2158}
2159
2160SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2161 RTLIB::Libcall Call_I8,
2162 RTLIB::Libcall Call_I16,
2163 RTLIB::Libcall Call_I32,
2164 RTLIB::Libcall Call_I64,
2165 RTLIB::Libcall Call_I128) {
2166 RTLIB::Libcall LC;
1a4d82fc 2167 switch (Node->getSimpleValueType(0).SimpleTy) {
223e47cc
LB
2168 default: llvm_unreachable("Unexpected request for libcall!");
2169 case MVT::i8: LC = Call_I8; break;
2170 case MVT::i16: LC = Call_I16; break;
2171 case MVT::i32: LC = Call_I32; break;
2172 case MVT::i64: LC = Call_I64; break;
2173 case MVT::i128: LC = Call_I128; break;
2174 }
2175 return ExpandLibCall(LC, Node, isSigned);
2176}
2177
85aaf69f 2178/// Return true if divmod libcall is available.
223e47cc
LB
2179static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2180 const TargetLowering &TLI) {
2181 RTLIB::Libcall LC;
1a4d82fc 2182 switch (Node->getSimpleValueType(0).SimpleTy) {
223e47cc
LB
2183 default: llvm_unreachable("Unexpected request for libcall!");
2184 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2185 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2186 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2187 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2188 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2189 }
2190
1a4d82fc 2191 return TLI.getLibcallName(LC) != nullptr;
223e47cc
LB
2192}
2193
85aaf69f 2194/// Only issue divrem libcall if both quotient and remainder are needed.
223e47cc
LB
2195static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2196 // The other use might have been replaced with a divrem already.
2197 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2198 unsigned OtherOpcode = 0;
2199 if (isSigned)
2200 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2201 else
2202 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2203
2204 SDValue Op0 = Node->getOperand(0);
2205 SDValue Op1 = Node->getOperand(1);
2206 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2207 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2208 SDNode *User = *UI;
2209 if (User == Node)
2210 continue;
2211 if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
2212 User->getOperand(0) == Op0 &&
2213 User->getOperand(1) == Op1)
2214 return true;
2215 }
2216 return false;
2217}
2218
85aaf69f 2219/// Issue libcalls to __{u}divmod to compute div / rem pairs.
223e47cc
LB
2220void
2221SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2222 SmallVectorImpl<SDValue> &Results) {
2223 unsigned Opcode = Node->getOpcode();
2224 bool isSigned = Opcode == ISD::SDIVREM;
2225
2226 RTLIB::Libcall LC;
1a4d82fc 2227 switch (Node->getSimpleValueType(0).SimpleTy) {
223e47cc
LB
2228 default: llvm_unreachable("Unexpected request for libcall!");
2229 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2230 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2231 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2232 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2233 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2234 }
2235
2236 // The input chain to this libcall is the entry node of the function.
2237 // Legalizing the call will automatically add the previous call to the
2238 // dependence.
2239 SDValue InChain = DAG.getEntryNode();
2240
2241 EVT RetVT = Node->getValueType(0);
2242 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2243
2244 TargetLowering::ArgListTy Args;
2245 TargetLowering::ArgListEntry Entry;
2246 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2247 EVT ArgVT = Node->getOperand(i).getValueType();
2248 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2249 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2250 Entry.isSExt = isSigned;
2251 Entry.isZExt = !isSigned;
2252 Args.push_back(Entry);
2253 }
2254
2255 // Also pass the return address of the remainder.
2256 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2257 Entry.Node = FIPtr;
2258 Entry.Ty = RetTy->getPointerTo();
2259 Entry.isSExt = isSigned;
2260 Entry.isZExt = !isSigned;
2261 Args.push_back(Entry);
2262
2263 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2264 TLI.getPointerTy());
2265
1a4d82fc
JJ
2266 SDLoc dl(Node);
2267 TargetLowering::CallLoweringInfo CLI(DAG);
2268 CLI.setDebugLoc(dl).setChain(InChain)
2269 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2270 .setSExtResult(isSigned).setZExtResult(!isSigned);
2271
223e47cc
LB
2272 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2273
2274 // Remainder is loaded back from the stack frame.
2275 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2276 MachinePointerInfo(), false, false, false, 0);
2277 Results.push_back(CallInfo.first);
2278 Results.push_back(Rem);
2279}
2280
85aaf69f 2281/// Return true if sincos libcall is available.
970d7e83
LB
2282static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2283 RTLIB::Libcall LC;
1a4d82fc 2284 switch (Node->getSimpleValueType(0).SimpleTy) {
970d7e83
LB
2285 default: llvm_unreachable("Unexpected request for libcall!");
2286 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2287 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2288 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2289 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2290 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2291 }
1a4d82fc 2292 return TLI.getLibcallName(LC) != nullptr;
970d7e83
LB
2293}
2294
85aaf69f
SL
2295/// Return true if sincos libcall is available and can be used to combine sin
2296/// and cos.
970d7e83
LB
2297static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
2298 const TargetMachine &TM) {
2299 if (!isSinCosLibcallAvailable(Node, TLI))
2300 return false;
2301 // GNU sin/cos functions set errno while sincos does not. Therefore
2302 // combining sin and cos is only safe if unsafe-fpmath is enabled.
2303 bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
2304 if (isGNU && !TM.Options.UnsafeFPMath)
2305 return false;
2306 return true;
2307}
2308
85aaf69f 2309/// Only issue sincos libcall if both sin and cos are needed.
970d7e83
LB
2310static bool useSinCos(SDNode *Node) {
2311 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2312 ? ISD::FCOS : ISD::FSIN;
1a4d82fc 2313
970d7e83
LB
2314 SDValue Op0 = Node->getOperand(0);
2315 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2316 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2317 SDNode *User = *UI;
2318 if (User == Node)
2319 continue;
2320 // The other user might have been turned into sincos already.
2321 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2322 return true;
2323 }
2324 return false;
2325}
2326
85aaf69f 2327/// Issue libcalls to sincos to compute sin / cos pairs.
970d7e83
LB
2328void
2329SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2330 SmallVectorImpl<SDValue> &Results) {
2331 RTLIB::Libcall LC;
1a4d82fc 2332 switch (Node->getSimpleValueType(0).SimpleTy) {
970d7e83
LB
2333 default: llvm_unreachable("Unexpected request for libcall!");
2334 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2335 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2336 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2337 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2338 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2339 }
1a4d82fc 2340
970d7e83
LB
2341 // The input chain to this libcall is the entry node of the function.
2342 // Legalizing the call will automatically add the previous call to the
2343 // dependence.
2344 SDValue InChain = DAG.getEntryNode();
1a4d82fc 2345
970d7e83
LB
2346 EVT RetVT = Node->getValueType(0);
2347 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1a4d82fc 2348
970d7e83
LB
2349 TargetLowering::ArgListTy Args;
2350 TargetLowering::ArgListEntry Entry;
1a4d82fc 2351
970d7e83
LB
2352 // Pass the argument.
2353 Entry.Node = Node->getOperand(0);
2354 Entry.Ty = RetTy;
2355 Entry.isSExt = false;
2356 Entry.isZExt = false;
2357 Args.push_back(Entry);
1a4d82fc 2358
970d7e83
LB
2359 // Pass the return address of sin.
2360 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2361 Entry.Node = SinPtr;
2362 Entry.Ty = RetTy->getPointerTo();
2363 Entry.isSExt = false;
2364 Entry.isZExt = false;
2365 Args.push_back(Entry);
1a4d82fc 2366
970d7e83
LB
2367 // Also pass the return address of the cos.
2368 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2369 Entry.Node = CosPtr;
2370 Entry.Ty = RetTy->getPointerTo();
2371 Entry.isSExt = false;
2372 Entry.isZExt = false;
2373 Args.push_back(Entry);
1a4d82fc 2374
970d7e83
LB
2375 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2376 TLI.getPointerTy());
1a4d82fc
JJ
2377
2378 SDLoc dl(Node);
2379 TargetLowering::CallLoweringInfo CLI(DAG);
2380 CLI.setDebugLoc(dl).setChain(InChain)
2381 .setCallee(TLI.getLibcallCallingConv(LC),
2382 Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args), 0);
2383
970d7e83
LB
2384 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2385
2386 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
2387 MachinePointerInfo(), false, false, false, 0));
2388 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
2389 MachinePointerInfo(), false, false, false, 0));
2390}
2391
85aaf69f 2392/// This function is responsible for legalizing a
223e47cc
LB
2393/// INT_TO_FP operation of the specified operand when the target requests that
2394/// we expand it. At this point, we know that the result and operand types are
2395/// legal for the target.
2396SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2397 SDValue Op0,
2398 EVT DestVT,
1a4d82fc 2399 SDLoc dl) {
223e47cc
LB
2400 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2401 // simple 32-bit [signed|unsigned] integer to float/double expansion
2402
2403 // Get the stack frame index of a 8 byte buffer.
2404 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2405
2406 // word offset constant for Hi/Lo address computation
1a4d82fc 2407 SDValue WordOff = DAG.getConstant(sizeof(int), StackSlot.getValueType());
223e47cc
LB
2408 // set up Hi and Lo (into buffer) address based on endian
2409 SDValue Hi = StackSlot;
1a4d82fc
JJ
2410 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2411 StackSlot, WordOff);
223e47cc
LB
2412 if (TLI.isLittleEndian())
2413 std::swap(Hi, Lo);
2414
2415 // if signed map to unsigned space
2416 SDValue Op0Mapped;
2417 if (isSigned) {
2418 // constant used to invert sign bit (signed to unsigned mapping)
2419 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2420 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2421 } else {
2422 Op0Mapped = Op0;
2423 }
2424 // store the lo of the constructed double - based on integer input
2425 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2426 Op0Mapped, Lo, MachinePointerInfo(),
2427 false, false, 0);
2428 // initial hi portion of constructed double
2429 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2430 // store the hi of the constructed double - biased exponent
2431 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2432 MachinePointerInfo(),
2433 false, false, 0);
2434 // load the constructed double
2435 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2436 MachinePointerInfo(), false, false, false, 0);
2437 // FP constant to bias correct the final result
2438 SDValue Bias = DAG.getConstantFP(isSigned ?
2439 BitsToDouble(0x4330000080000000ULL) :
2440 BitsToDouble(0x4330000000000000ULL),
2441 MVT::f64);
2442 // subtract the bias
2443 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2444 // final result
2445 SDValue Result;
2446 // handle final rounding
2447 if (DestVT == MVT::f64) {
2448 // do nothing
2449 Result = Sub;
2450 } else if (DestVT.bitsLT(MVT::f64)) {
2451 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2452 DAG.getIntPtrConstant(0));
2453 } else if (DestVT.bitsGT(MVT::f64)) {
2454 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2455 }
2456 return Result;
2457 }
2458 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2459 // Code below here assumes !isSigned without checking again.
2460
2461 // Implementation of unsigned i64 to f64 following the algorithm in
2462 // __floatundidf in compiler_rt. This implementation has the advantage
2463 // of performing rounding correctly, both in the default rounding mode
2464 // and in all alternate rounding modes.
2465 // TODO: Generalize this for use with other types.
2466 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2467 SDValue TwoP52 =
2468 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2469 SDValue TwoP84PlusTwoP52 =
2470 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2471 SDValue TwoP84 =
2472 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2473
2474 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2475 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2476 DAG.getConstant(32, MVT::i64));
2477 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2478 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2479 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2480 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2481 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2482 TwoP84PlusTwoP52);
2483 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2484 }
2485
2486 // Implementation of unsigned i64 to f32.
2487 // TODO: Generalize this for use with other types.
2488 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2489 // For unsigned conversions, convert them to signed conversions using the
2490 // algorithm from the x86_64 __floatundidf in compiler_rt.
2491 if (!isSigned) {
2492 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2493
2494 SDValue ShiftConst =
2495 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2496 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2497 SDValue AndConst = DAG.getConstant(1, MVT::i64);
2498 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2499 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2500
2501 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2502 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2503
2504 // TODO: This really should be implemented using a branch rather than a
2505 // select. We happen to get lucky and machinesink does the right
2506 // thing most of the time. This would be a good candidate for a
2507 //pseudo-op, or, even better, for whole-function isel.
1a4d82fc 2508 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
223e47cc 2509 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
1a4d82fc 2510 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast);
223e47cc
LB
2511 }
2512
2513 // Otherwise, implement the fully general conversion.
2514
2515 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2516 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2517 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2518 DAG.getConstant(UINT64_C(0x800), MVT::i64));
2519 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2520 DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
1a4d82fc 2521 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
223e47cc 2522 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
1a4d82fc
JJ
2523 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0);
2524 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
223e47cc
LB
2525 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2526 ISD::SETUGE);
1a4d82fc 2527 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0);
223e47cc
LB
2528 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2529
2530 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2531 DAG.getConstant(32, SHVT));
2532 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2533 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2534 SDValue TwoP32 =
2535 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2536 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2537 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2538 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2539 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2540 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2541 DAG.getIntPtrConstant(0));
2542 }
2543
2544 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2545
1a4d82fc 2546 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
223e47cc
LB
2547 Op0, DAG.getConstant(0, Op0.getValueType()),
2548 ISD::SETLT);
2549 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
1a4d82fc 2550 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
223e47cc
LB
2551 SignSet, Four, Zero);
2552
2553 // If the sign bit of the integer is set, the large number will be treated
2554 // as a negative number. To counteract this, the dynamic code adds an
2555 // offset depending on the data type.
2556 uint64_t FF;
1a4d82fc 2557 switch (Op0.getSimpleValueType().SimpleTy) {
223e47cc
LB
2558 default: llvm_unreachable("Unsupported integer type!");
2559 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2560 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2561 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2562 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2563 }
2564 if (TLI.isLittleEndian()) FF <<= 32;
2565 Constant *FudgeFactor = ConstantInt::get(
2566 Type::getInt64Ty(*DAG.getContext()), FF);
2567
2568 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2569 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1a4d82fc 2570 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
223e47cc
LB
2571 Alignment = std::min(Alignment, 4u);
2572 SDValue FudgeInReg;
2573 if (DestVT == MVT::f32)
2574 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2575 MachinePointerInfo::getConstantPool(),
2576 false, false, false, Alignment);
2577 else {
2578 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2579 DAG.getEntryNode(), CPIdx,
2580 MachinePointerInfo::getConstantPool(),
1a4d82fc 2581 MVT::f32, false, false, false, Alignment);
223e47cc
LB
2582 HandleSDNode Handle(Load);
2583 LegalizeOp(Load.getNode());
2584 FudgeInReg = Handle.getValue();
2585 }
2586
2587 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2588}
2589
85aaf69f 2590/// This function is responsible for legalizing a
223e47cc
LB
2591/// *INT_TO_FP operation of the specified operand when the target requests that
2592/// we promote it. At this point, we know that the result and operand types are
2593/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2594/// operation that takes a larger input.
2595SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2596 EVT DestVT,
2597 bool isSigned,
1a4d82fc 2598 SDLoc dl) {
223e47cc
LB
2599 // First step, figure out the appropriate *INT_TO_FP operation to use.
2600 EVT NewInTy = LegalOp.getValueType();
2601
2602 unsigned OpToUse = 0;
2603
2604 // Scan for the appropriate larger type to use.
2605 while (1) {
2606 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2607 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2608
2609 // If the target supports SINT_TO_FP of this type, use it.
2610 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2611 OpToUse = ISD::SINT_TO_FP;
2612 break;
2613 }
2614 if (isSigned) continue;
2615
2616 // If the target supports UINT_TO_FP of this type, use it.
2617 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2618 OpToUse = ISD::UINT_TO_FP;
2619 break;
2620 }
2621
2622 // Otherwise, try a larger type.
2623 }
2624
2625 // Okay, we found the operation and type to use. Zero extend our input to the
2626 // desired type then run the operation on it.
2627 return DAG.getNode(OpToUse, dl, DestVT,
2628 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2629 dl, NewInTy, LegalOp));
2630}
2631
85aaf69f 2632/// This function is responsible for legalizing a
223e47cc
LB
2633/// FP_TO_*INT operation of the specified operand when the target requests that
2634/// we promote it. At this point, we know that the result and operand types are
2635/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2636/// operation that returns a larger result.
2637SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2638 EVT DestVT,
2639 bool isSigned,
1a4d82fc 2640 SDLoc dl) {
223e47cc
LB
2641 // First step, figure out the appropriate FP_TO*INT operation to use.
2642 EVT NewOutTy = DestVT;
2643
2644 unsigned OpToUse = 0;
2645
2646 // Scan for the appropriate larger type to use.
2647 while (1) {
2648 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2649 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2650
1a4d82fc
JJ
2651 // A larger signed type can hold all unsigned values of the requested type,
2652 // so using FP_TO_SINT is valid
223e47cc
LB
2653 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2654 OpToUse = ISD::FP_TO_SINT;
2655 break;
2656 }
2657
1a4d82fc
JJ
2658 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2659 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
223e47cc
LB
2660 OpToUse = ISD::FP_TO_UINT;
2661 break;
2662 }
2663
2664 // Otherwise, try a larger type.
2665 }
2666
2667
2668 // Okay, we found the operation and type to use.
2669 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2670
2671 // Truncate the result of the extended FP_TO_*INT operation to the desired
2672 // size.
2673 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2674}
2675
85aaf69f 2676/// Open code the operations for BSWAP of the specified operation.
1a4d82fc 2677SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
223e47cc
LB
2678 EVT VT = Op.getValueType();
2679 EVT SHVT = TLI.getShiftAmountTy(VT);
2680 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2681 switch (VT.getSimpleVT().SimpleTy) {
2682 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2683 case MVT::i16:
2684 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2685 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2686 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2687 case MVT::i32:
2688 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2689 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2690 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2691 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2692 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2693 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2694 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2695 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2696 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2697 case MVT::i64:
2698 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2699 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2700 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2701 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2702 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2703 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2704 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2705 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2706 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2707 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2708 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2709 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2710 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2711 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2712 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2713 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2714 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2715 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2716 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2717 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2718 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2719 }
2720}
2721
85aaf69f 2722/// Expand the specified bitcount instruction into operations.
223e47cc 2723SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
1a4d82fc 2724 SDLoc dl) {
223e47cc
LB
2725 switch (Opc) {
2726 default: llvm_unreachable("Cannot expand this yet!");
2727 case ISD::CTPOP: {
2728 EVT VT = Op.getValueType();
2729 EVT ShVT = TLI.getShiftAmountTy(VT);
2730 unsigned Len = VT.getSizeInBits();
2731
2732 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2733 "CTPOP not implemented for this type.");
2734
2735 // This is the "best" algorithm from
2736 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2737
970d7e83
LB
2738 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT);
2739 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT);
2740 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT);
2741 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT);
223e47cc
LB
2742
2743 // v = v - ((v >> 1) & 0x55555555...)
2744 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2745 DAG.getNode(ISD::AND, dl, VT,
2746 DAG.getNode(ISD::SRL, dl, VT, Op,
2747 DAG.getConstant(1, ShVT)),
2748 Mask55));
2749 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2750 Op = DAG.getNode(ISD::ADD, dl, VT,
2751 DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2752 DAG.getNode(ISD::AND, dl, VT,
2753 DAG.getNode(ISD::SRL, dl, VT, Op,
2754 DAG.getConstant(2, ShVT)),
2755 Mask33));
2756 // v = (v + (v >> 4)) & 0x0F0F0F0F...
2757 Op = DAG.getNode(ISD::AND, dl, VT,
2758 DAG.getNode(ISD::ADD, dl, VT, Op,
2759 DAG.getNode(ISD::SRL, dl, VT, Op,
2760 DAG.getConstant(4, ShVT))),
2761 Mask0F);
2762 // v = (v * 0x01010101...) >> (Len - 8)
2763 Op = DAG.getNode(ISD::SRL, dl, VT,
2764 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2765 DAG.getConstant(Len - 8, ShVT));
2766
2767 return Op;
2768 }
2769 case ISD::CTLZ_ZERO_UNDEF:
2770 // This trivially expands to CTLZ.
2771 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2772 case ISD::CTLZ: {
2773 // for now, we do this:
2774 // x = x | (x >> 1);
2775 // x = x | (x >> 2);
2776 // ...
2777 // x = x | (x >>16);
2778 // x = x | (x >>32); // for 64-bit input
2779 // return popcount(~x);
2780 //
1a4d82fc 2781 // Ref: "Hacker's Delight" by Henry Warren
223e47cc
LB
2782 EVT VT = Op.getValueType();
2783 EVT ShVT = TLI.getShiftAmountTy(VT);
2784 unsigned len = VT.getSizeInBits();
2785 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2786 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2787 Op = DAG.getNode(ISD::OR, dl, VT, Op,
2788 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2789 }
2790 Op = DAG.getNOT(dl, Op, VT);
2791 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2792 }
2793 case ISD::CTTZ_ZERO_UNDEF:
2794 // This trivially expands to CTTZ.
2795 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2796 case ISD::CTTZ: {
2797 // for now, we use: { return popcount(~x & (x - 1)); }
2798 // unless the target has ctlz but not ctpop, in which case we use:
2799 // { return 32 - nlz(~x & (x-1)); }
1a4d82fc 2800 // Ref: "Hacker's Delight" by Henry Warren
223e47cc
LB
2801 EVT VT = Op.getValueType();
2802 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2803 DAG.getNOT(dl, Op, VT),
2804 DAG.getNode(ISD::SUB, dl, VT, Op,
2805 DAG.getConstant(1, VT)));
2806 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2807 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2808 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2809 return DAG.getNode(ISD::SUB, dl, VT,
2810 DAG.getConstant(VT.getSizeInBits(), VT),
2811 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2812 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2813 }
2814 }
2815}
2816
2817std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2818 unsigned Opc = Node->getOpcode();
2819 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2820 RTLIB::Libcall LC;
2821
2822 switch (Opc) {
2823 default:
2824 llvm_unreachable("Unhandled atomic intrinsic Expand!");
2825 case ISD::ATOMIC_SWAP:
2826 switch (VT.SimpleTy) {
2827 default: llvm_unreachable("Unexpected value type for atomic!");
2828 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2829 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2830 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2831 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
1a4d82fc 2832 case MVT::i128:LC = RTLIB::SYNC_LOCK_TEST_AND_SET_16;break;
223e47cc
LB
2833 }
2834 break;
2835 case ISD::ATOMIC_CMP_SWAP:
2836 switch (VT.SimpleTy) {
2837 default: llvm_unreachable("Unexpected value type for atomic!");
2838 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2839 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2840 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2841 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
1a4d82fc 2842 case MVT::i128:LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16;break;
223e47cc
LB
2843 }
2844 break;
2845 case ISD::ATOMIC_LOAD_ADD:
2846 switch (VT.SimpleTy) {
2847 default: llvm_unreachable("Unexpected value type for atomic!");
2848 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2849 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2850 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2851 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
1a4d82fc 2852 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_ADD_16;break;
223e47cc
LB
2853 }
2854 break;
2855 case ISD::ATOMIC_LOAD_SUB:
2856 switch (VT.SimpleTy) {
2857 default: llvm_unreachable("Unexpected value type for atomic!");
2858 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2859 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2860 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2861 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
1a4d82fc 2862 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_SUB_16;break;
223e47cc
LB
2863 }
2864 break;
2865 case ISD::ATOMIC_LOAD_AND:
2866 switch (VT.SimpleTy) {
2867 default: llvm_unreachable("Unexpected value type for atomic!");
2868 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2869 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2870 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2871 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
1a4d82fc 2872 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_AND_16;break;
223e47cc
LB
2873 }
2874 break;
2875 case ISD::ATOMIC_LOAD_OR:
2876 switch (VT.SimpleTy) {
2877 default: llvm_unreachable("Unexpected value type for atomic!");
2878 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2879 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2880 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2881 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
1a4d82fc 2882 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_OR_16;break;
223e47cc
LB
2883 }
2884 break;
2885 case ISD::ATOMIC_LOAD_XOR:
2886 switch (VT.SimpleTy) {
2887 default: llvm_unreachable("Unexpected value type for atomic!");
2888 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2889 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2890 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2891 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
1a4d82fc 2892 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_XOR_16;break;
223e47cc
LB
2893 }
2894 break;
2895 case ISD::ATOMIC_LOAD_NAND:
2896 switch (VT.SimpleTy) {
2897 default: llvm_unreachable("Unexpected value type for atomic!");
2898 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2899 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2900 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2901 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
1a4d82fc
JJ
2902 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_NAND_16;break;
2903 }
2904 break;
2905 case ISD::ATOMIC_LOAD_MAX:
2906 switch (VT.SimpleTy) {
2907 default: llvm_unreachable("Unexpected value type for atomic!");
2908 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_MAX_1; break;
2909 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_MAX_2; break;
2910 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_MAX_4; break;
2911 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_MAX_8; break;
2912 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_MAX_16;break;
2913 }
2914 break;
2915 case ISD::ATOMIC_LOAD_UMAX:
2916 switch (VT.SimpleTy) {
2917 default: llvm_unreachable("Unexpected value type for atomic!");
2918 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_UMAX_1; break;
2919 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_UMAX_2; break;
2920 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_UMAX_4; break;
2921 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_UMAX_8; break;
2922 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_UMAX_16;break;
2923 }
2924 break;
2925 case ISD::ATOMIC_LOAD_MIN:
2926 switch (VT.SimpleTy) {
2927 default: llvm_unreachable("Unexpected value type for atomic!");
2928 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_MIN_1; break;
2929 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_MIN_2; break;
2930 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_MIN_4; break;
2931 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_MIN_8; break;
2932 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_MIN_16;break;
2933 }
2934 break;
2935 case ISD::ATOMIC_LOAD_UMIN:
2936 switch (VT.SimpleTy) {
2937 default: llvm_unreachable("Unexpected value type for atomic!");
2938 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_UMIN_1; break;
2939 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_UMIN_2; break;
2940 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_UMIN_4; break;
2941 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_UMIN_8; break;
2942 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_UMIN_16;break;
223e47cc
LB
2943 }
2944 break;
2945 }
2946
2947 return ExpandChainLibCall(LC, Node, false);
2948}
2949
2950void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2951 SmallVector<SDValue, 8> Results;
1a4d82fc 2952 SDLoc dl(Node);
223e47cc 2953 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
1a4d82fc 2954 bool NeedInvert;
223e47cc
LB
2955 switch (Node->getOpcode()) {
2956 case ISD::CTPOP:
2957 case ISD::CTLZ:
2958 case ISD::CTLZ_ZERO_UNDEF:
2959 case ISD::CTTZ:
2960 case ISD::CTTZ_ZERO_UNDEF:
2961 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2962 Results.push_back(Tmp1);
2963 break;
2964 case ISD::BSWAP:
2965 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2966 break;
2967 case ISD::FRAMEADDR:
2968 case ISD::RETURNADDR:
2969 case ISD::FRAME_TO_ARGS_OFFSET:
2970 Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2971 break;
2972 case ISD::FLT_ROUNDS_:
2973 Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2974 break;
2975 case ISD::EH_RETURN:
2976 case ISD::EH_LABEL:
2977 case ISD::PREFETCH:
2978 case ISD::VAEND:
2979 case ISD::EH_SJLJ_LONGJMP:
2980 // If the target didn't expand these, there's nothing to do, so just
2981 // preserve the chain and be done.
2982 Results.push_back(Node->getOperand(0));
2983 break;
2984 case ISD::EH_SJLJ_SETJMP:
2985 // If the target didn't expand this, just return 'zero' and preserve the
2986 // chain.
2987 Results.push_back(DAG.getConstant(0, MVT::i32));
2988 Results.push_back(Node->getOperand(0));
2989 break;
1a4d82fc 2990 case ISD::ATOMIC_FENCE: {
223e47cc
LB
2991 // If the target didn't lower this, lower it to '__sync_synchronize()' call
2992 // FIXME: handle "fence singlethread" more efficiently.
2993 TargetLowering::ArgListTy Args;
1a4d82fc
JJ
2994
2995 TargetLowering::CallLoweringInfo CLI(DAG);
2996 CLI.setDebugLoc(dl).setChain(Node->getOperand(0))
2997 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2998 DAG.getExternalSymbol("__sync_synchronize",
2999 TLI.getPointerTy()), std::move(Args), 0);
3000
223e47cc
LB
3001 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3002
3003 Results.push_back(CallResult.second);
3004 break;
3005 }
3006 case ISD::ATOMIC_LOAD: {
3007 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
3008 SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
1a4d82fc
JJ
3009 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
3010 SDValue Swap = DAG.getAtomicCmpSwap(
3011 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
3012 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
3013 cast<AtomicSDNode>(Node)->getMemOperand(),
3014 cast<AtomicSDNode>(Node)->getOrdering(),
3015 cast<AtomicSDNode>(Node)->getOrdering(),
3016 cast<AtomicSDNode>(Node)->getSynchScope());
223e47cc
LB
3017 Results.push_back(Swap.getValue(0));
3018 Results.push_back(Swap.getValue(1));
3019 break;
3020 }
3021 case ISD::ATOMIC_STORE: {
3022 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
3023 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
3024 cast<AtomicSDNode>(Node)->getMemoryVT(),
3025 Node->getOperand(0),
3026 Node->getOperand(1), Node->getOperand(2),
3027 cast<AtomicSDNode>(Node)->getMemOperand(),
3028 cast<AtomicSDNode>(Node)->getOrdering(),
3029 cast<AtomicSDNode>(Node)->getSynchScope());
3030 Results.push_back(Swap.getValue(1));
3031 break;
3032 }
3033 // By default, atomic intrinsics are marked Legal and lowered. Targets
3034 // which don't support them directly, however, may want libcalls, in which
3035 // case they mark them Expand, and we get here.
3036 case ISD::ATOMIC_SWAP:
3037 case ISD::ATOMIC_LOAD_ADD:
3038 case ISD::ATOMIC_LOAD_SUB:
3039 case ISD::ATOMIC_LOAD_AND:
3040 case ISD::ATOMIC_LOAD_OR:
3041 case ISD::ATOMIC_LOAD_XOR:
3042 case ISD::ATOMIC_LOAD_NAND:
3043 case ISD::ATOMIC_LOAD_MIN:
3044 case ISD::ATOMIC_LOAD_MAX:
3045 case ISD::ATOMIC_LOAD_UMIN:
3046 case ISD::ATOMIC_LOAD_UMAX:
3047 case ISD::ATOMIC_CMP_SWAP: {
3048 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
3049 Results.push_back(Tmp.first);
3050 Results.push_back(Tmp.second);
3051 break;
3052 }
1a4d82fc
JJ
3053 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
3054 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
3055 // splits out the success value as a comparison. Expanding the resulting
3056 // ATOMIC_CMP_SWAP will produce a libcall.
3057 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
3058 SDValue Res = DAG.getAtomicCmpSwap(
3059 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
3060 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
3061 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(),
3062 cast<AtomicSDNode>(Node)->getSuccessOrdering(),
3063 cast<AtomicSDNode>(Node)->getFailureOrdering(),
3064 cast<AtomicSDNode>(Node)->getSynchScope());
3065
3066 SDValue Success = DAG.getSetCC(SDLoc(Node), Node->getValueType(1),
3067 Res, Node->getOperand(2), ISD::SETEQ);
3068
3069 Results.push_back(Res.getValue(0));
3070 Results.push_back(Success);
3071 Results.push_back(Res.getValue(1));
3072 break;
3073 }
223e47cc
LB
3074 case ISD::DYNAMIC_STACKALLOC:
3075 ExpandDYNAMIC_STACKALLOC(Node, Results);
3076 break;
3077 case ISD::MERGE_VALUES:
3078 for (unsigned i = 0; i < Node->getNumValues(); i++)
3079 Results.push_back(Node->getOperand(i));
3080 break;
3081 case ISD::UNDEF: {
3082 EVT VT = Node->getValueType(0);
3083 if (VT.isInteger())
3084 Results.push_back(DAG.getConstant(0, VT));
3085 else {
3086 assert(VT.isFloatingPoint() && "Unknown value type!");
3087 Results.push_back(DAG.getConstantFP(0, VT));
3088 }
3089 break;
3090 }
3091 case ISD::TRAP: {
3092 // If this operation is not supported, lower it to 'abort()' call
3093 TargetLowering::ArgListTy Args;
1a4d82fc
JJ
3094 TargetLowering::CallLoweringInfo CLI(DAG);
3095 CLI.setDebugLoc(dl).setChain(Node->getOperand(0))
3096 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3097 DAG.getExternalSymbol("abort", TLI.getPointerTy()),
3098 std::move(Args), 0);
223e47cc
LB
3099 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3100
3101 Results.push_back(CallResult.second);
3102 break;
3103 }
3104 case ISD::FP_ROUND:
3105 case ISD::BITCAST:
3106 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3107 Node->getValueType(0), dl);
3108 Results.push_back(Tmp1);
3109 break;
3110 case ISD::FP_EXTEND:
3111 Tmp1 = EmitStackConvert(Node->getOperand(0),
3112 Node->getOperand(0).getValueType(),
3113 Node->getValueType(0), dl);
3114 Results.push_back(Tmp1);
3115 break;
3116 case ISD::SIGN_EXTEND_INREG: {
3117 // NOTE: we could fall back on load/store here too for targets without
3118 // SAR. However, it is doubtful that any exist.
3119 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3120 EVT VT = Node->getValueType(0);
3121 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
3122 if (VT.isVector())
3123 ShiftAmountTy = VT;
3124 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
3125 ExtraVT.getScalarType().getSizeInBits();
3126 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
3127 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3128 Node->getOperand(0), ShiftCst);
3129 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3130 Results.push_back(Tmp1);
3131 break;
3132 }
3133 case ISD::FP_ROUND_INREG: {
3134 // The only way we can lower this is to turn it into a TRUNCSTORE,
3135 // EXTLOAD pair, targeting a temporary location (a stack slot).
3136
3137 // NOTE: there is a choice here between constantly creating new stack
3138 // slots and always reusing the same one. We currently always create
3139 // new ones, as reuse may inhibit scheduling.
3140 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3141 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
3142 Node->getValueType(0), dl);
3143 Results.push_back(Tmp1);
3144 break;
3145 }
3146 case ISD::SINT_TO_FP:
3147 case ISD::UINT_TO_FP:
3148 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
3149 Node->getOperand(0), Node->getValueType(0), dl);
3150 Results.push_back(Tmp1);
3151 break;
1a4d82fc
JJ
3152 case ISD::FP_TO_SINT:
3153 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3154 Results.push_back(Tmp1);
3155 break;
223e47cc
LB
3156 case ISD::FP_TO_UINT: {
3157 SDValue True, False;
3158 EVT VT = Node->getOperand(0).getValueType();
3159 EVT NVT = Node->getValueType(0);
970d7e83
LB
3160 APFloat apf(DAG.EVTToAPFloatSemantics(VT),
3161 APInt::getNullValue(VT.getSizeInBits()));
223e47cc
LB
3162 APInt x = APInt::getSignBit(NVT.getSizeInBits());
3163 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
3164 Tmp1 = DAG.getConstantFP(apf, VT);
1a4d82fc 3165 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
223e47cc
LB
3166 Node->getOperand(0),
3167 Tmp1, ISD::SETLT);
3168 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
3169 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
3170 DAG.getNode(ISD::FSUB, dl, VT,
3171 Node->getOperand(0), Tmp1));
3172 False = DAG.getNode(ISD::XOR, dl, NVT, False,
3173 DAG.getConstant(x, NVT));
1a4d82fc 3174 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False);
223e47cc
LB
3175 Results.push_back(Tmp1);
3176 break;
3177 }
3178 case ISD::VAARG: {
3179 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3180 EVT VT = Node->getValueType(0);
3181 Tmp1 = Node->getOperand(0);
3182 Tmp2 = Node->getOperand(1);
3183 unsigned Align = Node->getConstantOperandVal(3);
3184
3185 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
1a4d82fc 3186 MachinePointerInfo(V),
223e47cc
LB
3187 false, false, false, 0);
3188 SDValue VAList = VAListLoad;
3189
3190 if (Align > TLI.getMinStackArgumentAlignment()) {
3191 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
3192
1a4d82fc 3193 VAList = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
223e47cc 3194 DAG.getConstant(Align - 1,
1a4d82fc 3195 VAList.getValueType()));
223e47cc 3196
1a4d82fc 3197 VAList = DAG.getNode(ISD::AND, dl, VAList.getValueType(), VAList,
223e47cc 3198 DAG.getConstant(-(int64_t)Align,
1a4d82fc 3199 VAList.getValueType()));
223e47cc
LB
3200 }
3201
3202 // Increment the pointer, VAList, to the next vaarg
1a4d82fc 3203 Tmp3 = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
970d7e83 3204 DAG.getConstant(TLI.getDataLayout()->
223e47cc 3205 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
1a4d82fc 3206 VAList.getValueType()));
223e47cc
LB
3207 // Store the incremented VAList to the legalized pointer
3208 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
3209 MachinePointerInfo(V), false, false, 0);
3210 // Load the actual argument out of the pointer VAList
3211 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
3212 false, false, false, 0));
3213 Results.push_back(Results[0].getValue(1));
3214 break;
3215 }
3216 case ISD::VACOPY: {
3217 // This defaults to loading a pointer from the input and storing it to the
3218 // output, returning the chain.
3219 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
3220 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
3221 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
3222 Node->getOperand(2), MachinePointerInfo(VS),
3223 false, false, false, 0);
3224 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
3225 MachinePointerInfo(VD), false, false, 0);
3226 Results.push_back(Tmp1);
3227 break;
3228 }
3229 case ISD::EXTRACT_VECTOR_ELT:
3230 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3231 // This must be an access of the only element. Return it.
3232 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3233 Node->getOperand(0));
3234 else
3235 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3236 Results.push_back(Tmp1);
3237 break;
3238 case ISD::EXTRACT_SUBVECTOR:
3239 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3240 break;
3241 case ISD::INSERT_SUBVECTOR:
3242 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3243 break;
3244 case ISD::CONCAT_VECTORS: {
3245 Results.push_back(ExpandVectorBuildThroughStack(Node));
3246 break;
3247 }
3248 case ISD::SCALAR_TO_VECTOR:
3249 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3250 break;
3251 case ISD::INSERT_VECTOR_ELT:
3252 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3253 Node->getOperand(1),
3254 Node->getOperand(2), dl));
3255 break;
3256 case ISD::VECTOR_SHUFFLE: {
3257 SmallVector<int, 32> NewMask;
3258 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3259
3260 EVT VT = Node->getValueType(0);
3261 EVT EltVT = VT.getVectorElementType();
3262 SDValue Op0 = Node->getOperand(0);
3263 SDValue Op1 = Node->getOperand(1);
3264 if (!TLI.isTypeLegal(EltVT)) {
3265
3266 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3267
3268 // BUILD_VECTOR operands are allowed to be wider than the element type.
1a4d82fc
JJ
3269 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3270 // it.
223e47cc
LB
3271 if (NewEltVT.bitsLT(EltVT)) {
3272
3273 // Convert shuffle node.
3274 // If original node was v4i64 and the new EltVT is i32,
3275 // cast operands to v8i32 and re-build the mask.
3276
3277 // Calculate new VT, the size of the new VT should be equal to original.
1a4d82fc
JJ
3278 EVT NewVT =
3279 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3280 VT.getSizeInBits() / NewEltVT.getSizeInBits());
223e47cc
LB
3281 assert(NewVT.bitsEq(VT));
3282
3283 // cast operands to new VT
3284 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3285 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3286
3287 // Convert the shuffle mask
1a4d82fc
JJ
3288 unsigned int factor =
3289 NewVT.getVectorNumElements()/VT.getVectorNumElements();
223e47cc
LB
3290
3291 // EltVT gets smaller
3292 assert(factor > 0);
3293
3294 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3295 if (Mask[i] < 0) {
3296 for (unsigned fi = 0; fi < factor; ++fi)
3297 NewMask.push_back(Mask[i]);
3298 }
3299 else {
3300 for (unsigned fi = 0; fi < factor; ++fi)
3301 NewMask.push_back(Mask[i]*factor+fi);
3302 }
3303 }
3304 Mask = NewMask;
3305 VT = NewVT;
3306 }
3307 EltVT = NewEltVT;
3308 }
3309 unsigned NumElems = VT.getVectorNumElements();
3310 SmallVector<SDValue, 16> Ops;
3311 for (unsigned i = 0; i != NumElems; ++i) {
3312 if (Mask[i] < 0) {
3313 Ops.push_back(DAG.getUNDEF(EltVT));
3314 continue;
3315 }
3316 unsigned Idx = Mask[i];
3317 if (Idx < NumElems)
3318 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3319 Op0,
1a4d82fc 3320 DAG.getConstant(Idx, TLI.getVectorIdxTy())));
223e47cc
LB
3321 else
3322 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3323 Op1,
1a4d82fc
JJ
3324 DAG.getConstant(Idx - NumElems,
3325 TLI.getVectorIdxTy())));
223e47cc
LB
3326 }
3327
1a4d82fc 3328 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
223e47cc
LB
3329 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3330 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3331 Results.push_back(Tmp1);
3332 break;
3333 }
3334 case ISD::EXTRACT_ELEMENT: {
3335 EVT OpTy = Node->getOperand(0).getValueType();
3336 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3337 // 1 -> Hi
3338 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3339 DAG.getConstant(OpTy.getSizeInBits()/2,
3340 TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3341 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3342 } else {
3343 // 0 -> Lo
3344 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3345 Node->getOperand(0));
3346 }
3347 Results.push_back(Tmp1);
3348 break;
3349 }
3350 case ISD::STACKSAVE:
3351 // Expand to CopyFromReg if the target set
3352 // StackPointerRegisterToSaveRestore.
3353 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3354 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3355 Node->getValueType(0)));
3356 Results.push_back(Results[0].getValue(1));
3357 } else {
3358 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3359 Results.push_back(Node->getOperand(0));
3360 }
3361 break;
3362 case ISD::STACKRESTORE:
3363 // Expand to CopyToReg if the target set
3364 // StackPointerRegisterToSaveRestore.
3365 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3366 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3367 Node->getOperand(1)));
3368 } else {
3369 Results.push_back(Node->getOperand(0));
3370 }
3371 break;
3372 case ISD::FCOPYSIGN:
3373 Results.push_back(ExpandFCOPYSIGN(Node));
3374 break;
3375 case ISD::FNEG:
3376 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3377 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3378 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3379 Node->getOperand(0));
3380 Results.push_back(Tmp1);
3381 break;
3382 case ISD::FABS: {
3383 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3384 EVT VT = Node->getValueType(0);
3385 Tmp1 = Node->getOperand(0);
3386 Tmp2 = DAG.getConstantFP(0.0, VT);
1a4d82fc 3387 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(Tmp1.getValueType()),
223e47cc
LB
3388 Tmp1, Tmp2, ISD::SETUGT);
3389 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
1a4d82fc 3390 Tmp1 = DAG.getSelect(dl, VT, Tmp2, Tmp1, Tmp3);
223e47cc
LB
3391 Results.push_back(Tmp1);
3392 break;
3393 }
85aaf69f
SL
3394 case ISD::FMINNUM:
3395 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3396 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3397 RTLIB::FMIN_PPCF128));
3398 break;
3399 case ISD::FMAXNUM:
3400 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3401 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3402 RTLIB::FMAX_PPCF128));
3403 break;
223e47cc
LB
3404 case ISD::FSQRT:
3405 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
970d7e83
LB
3406 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3407 RTLIB::SQRT_PPCF128));
223e47cc
LB
3408 break;
3409 case ISD::FSIN:
970d7e83
LB
3410 case ISD::FCOS: {
3411 EVT VT = Node->getValueType(0);
3412 bool isSIN = Node->getOpcode() == ISD::FSIN;
3413 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3414 // fcos which share the same operand and both are used.
3415 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3416 canCombineSinCosLibcall(Node, TLI, TM))
3417 && useSinCos(Node)) {
3418 SDVTList VTs = DAG.getVTList(VT, VT);
3419 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3420 if (!isSIN)
3421 Tmp1 = Tmp1.getValue(1);
3422 Results.push_back(Tmp1);
3423 } else if (isSIN) {
3424 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3425 RTLIB::SIN_F80, RTLIB::SIN_F128,
3426 RTLIB::SIN_PPCF128));
3427 } else {
3428 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3429 RTLIB::COS_F80, RTLIB::COS_F128,
3430 RTLIB::COS_PPCF128));
3431 }
223e47cc 3432 break;
970d7e83
LB
3433 }
3434 case ISD::FSINCOS:
3435 // Expand into sincos libcall.
3436 ExpandSinCosLibCall(Node, Results);
223e47cc
LB
3437 break;
3438 case ISD::FLOG:
3439 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
970d7e83
LB
3440 RTLIB::LOG_F80, RTLIB::LOG_F128,
3441 RTLIB::LOG_PPCF128));
223e47cc
LB
3442 break;
3443 case ISD::FLOG2:
3444 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
970d7e83
LB
3445 RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3446 RTLIB::LOG2_PPCF128));
223e47cc
LB
3447 break;
3448 case ISD::FLOG10:
3449 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
970d7e83
LB
3450 RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3451 RTLIB::LOG10_PPCF128));
223e47cc
LB
3452 break;
3453 case ISD::FEXP:
3454 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
970d7e83
LB
3455 RTLIB::EXP_F80, RTLIB::EXP_F128,
3456 RTLIB::EXP_PPCF128));
223e47cc
LB
3457 break;
3458 case ISD::FEXP2:
3459 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
970d7e83
LB
3460 RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3461 RTLIB::EXP2_PPCF128));
223e47cc
LB
3462 break;
3463 case ISD::FTRUNC:
3464 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
970d7e83
LB
3465 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3466 RTLIB::TRUNC_PPCF128));
223e47cc
LB
3467 break;
3468 case ISD::FFLOOR:
3469 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
970d7e83
LB
3470 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3471 RTLIB::FLOOR_PPCF128));
223e47cc
LB
3472 break;
3473 case ISD::FCEIL:
3474 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
970d7e83
LB
3475 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3476 RTLIB::CEIL_PPCF128));
223e47cc
LB
3477 break;
3478 case ISD::FRINT:
3479 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
970d7e83
LB
3480 RTLIB::RINT_F80, RTLIB::RINT_F128,
3481 RTLIB::RINT_PPCF128));
223e47cc
LB
3482 break;
3483 case ISD::FNEARBYINT:
3484 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3485 RTLIB::NEARBYINT_F64,
3486 RTLIB::NEARBYINT_F80,
970d7e83 3487 RTLIB::NEARBYINT_F128,
223e47cc
LB
3488 RTLIB::NEARBYINT_PPCF128));
3489 break;
1a4d82fc
JJ
3490 case ISD::FROUND:
3491 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
3492 RTLIB::ROUND_F64,
3493 RTLIB::ROUND_F80,
3494 RTLIB::ROUND_F128,
3495 RTLIB::ROUND_PPCF128));
3496 break;
223e47cc
LB
3497 case ISD::FPOWI:
3498 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
970d7e83
LB
3499 RTLIB::POWI_F80, RTLIB::POWI_F128,
3500 RTLIB::POWI_PPCF128));
223e47cc
LB
3501 break;
3502 case ISD::FPOW:
3503 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
970d7e83
LB
3504 RTLIB::POW_F80, RTLIB::POW_F128,
3505 RTLIB::POW_PPCF128));
223e47cc
LB
3506 break;
3507 case ISD::FDIV:
3508 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
970d7e83
LB
3509 RTLIB::DIV_F80, RTLIB::DIV_F128,
3510 RTLIB::DIV_PPCF128));
223e47cc
LB
3511 break;
3512 case ISD::FREM:
3513 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
970d7e83
LB
3514 RTLIB::REM_F80, RTLIB::REM_F128,
3515 RTLIB::REM_PPCF128));
223e47cc
LB
3516 break;
3517 case ISD::FMA:
3518 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
970d7e83
LB
3519 RTLIB::FMA_F80, RTLIB::FMA_F128,
3520 RTLIB::FMA_PPCF128));
223e47cc 3521 break;
1a4d82fc
JJ
3522 case ISD::FADD:
3523 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
3524 RTLIB::ADD_F80, RTLIB::ADD_F128,
3525 RTLIB::ADD_PPCF128));
3526 break;
3527 case ISD::FMUL:
3528 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
3529 RTLIB::MUL_F80, RTLIB::MUL_F128,
3530 RTLIB::MUL_PPCF128));
3531 break;
3532 case ISD::FP16_TO_FP: {
3533 if (Node->getValueType(0) == MVT::f32) {
3534 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3535 break;
3536 }
3537
3538 // We can extend to types bigger than f32 in two steps without changing the
3539 // result. Since "f16 -> f32" is much more commonly available, give CodeGen
3540 // the option of emitting that before resorting to a libcall.
3541 SDValue Res =
3542 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3543 Results.push_back(
3544 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
223e47cc 3545 break;
1a4d82fc
JJ
3546 }
3547 case ISD::FP_TO_FP16: {
3548 RTLIB::Libcall LC =
3549 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
3550 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
3551 Results.push_back(ExpandLibCall(LC, Node, false));
223e47cc 3552 break;
1a4d82fc 3553 }
223e47cc
LB
3554 case ISD::ConstantFP: {
3555 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3556 // Check to see if this FP immediate is already legal.
3557 // If this is a legal constant, turn it into a TargetConstantFP node.
3558 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3559 Results.push_back(ExpandConstantFP(CFP, true));
3560 break;
3561 }
223e47cc
LB
3562 case ISD::FSUB: {
3563 EVT VT = Node->getValueType(0);
1a4d82fc
JJ
3564 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3565 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3566 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3567 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3568 Results.push_back(Tmp1);
3569 } else {
3570 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
3571 RTLIB::SUB_F80, RTLIB::SUB_F128,
3572 RTLIB::SUB_PPCF128));
3573 }
223e47cc
LB
3574 break;
3575 }
3576 case ISD::SUB: {
3577 EVT VT = Node->getValueType(0);
3578 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3579 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3580 "Don't know how to expand this subtraction!");
3581 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3582 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3583 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3584 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3585 break;
3586 }
3587 case ISD::UREM:
3588 case ISD::SREM: {
3589 EVT VT = Node->getValueType(0);
223e47cc
LB
3590 bool isSigned = Node->getOpcode() == ISD::SREM;
3591 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3592 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3593 Tmp2 = Node->getOperand(0);
3594 Tmp3 = Node->getOperand(1);
3595 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3596 (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
970d7e83
LB
3597 // If div is legal, it's better to do the normal expansion
3598 !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
223e47cc 3599 useDivRem(Node, isSigned, false))) {
970d7e83 3600 SDVTList VTs = DAG.getVTList(VT, VT);
223e47cc
LB
3601 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3602 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3603 // X % Y -> X-X/Y*Y
3604 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3605 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3606 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3607 } else if (isSigned)
3608 Tmp1 = ExpandIntLibCall(Node, true,
3609 RTLIB::SREM_I8,
3610 RTLIB::SREM_I16, RTLIB::SREM_I32,
3611 RTLIB::SREM_I64, RTLIB::SREM_I128);
3612 else
3613 Tmp1 = ExpandIntLibCall(Node, false,
3614 RTLIB::UREM_I8,
3615 RTLIB::UREM_I16, RTLIB::UREM_I32,
3616 RTLIB::UREM_I64, RTLIB::UREM_I128);
3617 Results.push_back(Tmp1);
3618 break;
3619 }
3620 case ISD::UDIV:
3621 case ISD::SDIV: {
3622 bool isSigned = Node->getOpcode() == ISD::SDIV;
3623 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3624 EVT VT = Node->getValueType(0);
3625 SDVTList VTs = DAG.getVTList(VT, VT);
3626 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3627 (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3628 useDivRem(Node, isSigned, true)))
3629 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3630 Node->getOperand(1));
3631 else if (isSigned)
3632 Tmp1 = ExpandIntLibCall(Node, true,
3633 RTLIB::SDIV_I8,
3634 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3635 RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3636 else
3637 Tmp1 = ExpandIntLibCall(Node, false,
3638 RTLIB::UDIV_I8,
3639 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3640 RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3641 Results.push_back(Tmp1);
3642 break;
3643 }
3644 case ISD::MULHU:
3645 case ISD::MULHS: {
3646 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3647 ISD::SMUL_LOHI;
3648 EVT VT = Node->getValueType(0);
3649 SDVTList VTs = DAG.getVTList(VT, VT);
3650 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3651 "If this wasn't legal, it shouldn't have been created!");
3652 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3653 Node->getOperand(1));
3654 Results.push_back(Tmp1.getValue(1));
3655 break;
3656 }
3657 case ISD::SDIVREM:
3658 case ISD::UDIVREM:
3659 // Expand into divrem libcall
3660 ExpandDivRemLibCall(Node, Results);
3661 break;
3662 case ISD::MUL: {
3663 EVT VT = Node->getValueType(0);
3664 SDVTList VTs = DAG.getVTList(VT, VT);
3665 // See if multiply or divide can be lowered using two-result operations.
3666 // We just need the low half of the multiply; try both the signed
3667 // and unsigned forms. If the target supports both SMUL_LOHI and
3668 // UMUL_LOHI, form a preference by checking which forms of plain
3669 // MULH it supports.
3670 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3671 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3672 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3673 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3674 unsigned OpToUse = 0;
3675 if (HasSMUL_LOHI && !HasMULHS) {
3676 OpToUse = ISD::SMUL_LOHI;
3677 } else if (HasUMUL_LOHI && !HasMULHU) {
3678 OpToUse = ISD::UMUL_LOHI;
3679 } else if (HasSMUL_LOHI) {
3680 OpToUse = ISD::SMUL_LOHI;
3681 } else if (HasUMUL_LOHI) {
3682 OpToUse = ISD::UMUL_LOHI;
3683 }
3684 if (OpToUse) {
3685 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3686 Node->getOperand(1)));
3687 break;
3688 }
1a4d82fc
JJ
3689
3690 SDValue Lo, Hi;
3691 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3692 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3693 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3694 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3695 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3696 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) {
3697 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3698 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3699 SDValue Shift = DAG.getConstant(HalfType.getSizeInBits(),
3700 TLI.getShiftAmountTy(HalfType));
3701 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3702 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3703 break;
3704 }
3705
223e47cc
LB
3706 Tmp1 = ExpandIntLibCall(Node, false,
3707 RTLIB::MUL_I8,
3708 RTLIB::MUL_I16, RTLIB::MUL_I32,
3709 RTLIB::MUL_I64, RTLIB::MUL_I128);
3710 Results.push_back(Tmp1);
3711 break;
3712 }
3713 case ISD::SADDO:
3714 case ISD::SSUBO: {
3715 SDValue LHS = Node->getOperand(0);
3716 SDValue RHS = Node->getOperand(1);
3717 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3718 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3719 LHS, RHS);
3720 Results.push_back(Sum);
1a4d82fc
JJ
3721 EVT ResultType = Node->getValueType(1);
3722 EVT OType = getSetCCResultType(Node->getValueType(0));
223e47cc
LB
3723
3724 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3725
3726 // LHSSign -> LHS >= 0
3727 // RHSSign -> RHS >= 0
3728 // SumSign -> Sum >= 0
3729 //
3730 // Add:
3731 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3732 // Sub:
3733 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3734 //
3735 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3736 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3737 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3738 Node->getOpcode() == ISD::SADDO ?
3739 ISD::SETEQ : ISD::SETNE);
3740
3741 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3742 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3743
3744 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
1a4d82fc 3745 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType));
223e47cc
LB
3746 break;
3747 }
3748 case ISD::UADDO:
3749 case ISD::USUBO: {
3750 SDValue LHS = Node->getOperand(0);
3751 SDValue RHS = Node->getOperand(1);
3752 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3753 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3754 LHS, RHS);
3755 Results.push_back(Sum);
1a4d82fc
JJ
3756
3757 EVT ResultType = Node->getValueType(1);
3758 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3759 ISD::CondCode CC
3760 = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT;
3761 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3762
3763 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
223e47cc
LB
3764 break;
3765 }
3766 case ISD::UMULO:
3767 case ISD::SMULO: {
3768 EVT VT = Node->getValueType(0);
3769 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3770 SDValue LHS = Node->getOperand(0);
3771 SDValue RHS = Node->getOperand(1);
3772 SDValue BottomHalf;
3773 SDValue TopHalf;
3774 static const unsigned Ops[2][3] =
3775 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3776 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3777 bool isSigned = Node->getOpcode() == ISD::SMULO;
3778 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3779 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3780 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3781 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3782 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3783 RHS);
3784 TopHalf = BottomHalf.getValue(1);
1a4d82fc 3785 } else if (TLI.isTypeLegal(WideVT)) {
223e47cc
LB
3786 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3787 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3788 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3789 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3790 DAG.getIntPtrConstant(0));
3791 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3792 DAG.getIntPtrConstant(1));
3793 } else {
3794 // We can fall back to a libcall with an illegal type for the MUL if we
3795 // have a libcall big enough.
3796 // Also, we can fall back to a division in some cases, but that's a big
3797 // performance hit in the general case.
3798 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3799 if (WideVT == MVT::i16)
3800 LC = RTLIB::MUL_I16;
3801 else if (WideVT == MVT::i32)
3802 LC = RTLIB::MUL_I32;
3803 else if (WideVT == MVT::i64)
3804 LC = RTLIB::MUL_I64;
3805 else if (WideVT == MVT::i128)
3806 LC = RTLIB::MUL_I128;
3807 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3808
3809 // The high part is obtained by SRA'ing all but one of the bits of low
3810 // part.
3811 unsigned LoSize = VT.getSizeInBits();
3812 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3813 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3814 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3815 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3816
3817 // Here we're passing the 2 arguments explicitly as 4 arguments that are
3818 // pre-lowered to the correct types. This all depends upon WideVT not
3819 // being a legal type for the architecture and thus has to be split to
3820 // two arguments.
3821 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3822 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3823 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3824 DAG.getIntPtrConstant(0));
3825 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3826 DAG.getIntPtrConstant(1));
3827 // Ret is a node with an illegal type. Because such things are not
1a4d82fc
JJ
3828 // generally permitted during this phase of legalization, make sure the
3829 // node has no more uses. The above EXTRACT_ELEMENT nodes should have been
3830 // folded.
3831 assert(Ret->use_empty() &&
3832 "Unexpected uses of illegally type from expanded lib call.");
223e47cc
LB
3833 }
3834
3835 if (isSigned) {
3836 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3837 TLI.getShiftAmountTy(BottomHalf.getValueType()));
3838 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
1a4d82fc 3839 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
223e47cc
LB
3840 ISD::SETNE);
3841 } else {
1a4d82fc 3842 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
223e47cc
LB
3843 DAG.getConstant(0, VT), ISD::SETNE);
3844 }
3845 Results.push_back(BottomHalf);
3846 Results.push_back(TopHalf);
3847 break;
3848 }
3849 case ISD::BUILD_PAIR: {
3850 EVT PairTy = Node->getValueType(0);
3851 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3852 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3853 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3854 DAG.getConstant(PairTy.getSizeInBits()/2,
3855 TLI.getShiftAmountTy(PairTy)));
3856 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3857 break;
3858 }
3859 case ISD::SELECT:
3860 Tmp1 = Node->getOperand(0);
3861 Tmp2 = Node->getOperand(1);
3862 Tmp3 = Node->getOperand(2);
3863 if (Tmp1.getOpcode() == ISD::SETCC) {
3864 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3865 Tmp2, Tmp3,
3866 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3867 } else {
3868 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3869 DAG.getConstant(0, Tmp1.getValueType()),
3870 Tmp2, Tmp3, ISD::SETNE);
3871 }
3872 Results.push_back(Tmp1);
3873 break;
3874 case ISD::BR_JT: {
3875 SDValue Chain = Node->getOperand(0);
3876 SDValue Table = Node->getOperand(1);
3877 SDValue Index = Node->getOperand(2);
3878
3879 EVT PTy = TLI.getPointerTy();
3880
970d7e83 3881 const DataLayout &TD = *TLI.getDataLayout();
223e47cc
LB
3882 unsigned EntrySize =
3883 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3884
1a4d82fc
JJ
3885 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(),
3886 Index, DAG.getConstant(EntrySize, Index.getValueType()));
3887 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3888 Index, Table);
223e47cc
LB
3889
3890 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3891 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3892 MachinePointerInfo::getJumpTable(), MemVT,
1a4d82fc 3893 false, false, false, 0);
223e47cc
LB
3894 Addr = LD;
3895 if (TM.getRelocationModel() == Reloc::PIC_) {
3896 // For PIC, the sequence is:
3897 // BRIND(load(Jumptable + index) + RelocBase)
3898 // RelocBase can be JumpTable, GOT or some sort of global base.
3899 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3900 TLI.getPICJumpTableRelocBase(Table, DAG));
3901 }
3902 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3903 Results.push_back(Tmp1);
3904 break;
3905 }
3906 case ISD::BRCOND:
3907 // Expand brcond's setcc into its constituent parts and create a BR_CC
3908 // Node.
3909 Tmp1 = Node->getOperand(0);
3910 Tmp2 = Node->getOperand(1);
3911 if (Tmp2.getOpcode() == ISD::SETCC) {
3912 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3913 Tmp1, Tmp2.getOperand(2),
3914 Tmp2.getOperand(0), Tmp2.getOperand(1),
3915 Node->getOperand(2));
3916 } else {
3917 // We test only the i1 bit. Skip the AND if UNDEF.
3918 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3919 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3920 DAG.getConstant(1, Tmp2.getValueType()));
3921 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3922 DAG.getCondCode(ISD::SETNE), Tmp3,
3923 DAG.getConstant(0, Tmp3.getValueType()),
3924 Node->getOperand(2));
3925 }
3926 Results.push_back(Tmp1);
3927 break;
3928 case ISD::SETCC: {
3929 Tmp1 = Node->getOperand(0);
3930 Tmp2 = Node->getOperand(1);
3931 Tmp3 = Node->getOperand(2);
1a4d82fc
JJ
3932 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3933 Tmp3, NeedInvert, dl);
3934
3935 if (Legalized) {
3936 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3937 // condition code, create a new SETCC node.
3938 if (Tmp3.getNode())
3939 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3940 Tmp1, Tmp2, Tmp3);
3941
3942 // If we expanded the SETCC by inverting the condition code, then wrap
3943 // the existing SETCC in a NOT to restore the intended condition.
3944 if (NeedInvert)
3945 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
223e47cc 3946
223e47cc
LB
3947 Results.push_back(Tmp1);
3948 break;
3949 }
3950
3951 // Otherwise, SETCC for the given comparison type must be completely
3952 // illegal; expand it into a SELECT_CC.
3953 EVT VT = Node->getValueType(0);
970d7e83 3954 int TrueValue;
1a4d82fc 3955 switch (TLI.getBooleanContents(Tmp1->getValueType(0))) {
970d7e83
LB
3956 case TargetLowering::ZeroOrOneBooleanContent:
3957 case TargetLowering::UndefinedBooleanContent:
3958 TrueValue = 1;
3959 break;
3960 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3961 TrueValue = -1;
3962 break;
3963 }
223e47cc 3964 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
970d7e83
LB
3965 DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT),
3966 Tmp3);
223e47cc
LB
3967 Results.push_back(Tmp1);
3968 break;
3969 }
3970 case ISD::SELECT_CC: {
3971 Tmp1 = Node->getOperand(0); // LHS
3972 Tmp2 = Node->getOperand(1); // RHS
3973 Tmp3 = Node->getOperand(2); // True
3974 Tmp4 = Node->getOperand(3); // False
1a4d82fc 3975 EVT VT = Node->getValueType(0);
223e47cc 3976 SDValue CC = Node->getOperand(4);
1a4d82fc
JJ
3977 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3978
3979 if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) {
3980 // If the condition code is legal, then we need to expand this
3981 // node using SETCC and SELECT.
3982 EVT CmpVT = Tmp1.getValueType();
3983 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3984 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3985 "expanded.");
3986 EVT CCVT = TLI.getSetCCResultType(*DAG.getContext(), CmpVT);
3987 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC);
3988 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3989 break;
3990 }
3991
3992 // SELECT_CC is legal, so the condition code must not be.
3993 bool Legalized = false;
3994 // Try to legalize by inverting the condition. This is for targets that
3995 // might support an ordered version of a condition, but not the unordered
3996 // version (or vice versa).
3997 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
3998 Tmp1.getValueType().isInteger());
3999 if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) {
4000 // Use the new condition code and swap true and false
4001 Legalized = true;
4002 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
4003 } else {
4004 // If The inverse is not legal, then try to swap the arguments using
4005 // the inverse condition code.
4006 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
4007 if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) {
4008 // The swapped inverse condition is legal, so swap true and false,
4009 // lhs and rhs.
4010 Legalized = true;
4011 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
4012 }
4013 }
4014
4015 if (!Legalized) {
4016 Legalized = LegalizeSetCCCondCode(
4017 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
4018 dl);
223e47cc 4019
1a4d82fc 4020 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
223e47cc 4021
1a4d82fc
JJ
4022 // If we expanded the SETCC by inverting the condition code, then swap
4023 // the True/False operands to match.
4024 if (NeedInvert)
4025 std::swap(Tmp3, Tmp4);
4026
4027 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
4028 // condition code, create a new SELECT_CC node.
4029 if (CC.getNode()) {
4030 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
4031 Tmp1, Tmp2, Tmp3, Tmp4, CC);
4032 } else {
4033 Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
4034 CC = DAG.getCondCode(ISD::SETNE);
4035 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
4036 Tmp2, Tmp3, Tmp4, CC);
4037 }
4038 }
223e47cc
LB
4039 Results.push_back(Tmp1);
4040 break;
4041 }
4042 case ISD::BR_CC: {
4043 Tmp1 = Node->getOperand(0); // Chain
4044 Tmp2 = Node->getOperand(2); // LHS
4045 Tmp3 = Node->getOperand(3); // RHS
4046 Tmp4 = Node->getOperand(1); // CC
4047
1a4d82fc
JJ
4048 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
4049 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
4050 (void)Legalized;
4051 assert(Legalized && "Can't legalize BR_CC with legal condition!");
4052
4053 // If we expanded the SETCC by inverting the condition code, then wrap
4054 // the existing SETCC in a NOT to restore the intended condition.
4055 if (NeedInvert)
4056 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0));
4057
4058 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
4059 // node.
4060 if (Tmp4.getNode()) {
4061 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
4062 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
4063 } else {
4064 Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
4065 Tmp4 = DAG.getCondCode(ISD::SETNE);
4066 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
4067 Tmp2, Tmp3, Node->getOperand(4));
4068 }
223e47cc
LB
4069 Results.push_back(Tmp1);
4070 break;
4071 }
4072 case ISD::BUILD_VECTOR:
4073 Results.push_back(ExpandBUILD_VECTOR(Node));
4074 break;
4075 case ISD::SRA:
4076 case ISD::SRL:
4077 case ISD::SHL: {
4078 // Scalarize vector SRA/SRL/SHL.
4079 EVT VT = Node->getValueType(0);
4080 assert(VT.isVector() && "Unable to legalize non-vector shift");
4081 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
4082 unsigned NumElem = VT.getVectorNumElements();
4083
4084 SmallVector<SDValue, 8> Scalars;
4085 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
4086 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
4087 VT.getScalarType(),
1a4d82fc
JJ
4088 Node->getOperand(0), DAG.getConstant(Idx,
4089 TLI.getVectorIdxTy()));
223e47cc
LB
4090 SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
4091 VT.getScalarType(),
1a4d82fc
JJ
4092 Node->getOperand(1), DAG.getConstant(Idx,
4093 TLI.getVectorIdxTy()));
223e47cc
LB
4094 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
4095 VT.getScalarType(), Ex, Sh));
4096 }
4097 SDValue Result =
1a4d82fc 4098 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars);
223e47cc
LB
4099 ReplaceNode(SDValue(Node, 0), Result);
4100 break;
4101 }
4102 case ISD::GLOBAL_OFFSET_TABLE:
4103 case ISD::GlobalAddress:
4104 case ISD::GlobalTLSAddress:
4105 case ISD::ExternalSymbol:
4106 case ISD::ConstantPool:
4107 case ISD::JumpTable:
4108 case ISD::INTRINSIC_W_CHAIN:
4109 case ISD::INTRINSIC_WO_CHAIN:
4110 case ISD::INTRINSIC_VOID:
4111 // FIXME: Custom lowering for these operations shouldn't return null!
4112 break;
4113 }
4114
4115 // Replace the original node with the legalized result.
4116 if (!Results.empty())
4117 ReplaceNode(Node, Results.data());
4118}
4119
4120void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4121 SmallVector<SDValue, 8> Results;
970d7e83 4122 MVT OVT = Node->getSimpleValueType(0);
223e47cc
LB
4123 if (Node->getOpcode() == ISD::UINT_TO_FP ||
4124 Node->getOpcode() == ISD::SINT_TO_FP ||
4125 Node->getOpcode() == ISD::SETCC) {
970d7e83 4126 OVT = Node->getOperand(0).getSimpleValueType();
223e47cc 4127 }
970d7e83 4128 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
1a4d82fc 4129 SDLoc dl(Node);
223e47cc
LB
4130 SDValue Tmp1, Tmp2, Tmp3;
4131 switch (Node->getOpcode()) {
4132 case ISD::CTTZ:
4133 case ISD::CTTZ_ZERO_UNDEF:
4134 case ISD::CTLZ:
4135 case ISD::CTLZ_ZERO_UNDEF:
4136 case ISD::CTPOP:
4137 // Zero extend the argument.
4138 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4139 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4140 // already the correct result.
4141 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4142 if (Node->getOpcode() == ISD::CTTZ) {
4143 // FIXME: This should set a bit in the zero extended value instead.
1a4d82fc 4144 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT),
223e47cc
LB
4145 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
4146 ISD::SETEQ);
1a4d82fc
JJ
4147 Tmp1 = DAG.getSelect(dl, NVT, Tmp2,
4148 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
223e47cc
LB
4149 } else if (Node->getOpcode() == ISD::CTLZ ||
4150 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4151 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4152 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4153 DAG.getConstant(NVT.getSizeInBits() -
4154 OVT.getSizeInBits(), NVT));
4155 }
4156 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4157 break;
4158 case ISD::BSWAP: {
4159 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4160 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4161 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
4162 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
4163 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
4164 Results.push_back(Tmp1);
4165 break;
4166 }
4167 case ISD::FP_TO_UINT:
4168 case ISD::FP_TO_SINT:
4169 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
4170 Node->getOpcode() == ISD::FP_TO_SINT, dl);
4171 Results.push_back(Tmp1);
4172 break;
4173 case ISD::UINT_TO_FP:
4174 case ISD::SINT_TO_FP:
4175 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
4176 Node->getOpcode() == ISD::SINT_TO_FP, dl);
4177 Results.push_back(Tmp1);
4178 break;
4179 case ISD::VAARG: {
4180 SDValue Chain = Node->getOperand(0); // Get the chain.
4181 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4182
4183 unsigned TruncOp;
4184 if (OVT.isVector()) {
4185 TruncOp = ISD::BITCAST;
4186 } else {
4187 assert(OVT.isInteger()
4188 && "VAARG promotion is supported only for vectors or integer types");
4189 TruncOp = ISD::TRUNCATE;
4190 }
4191
4192 // Perform the larger operation, then convert back
4193 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4194 Node->getConstantOperandVal(3));
4195 Chain = Tmp1.getValue(1);
4196
4197 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4198
4199 // Modified the chain result - switch anything that used the old chain to
4200 // use the new one.
4201 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4202 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1a4d82fc
JJ
4203 if (UpdatedNodes) {
4204 UpdatedNodes->insert(Tmp2.getNode());
4205 UpdatedNodes->insert(Chain.getNode());
4206 }
223e47cc
LB
4207 ReplacedNode(Node);
4208 break;
4209 }
4210 case ISD::AND:
4211 case ISD::OR:
4212 case ISD::XOR: {
4213 unsigned ExtOp, TruncOp;
4214 if (OVT.isVector()) {
4215 ExtOp = ISD::BITCAST;
4216 TruncOp = ISD::BITCAST;
4217 } else {
4218 assert(OVT.isInteger() && "Cannot promote logic operation");
4219 ExtOp = ISD::ANY_EXTEND;
4220 TruncOp = ISD::TRUNCATE;
4221 }
4222 // Promote each of the values to the new type.
4223 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4224 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4225 // Perform the larger operation, then convert back
4226 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4227 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4228 break;
4229 }
4230 case ISD::SELECT: {
4231 unsigned ExtOp, TruncOp;
1a4d82fc
JJ
4232 if (Node->getValueType(0).isVector() ||
4233 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
223e47cc
LB
4234 ExtOp = ISD::BITCAST;
4235 TruncOp = ISD::BITCAST;
4236 } else if (Node->getValueType(0).isInteger()) {
4237 ExtOp = ISD::ANY_EXTEND;
4238 TruncOp = ISD::TRUNCATE;
4239 } else {
4240 ExtOp = ISD::FP_EXTEND;
4241 TruncOp = ISD::FP_ROUND;
4242 }
4243 Tmp1 = Node->getOperand(0);
4244 // Promote each of the values to the new type.
4245 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4246 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4247 // Perform the larger operation, then round down.
1a4d82fc 4248 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
223e47cc
LB
4249 if (TruncOp != ISD::FP_ROUND)
4250 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4251 else
4252 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4253 DAG.getIntPtrConstant(0));
4254 Results.push_back(Tmp1);
4255 break;
4256 }
4257 case ISD::VECTOR_SHUFFLE: {
4258 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4259
4260 // Cast the two input vectors.
4261 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4262 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4263
4264 // Convert the shuffle mask to the right # elements.
4265 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4266 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4267 Results.push_back(Tmp1);
4268 break;
4269 }
4270 case ISD::SETCC: {
4271 unsigned ExtOp = ISD::FP_EXTEND;
4272 if (NVT.isInteger()) {
4273 ISD::CondCode CCCode =
4274 cast<CondCodeSDNode>(Node->getOperand(2))->get();
4275 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4276 }
4277 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4278 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4279 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
4280 Tmp1, Tmp2, Node->getOperand(2)));
4281 break;
4282 }
1a4d82fc
JJ
4283 case ISD::FADD:
4284 case ISD::FSUB:
4285 case ISD::FMUL:
223e47cc
LB
4286 case ISD::FDIV:
4287 case ISD::FREM:
4288 case ISD::FPOW: {
4289 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4290 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4291 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4292 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4293 Tmp3, DAG.getIntPtrConstant(0)));
4294 break;
4295 }
4296 case ISD::FLOG2:
4297 case ISD::FEXP2:
4298 case ISD::FLOG:
4299 case ISD::FEXP: {
4300 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4301 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4302 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4303 Tmp2, DAG.getIntPtrConstant(0)));
4304 break;
4305 }
4306 }
4307
4308 // Replace the original node with the legalized result.
4309 if (!Results.empty())
4310 ReplaceNode(Node, Results.data());
4311}
4312
85aaf69f 4313/// This is the entry point for the file.
223e47cc 4314void SelectionDAG::Legalize() {
1a4d82fc
JJ
4315 AssignTopologicalOrder();
4316
4317 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4318 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4319
4320 // Visit all the nodes. We start in topological order, so that we see
4321 // nodes with their original operands intact. Legalization can produce
4322 // new nodes which may themselves need to be legalized. Iterate until all
4323 // nodes have been legalized.
4324 for (;;) {
4325 bool AnyLegalized = false;
4326 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4327 --NI;
4328
4329 SDNode *N = NI;
4330 if (N->use_empty() && N != getRoot().getNode()) {
4331 ++NI;
4332 DeleteNode(N);
4333 continue;
4334 }
4335
85aaf69f 4336 if (LegalizedNodes.insert(N).second) {
1a4d82fc
JJ
4337 AnyLegalized = true;
4338 Legalizer.LegalizeOp(N);
4339
4340 if (N->use_empty() && N != getRoot().getNode()) {
4341 ++NI;
4342 DeleteNode(N);
4343 }
4344 }
4345 }
4346 if (!AnyLegalized)
4347 break;
4348
4349 }
4350
4351 // Remove dead nodes now.
4352 RemoveDeadNodes();
4353}
4354
4355bool SelectionDAG::LegalizeOp(SDNode *N,
4356 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4357 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4358 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4359
4360 // Directly insert the node in question, and legalize it. This will recurse
4361 // as needed through operands.
4362 LegalizedNodes.insert(N);
4363 Legalizer.LegalizeOp(N);
4364
4365 return LegalizedNodes.count(N);
223e47cc 4366}