]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / lib / Target / AArch64 / AArch64CleanupLocalDynamicTLSPass.cpp
CommitLineData
1a4d82fc
JJ
1//===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Local-dynamic access to thread-local variables proceeds in three stages.
11//
12// 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated
13// in much the same way as a general-dynamic TLS-descriptor access against
14// the special symbol _TLS_MODULE_BASE.
15// 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using
16// instructions with "dtprel" modifiers.
17// 3. These two are added, together with TPIDR_EL0, to obtain the variable's
18// true address.
19//
20// This is only better than general-dynamic access to the variable if two or
21// more of the first stage TLS-descriptor calculations can be combined. This
22// pass looks through a function and performs such combinations.
23//
24//===----------------------------------------------------------------------===//
25#include "AArch64.h"
26#include "AArch64InstrInfo.h"
27#include "AArch64MachineFunctionInfo.h"
28#include "AArch64TargetMachine.h"
29#include "llvm/CodeGen/MachineDominators.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFunctionPass.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34using namespace llvm;
35
36namespace {
37struct LDTLSCleanup : public MachineFunctionPass {
38 static char ID;
39 LDTLSCleanup() : MachineFunctionPass(ID) {}
40
41 bool runOnMachineFunction(MachineFunction &MF) override {
42 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
43 if (AFI->getNumLocalDynamicTLSAccesses() < 2) {
44 // No point folding accesses if there isn't at least two.
45 return false;
46 }
47
48 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
49 return VisitNode(DT->getRootNode(), 0);
50 }
51
52 // Visit the dominator subtree rooted at Node in pre-order.
53 // If TLSBaseAddrReg is non-null, then use that to replace any
54 // TLS_base_addr instructions. Otherwise, create the register
55 // when the first such instruction is seen, and then use it
56 // as we encounter more instructions.
57 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
58 MachineBasicBlock *BB = Node->getBlock();
59 bool Changed = false;
60
61 // Traverse the current block.
62 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
63 ++I) {
64 switch (I->getOpcode()) {
65 case AArch64::TLSDESC_BLR:
66 // Make sure it's a local dynamic access.
67 if (!I->getOperand(1).isSymbol() ||
68 strcmp(I->getOperand(1).getSymbolName(), "_TLS_MODULE_BASE_"))
69 break;
70
71 if (TLSBaseAddrReg)
72 I = replaceTLSBaseAddrCall(I, TLSBaseAddrReg);
73 else
74 I = setRegister(I, &TLSBaseAddrReg);
75 Changed = true;
76 break;
77 default:
78 break;
79 }
80 }
81
82 // Visit the children of this block in the dominator tree.
83 for (MachineDomTreeNode *N : *Node) {
84 Changed |= VisitNode(N, TLSBaseAddrReg);
85 }
86
87 return Changed;
88 }
89
90 // Replace the TLS_base_addr instruction I with a copy from
91 // TLSBaseAddrReg, returning the new instruction.
92 MachineInstr *replaceTLSBaseAddrCall(MachineInstr *I,
93 unsigned TLSBaseAddrReg) {
94 MachineFunction *MF = I->getParent()->getParent();
95 const AArch64TargetMachine *TM =
96 static_cast<const AArch64TargetMachine *>(&MF->getTarget());
97 const AArch64InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
98
99 // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the
100 // code sequence assumes the address will be.
101 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
102 TII->get(TargetOpcode::COPY),
103 AArch64::X0).addReg(TLSBaseAddrReg);
104
105 // Erase the TLS_base_addr instruction.
106 I->eraseFromParent();
107
108 return Copy;
109 }
110
111 // Create a virtal register in *TLSBaseAddrReg, and populate it by
112 // inserting a copy instruction after I. Returns the new instruction.
113 MachineInstr *setRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
114 MachineFunction *MF = I->getParent()->getParent();
115 const AArch64TargetMachine *TM =
116 static_cast<const AArch64TargetMachine *>(&MF->getTarget());
117 const AArch64InstrInfo *TII = TM->getSubtargetImpl()->getInstrInfo();
118
119 // Create a virtual register for the TLS base address.
120 MachineRegisterInfo &RegInfo = MF->getRegInfo();
121 *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass);
122
123 // Insert a copy from X0 to TLSBaseAddrReg for later.
124 MachineInstr *Next = I->getNextNode();
125 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
126 TII->get(TargetOpcode::COPY),
127 *TLSBaseAddrReg).addReg(AArch64::X0);
128
129 return Copy;
130 }
131
132 const char *getPassName() const override {
133 return "Local Dynamic TLS Access Clean-up";
134 }
135
136 void getAnalysisUsage(AnalysisUsage &AU) const override {
137 AU.setPreservesCFG();
138 AU.addRequired<MachineDominatorTree>();
139 MachineFunctionPass::getAnalysisUsage(AU);
140 }
141};
142}
143
144char LDTLSCleanup::ID = 0;
145FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() {
146 return new LDTLSCleanup();
147}